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Defects

* The study of how a QFT responds to the presence of defects has
recently received a lot of attention.

= Defects are disturbances supported on sub-manifolds of the
space-time that can be used to probe the theory in the bulk:

1. Local operators (d=0), e.g. chiral correlators
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Defects

* There are different ways of describing defects in a 4d QFT:

1. Modifying the QFT path-integral by imposing a singular
behavior of the fields on the defect.

2. Coupling the QFT to additional degrees of freedom localized
on the defect.

3. Using a String Theory realization of the QFT and introducing
extra D-branes or M-branes to represent the defect.
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Surface operators

= Surface operators in a 4d theory are operators supported on
a 2d submanifold: D c R*

* They are particular examples of non-local operators that play the
role of “thermometers” for the QFT: when introduced in the path-

integral, they provide us with valuable information (phases, non-

perturbative features, ...) on the QFT. (Gukov+Kapustin '13)
w1 A
4 2
R4 R*~C :(wl,wg)
D
D~C: (wl, O)
>
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Surface operators

= Surface operators can be described:

* as singularities (or monodromy defects) for the gauge field A along
the surface D in the 4d space-time
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Surface operators

= Surface operators can be described:

* as singularities (or monodromy defects) for the gauge field A along
the surface D in the 4d space-time

* as coupled 2d-4d systems, namely as a 2d theory supported on D
with a flavor symmetry group G that is gauged in 4d.

monodromy defects _ coupled 2d-4d systems

clarify & equate




Surface operators as monodromy defects

= The presence of the defect can be encoded in a singular behavior
of the SU(N) gauge field on a loop around the defect:

A:_diag(/ylf” s Y1y Y2y Y2y Y Myt 77M) d
1 na e

where

E n; =N 7 Wy = pew (Gukov+Witten '06, ‘08)




Surface operators as monodromy defects

= The presence of the defect can be encoded in a singular behavior
of the SU(N) gauge field on a loop around the defect:

A:_diag(vla”' s Y1y Y2y Y2y Y Myt 77M) d

VO TV TV

ni n2 N M
where
E n; =N 7 Wy = pew (Gukov+Witten ‘06, ‘08)
)
= This monodromy, i.e. the vector 7t = {n1,n2,...,na}, breaks

the gauge symmetry SU(N) to a (Levi) subgroup I, which
characterizes the defect

SU(N) — S|[U(n1) x U(ng) x --+ x U(nas)]



Surface operators as monodromy defects

" |n presence of the defect, quantized magnetic fluxes are allowed
for each group U(n,)factor:

1
27_‘_ TrFU(n)—mz SN/ Zmzzo

= So besides the usual instanton factor

|
exp sz(—/ TrF/\F)
87'('2 R4

complexified gauge coupling /

in the path-integral we can insert also a new type of factor

1
exp [2%2’2772-(%/ TrFU(m))]
- D

/c‘onstant “electric” parameters
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" |t can be shown that this implies that

1

4
R / ;
instanton number

new contribution due to the defect
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" |n presence of the defect, quantized magnetic fluxes are allowed
for each group U(n,)factor:

1
— TrFU(n)—@EZ, Zmizo

" |t can be shown that this implies that

1

R4
= Thus /

1 1
—Sinst = 27m7'(8— /R4 TrF/\F) —I_QMZW(%/DTIFU(W))
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Surface operators as monodromy defects

" |n presence of the defect, quantized magnetic fluxes are allowed
for each group U(n,)factor:

1
— TrFU(n)—@EZ, Zmizo

" |t can be shown that this implies that

1

]Rél
= Thus /

—Sinst = 2m7‘<k — Z% mz) — 27?2277,,, m;

= 27m'7'k—|—2m'2(777; + 7)) m

1



Surface operators as monodromy defects

* The non-perturbative weight in the path-integral is then:

627'("1, Tk H 6271"& t; m; with
7

= So that the instanton partition function becomes

2m1 T k 2wt t; my;
ZLinst = E (6 He ) Z{k,mz}
)

{k7m’i}
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* The non-perturbative weight in the path-integral is then:

627Tz7'k H 6271'z t; m; with
7

= So that the instanton partition function becomes

Zinst _ Z (627m'7'k H€27riti mz) Z{k,mz}
{k,m;} ¢
which, through a change of variables, takes the form

inst = Z 0" Zia

{d:}
whered; € N and

qp ~ 6271'2751 :

qiNGQﬂ'i(ti—ti_l)’ 7;:2,...,M_1, — qr\./€271'i7': q1 - -

qr ~ 627r7l7'6—27m'tM_1 .

“qdM



Surface operators as monodromy defects
* The non-perturbative weight in the path-integral is then:
627Ti7'k H 6271'1' ti m; with t: = ni + T

= So that the instanton partition function becomes

Zinst _ Z (627m'7'k H€27riti mz) Z{k,mz}
{k,m;} ¢
which, through a change of variables, takes the form

d.
Z' t — -
1ns E : q; \ ramified instanton

whered; € N and {di} partition function
)

Q1 ~ 627Tit1 :

qiN€27r7:(ti—ti—1)’ 7;:2,...,M_1’ = qN€27T7,T: q - -

qr ~ 627r7l7'6—27m'tM_1 .

“qdM



Ramified instanton partition function

Like the usual instanton partition function, also the ramified

instanton partition function can be computed using localization
(Kanno, Tachikawa ‘11)

The idea is to consider the orbifold

4
TS, < CaxC
p— " Zm

in the presence of an Omega-background with parameters ¢;

x Cx C

and €2 to regulate the divergences and localize (Nekrasov'02,..)

Introducing v.e.v's a for the adjoint scalars and going to a
generic point in the Coulomb branch, we have

Linst = Z qid@» (a’a 6@

{d:}
~— explicitly calculable




Ramified instanton partition function

prepotential

" From Z;,st We obtain / (twisted) superpotential
F: 4%
log(l 4 Zinst) _ inst 4 Inst 4 ...
€1€2 €1

* The prepotential F describes the effective 4d dynamics

= The (twisted) superpotential W accounts for the effective
dynamics on the 2d defect



Ramified instanton partition function

From Z;,st We obtain f

Finst

€1€2

log(l + Zinst) = —

prepotential

Winst

€1

(twisted) superpotential
4+ ...

_|_

The prepotential F describes the effective 4d dynamics

The (twisted) superpotential W accounts for the effective
dynamics on the 2d defect

Indeed

1

E ~ SVOI(C?lGQ)
L ~ Svol(Ce,) ~
€1

~ / d*x d?6, d*6,

/ d’x dfq db,



Ramified instanton partition function

prepotential

" From Zi,st We obtain / f (twisted) superpotential
mst 1nst
log(l + Zinst) — -+
6162 €1

* The prepotential F describes the effective 4d dynamics

= The (twisted) superpotential W accounts for the effective
dynamics on the 2d defect

= For example, in the case SU(2) — S[U(l) x U(1)], we have

Linst = o 12 -+ -
E1 (2a + €1 + €3) (—2a + €1 + €3)

@— 2D (6) = diag(a, —a)




Ramified instanton partition function

prepotential

" From Z;,st We obtain / (twisted) superpotential
F: 4%
log(l 4 Zinst) _ inst 4 Inst 4 ...
€1€2 €1

* The prepotential F describes the effective 4d dynamics

= The (twisted) superpotential W accounts for the effective
dynamics on the 2d defect

Can we calculate W in a different way
and obtain some physical intuition ?




Surface defect as a coupled 2d/4d system

*= One considers a 4d gauge theory with group G=SU(N)

" One then couples it with a (2,2) 2d GLSM with G as a global

symmetry (Gukov+Witten ‘06, ...
Gadde+Gukov 13,

Gaiotto+Gukov+Seiberg ‘13, ...)

= Simplest example:
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Surface defect as a coupled 2d/4d system

*= One considers a 4d gauge theory with group G=SU(N)

" One then couples it with a (2,2) 2d GLSM with G as a global

symmetry (Gukov+Witten ‘06, ...
Gadde+Gukov 13,

Gaiotto+Gukov+Seiberg ‘13, ...)

= Simplest example:

CP! 2d 0 — model with SU(2) flavour sym@

2d U(1) gauge theory with a chiral field in the fundamental of SU(2)

TNy
1
2d U(1) gauge theory i 171 2 i 4d SU(2) gauge theory
| 11 !

- .-

-



The coupled 2d/4d system @3

* Understanding the SU(2) node just as a flavour symmetry, we can

write the effective twisted superpotential W for the CP! model as
(d’Adda+Di Vecchia+ ..."82)

W =2mto — Q[U(logz — 1)}
0]



The coupled 2d/4d system @@

* Understanding the SU(2) node just as a flavour symmetry, we can

write the effective twisted superpotential W for the CP! model as
(d’Adda+Di Vecchia+ ..."82)

W =2mito — 2 (r(logz — 1)}

/ [ g \ UV scale

FI li
coupling 2 because of the SU(2)

twisted U(1) flavour symmetry
chiral superfield

This is a purely 2d point of view
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= Understanding the SU(2) node as a 4d theory, and giving a vev to

the adjoint scalar ¢, we introduce a twisted mass for 6 and W
becomes (Hanany+Hori ‘97)

W =2rmito — Tr{(a — <¢>)(log ° _M<¢> — 1)}
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* Understanding the SU(2) node just as a flavour symmetry, we can
write the effective twisted superpotential W for the CP! model as

o (d’Adda+Di Vecchia+ ..."82)
W =2mto — Q[U(log — — 1)}
v

= Understanding the SU(2) node as a 4d theory, and giving a vev to
the adjoint scalar ¢, we introduce a twisted mass for 6 and W

becomes (Hanany+Hori ‘97)
W =2rmito — Tr{(a — <¢>)(log o =19 _ 1)}

N

4d veV’s as twisted masses for o

The 4d theory is treated only classically



The coupled 2d/4d system @@

* Understanding the SU(2) node just as a flavour symmetry, we can

write the effective twisted superpotential W for the CP! model as
(d’Adda+Di Vecchia+ ..."82)

W =2mito — 2[(7(logz — 1)}
[

= Understanding the SU(2) node as a 4d theory, and giving a vev to
the adjoint scalar ¢, we introduce a twisted mass for 6 and W

becomes (Hanany+Hori ‘97)
W =2rmito — Tr{(a — <¢>)(log o —19) _ 1)}
L4
= Taking into account the quantum fluctuations of the 4d SU(2)
theory, we flnaIIy get (Gaiotto+Gukov+Seiberg ‘13, ....)

W =2mito — <Tr[(0—¢)(logag¢ B 1)}>




The coupled 2d/4d system @3

= This 2d/4d quiver describes a 4d SU(2) theory coupled with a 2d
U(1) theory inside.

» Thus, it should describe the defect corresponding to
SU(2) — S[U(1) x U(1)]

and to the partition 7 = |1, 1].

Can we make a quantitative check ?



The coupled 2d/4d system @3

= This 2d/4d quiver describes a 4d SU(2) theory coupled with a 2d
U(1) theory inside.

» Thus, it should describe the defect corresponding to
SU(2) — S[U(1) x U(1)]

and to the partition 7 = |1, 1].

Can we make a quantitative check ?

YES !



The coupled 2d/4d system @2

= Consider the twisted superpotential

Mﬂ:%ﬁa—<ﬂhfﬂ@0%0;¢_l”>

— ([0 ) (105 T2 —1
(o (o2 )

" The 2d vacuum is determined by generated scale

oo (2021 = exp (1r]1og Z0]) =1



The coupled 2d/4d system @a

= Consider the twisted superpotential

W =2rmito — <Tr{(0—¢)(10g0;¢ B 1)]>

= —~(Te[(o — 0) (10g T2~ 1))

2d dynamically

A% _ eQﬂ"Lt M2

* The 2d vacuum is determined by generated scale
ow —
exp (—) =1 <= exp <Tr{log 2 ¢}> =1
80' Al

" This equation can be solved using the Seiberg-Witten curve of
the 4d SU(2) theory 4d dynamically AL = p2miT 4

7
generated scale
y? = Py(z)? — 4A* 1

— characteristic Py(x) = 2 _ §<TI'§/52>

polynomial of SW



The coupled 2d/4d system @a

= Consider the twisted superpotential

wk:%ﬁa—<nK%ﬂ@O%0;¢_l”>

:—<HB0—¢KbgO_¢—1ﬂ>

A

\ 2d dynamically A2 _2
* The 2d vacuum is determined by generated scale ‘1 —

ow

exp (8—0) =1 <= exp <Tr{log U/;1¢}> =1

" This equation can be solved using the Seiberg-Witten curve of

the 4d SU(2) theory 4d dynamically 4 4
generated scale

2 _ 2 4
Yy = Py (x)& characteristic P, (x) — 2 %

polynomial of SW

(Tr¢?)



The coupled 2d/4d system @2

1 _ Py(x)
x—gb> N Y

e ) = ol ) =
Py(0) + /P(0)? — 4A4)
2A%

" From the Seiberg-Witten relation <Tr , one gets

:log(

= With simple manipulations, the vacuum equation becomes

oW A*
— ) =1 < Pyo)=A+"—
exp ( - ) y(0) = A2 + i
which is solved by v.ev. of ¢ instanton terms

v, A

1 A*
— —_ 2 2 —_— — 2 — e o o
0*\/2 (Tr ¢ >+A1+A§ —a+2a(A1+A%)+



The coupled 2d/4d system @3

= Evaluating W on the vacuum solution o. , we find

1
W0 | = 5 (A2 - 75 ) +
‘mst 2a A%
= Notice that
| A4 | |
A% ~ 62777,15 —q — ~ 6271'27' e—27mt N ﬁ = ¢
Al d1

and thus




The coupled 2d/4d system @3

Evaluating W on the vacuum solution o. , we find

1
W0 | = 5 (A2 - 75 ) +
‘mst 2a A%
Notice that
| A4 | |
A% ~ 62777,15 —q — ~ 6271'27' e—27mt N ﬁ = ¢
Al d1

and thus

Furthermore, we see that A1 > A



The coupled 2d/4d system @+@

= Evaluating W on the vacuum solution o. , we find

1 Al
W) = 5- (A - 55 ) +
‘lnSt 2a A%
= Notice that
. A4 . .
A% - 627mt — ¢ 7 — ~ 6271'7,7' e—27mt N 1 = ¢
Al d1

and thus

This exactly matches the twisted superpotential due
to ramified instantons !!




Recap

monodromy defects coupled 2d-4d systems

4d —> 2d 2d —> 4d
Winst from localization Winst from vacuum equations
ramified instanton dynamically generated
counting parameters g, scales A,
Winst — W(U)
loc vacuum




General case

= The quiver which describes the general defect in the SU(N) theory

S bi-fundamental 2d chiral matter

otoaCrn

f

2d U(r;) gauge theories 4d SU(N) flavor theory

= This quiver corresponds to the monodromy defect with
(]
ﬁ:[nl,---,nM] T,,;:an
j=1

SU(N) — S|[U(n1) x U(ng) x - -+ x U(nar)]



General case

= The quiver which describes the general defect in the SU(N) theory

S bi-fundamental 2d chiral matter

otoaCRa

f

2d U(r;) gauge theories 4d SU(N) flavor theory

" Given the structure of the quiver, the twisted superpotential is

M—-1 r; M—2 r; Tit1 |
TS 5D ST 35 3p SNy
1=1 s=1 1=1 s=1 t=1
M —1

- (Tr (o™=~ ¢)) )

w(x) = zlog (; —1)



General case

* The non-perturbative contributions to W are computed from the
vacuum equations

8W):1

exp (2
80@

and exactly match those obtained from the localization approach!



General case

* The non-perturbative contributions to W are computed from the

vacuum equations

o) ="

and exactly match those obtained from the localization approach!

o

Technical but important point

The ramified instanton partition function is given in terms of an
multiple integral; for example at 1-instanton we have

Z QZ/dXz 1 ﬁl 1
€1 27TZ CLS — X + m) (Xz — a¢ + €1+€2)

2 t=1

Thus we have to specify the contour of integration, or equivalently
specify which poles contribute to the integral



Integration contour

= The precise match is obtained by giving a positive imaginary part
to the € parameters and selecting the contribution from the

following poles:

€1 + €9 .
Xi = Qs + 2 s=1---n;, 1=1---,M-—1
€ €
1+ €2 (Gorsky+LeFloch+... 17

M p— a —_ ¢ o o
X ' 2 Ashok+Billo+... ‘17, 18)



Integration contour

= The precise match is obtained by giving a positive imaginary part
to the € parameters and selecting the contribution from the

following poles:

€1 + €9 .
Xi = Qs + 5 s=1---,n;, +1=1,--- , M —1
€1 + €2 ,
XM = Qp — t=1--- , T (Gorsky+LeFloch+... ‘17
) Ashok+Billo+... “17,” 18)
oa2+61+62 e 01 are X177t XM —1
2 2
u _€1+€2 4 _61—|—€2
° 02 9 e Q1 5




Integration contour

= The precise match is obtained by giving a positive imaginary part
to the € parameters and selecting the contribution from the

following poles:

€1 + €2 .
Xi = Qs + 5 s=1---,n;, +1=1,--- , M —1
€1 T € ,
XM = Gt — 2 t=1--- , T (Gorsky+LeFloch+... ‘17
) Ashok+Billo+... “17,” 18)
€1+ ¢€ €1 T €
.a2+ 12 2 .al 12 2
u _€1+€2 4 _61—|—€2
XM




X1
upper

Integration contour

XM—1
upper upper

XM

lower



Integration contour

X1 XM—-1 XM

upper upper upper lower

* This integration prescription can be elegantly specified with a
Jeffrey-Kirwan vector n given by

n= —X1— X2 — XM—-1+tE{m XM (Ex > 1)



Integration contour

X1 XM—-1 XM

upper upper upper lower

* This integration prescription can be elegantly specified with a
Jeffrey-Kirwan vector n given by

- sign of the beta-function for the FI couplings of the U(r))

S/

n= —X1— X2 — XM—-1+tEm XM (Ex > 1)



Integration contour

o

XM—1 XM
upper upper upper lower

* This integration prescription can be elegantly specified with a
Jeffrey-Kirwan vector n given by

- sign of the beta-function for the FI couplings of the U(r))

s \

==& x1— &x2— Em—1 XM—1 &M X

N\

FI couplings of the U(r;,) nodes of the quiver

KK Céy1 <&y & A >A> - >Ay_1>A



Duality




Duality

= Consider a 2d U(r) theory with N, fundamentals and N, ( < N;)
anti-fundamentals

A) Ny +@+ Nr

= This theory is dual to a 2d U(N; - r) theory with the roles of
fundamentals and anti-fundamentals reversed

+ superpotential term

(Seiberg ‘94)

Np
W4  =9ritTro — W25 :—27TitTr0—|—27Tithf

class class
f=1



Duality

= We can apply this duality rule to the quiver representing a surface
defect

Wclass — —|—27T2(t1 TI‘O'1 —|—tTI’O'—|—t2 TI'0'2) + ...

Welass = ++- + 2mi(t1 Tro' —t Tro + (ta +t) Tr o) + - -



Duality

= We can apply this duality rule to the quiver representing a surface
defect

Wclass — —|—27T2(t1 TI‘O'1 —|—tTI’O'—|—t2 TI'0'2) + ...

Wclass — ‘|‘27TZ((t1 —|—t)TI'O'1 —tTI'O'—|— (tQ —|—t)Tr0'2) -+ ...






All these different quiver
theories provide alternative
descriptions of the
same surface operator
corresponding to

SU(N)
1
S[U(n1) x U(nz) x U(nz) x U(na)]



lass = 2701 (t1 Trol +to Tro? + t3 Tr 03)




o

W gass = 21 (t1 Tro! +ty Tro? + ts Tr 03)

o

WClass = 27‘(”1,( — tl TI‘O'1 -+ (tl —I—tg) TI'O'2 —|—t3 TI’O'S)




lass = 2701 (t1 Trol +to Tro? + t3 Tr 03)

lass = 27m'( —t1 Tro' + (t; +t2) Tro® + 3 Tr 03)

Welass = 2mi(ts Tro' — (to + t3) Tro® — t; Tro®)

Wlass = 27T7l( —t3Tr ol —ty Tro? — ¢ Tr 03)



Duality

= For any of these quiver theories we can work out the g vs A map
just as we did for the simplest quiver

= For example, after one duality step we find

ni1+2n2+ns 2N
+no A2 ~ A3 +14 ~ A
3 3

q1 ~ A} , Q2 ~ , q , 4
! \ A 919293

Note that the exponents are the (absolute values of the) beta-functions for
the Fl couplings &, and 2N is the beta-function of the 4d SU(N) theory.




Duality

= For any of these quiver theories we can work out the g vs A map
just as we did for the simplest quiver

= For example, after one duality step we find

A"2%1 +2n2+mn3 A2N

n3+naq
1112 y 43 ™ A3 s q4 ™
AP 919243

ni+n
Q1NA11 27 go ~

* Moreover, the sign change in the Fl term of the first node

Welass = 2mi( — t1 Tra' + (t1 + t2) Tro” + t3 Tro”)
leads to consider a new Jeffrey-Kirwan vector

n=+&x1—&xe = Em—1XMmM—1 +E0m X

L

%, is how integrated in the lower plane |



Duality

= Solving the vacuum equations
exp (8—W) =1
do
leads again to a perfect match (term by term) with the
superpotential of ramified instantons with the new JK parameter!

= The same is true for any other quiver diagram of the sequence we
considered




Duality

= Solving the vacuum equations
exp (8—W) =1
do
leads again to a perfect match (term by term) with the
superpotential of ramified instantons with the new JK parameter!

= The same is true for any other quiver diagram of the sequence we

considered, and also in sequences with non-linear quivers
(QL)

Q24)

Q2B)




Duality

= Starting from the same localization integrand and choosing
different integration contours (or different Jeffrey-Kirwan
vectors) we obtain a perfect match with different quiver theories
related to each other by duality transformations

M .
H% dXZ q;lz Zd'(a’7€17€2)
1 271 dz' ’

JK1 JK3




Conclusions




Summary of results

monodromy defects

[n1/ nz; cee ) nM]

4d v.e.v's of SU(N)

Ramified instanton counting
parameters g,

W, ., from localization

Integration contour

coupled 2d-4d systems

Ranks of gauge groups

2d twisted masses

Dynamically generates
scales A,

W. .. from vacuum egs.

Duality frame



Conclusions

= Similar analysis can be done for other type of theories

N=2* theories

SQCD’s (with matter in fundamental representation)

Chern-Simons like theories in 3d/5d

Theories with other groups (orthogonal, symplectic,...)

= Explore the connection with integrable models



Thanks a lot for your
attention!



