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Motivation

\/Supersymmetric localization [ Duistermatt-Heckman, Witten, Schwarz-Zaboronsky]

- a very powerful tool for exact computation

- many applications for field theories in various backgrounds

[ Nekrasov, Pestun....]

v" Application to supergravities ?



It could also be applied to the SUGRA because the
supersymmetric localization principle is very general.

Need an off-shell formulation of supergravity

We have off-shell formulations for SUGRA up to N=2 (4d),

called “Superconformal formulation”.
[ de Wit, van Proeyen, van Holten...]

[ de Wit, V. Reys '17] for Euclidean SUGRA

Will provide exact computation of supergravity.
We can see quantum/exact holography



v Our interest is in BPS black hole entropy for AdS2/CFT1

Black hole entropy formula

 For large charge limit (thermodynamic limit) in BPS black hole

Ap(p,q)
4G N

= In dmicro (p7 Q)

[ Bekenstein-Hawking] [ Strominger, Vafa '96]



v Our interest is in BPS black hole entropy for AdS2/CFT1

Black hole entropy formula

* For finite charge

Ap(p,q)
4G N

|LO( ) — lndmz’cro(p7Q)

[ Strominger, Vafa '96]
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v Our interest is in BPS black hole entropy for AdS2/CFT1

Black hole entropy formula

* For finite charge

Ar(p,q)

O
AG N (

) = In dmicro(p7 Q)

[ Strominger, Vafa '96]

L
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=  Quantum entropy function



v For extremal black hole, the entropy formula has been generalized to

Quantum entropy function [ Sen ’08]

T

eXp(S]%%I(q)p)) = W(Qap) — /AdS [D¢Sugra] eXP<—i QIfAI _Ssugra(¢sugra))

v It is a partition function in supergravity with

Wilson loop and AdS2 boundary condition.

v"Many tests for perturbative quantum correction

[ Sen, Banerjee, Gupta, Mandal, Lal, Thakur, '10-'14,
Larsen, Keeler, Lisbao ’14,’15]

v"We want to apply the supersymmetric localization.



Supersymmetric Localization for QEF

Modify the action
S — S+ AQeqV

V= [ a3y T Qu
(0

* \We choose a canonical choice for V :

The summation is over all the physical fermions of the theory.

» The algebra of our fermionic symmetry closes to compact bosonic symmetry:

Q2. = H (= Lo — Jo)

eq

At A — 0O the saddle point approximation is exact, and new saddle point appears

which satisfies Q¢qV =0 i.e. “Localization saddle point”

Qeq = 0, for all physical fermions v



Supersymmetric Localization for QEF

Localization saddle point solutions

- The Weyl multiplet is localized to AdSs X S? configuration. [Gupta, Murthy “12]
ds® = (? (dn2 + sinh? d’7'2) + (* (dw2 + sin? 1 dgb2)

where f is scale parameter fixed to arbitrary constant by the Weyl scaling symmetry.

» The off-shell contribution of gravity comes in the physical metric G from the scalar

in vector multiplet through the Kahler potential, for its relation to metric in Weyl multiplet

G,uz/ — BK(X’X)QM/

* In vector multiplets sector, the solution is labeled by one parameter for each multiplets.

[Dabholkar, Gomes, Murthy ‘“10]
xioxli @ oy 20
*  fLcoshn’ B g2 cosh?




Supersymmetric Localization for QEF

« [ Dabholkar, Gomes, Murthy '11]

Wpert qp y Hdgb exp —Wq[qﬁ -|-47TImF((¢ + ip )/2)) Z?fg;;(gb)
Q =0

where ¢! =el +2C1

« Considered some N=2 truncation of N=8 SUGRA with an

assumption of Zi_1,0p and considered the microstate counting of

1
3 BPS black hole in type Il on TA6 , and showed that the

iIntegration over the saddle point would give precise agreement.

* The measure should be given through the 1-loop determinant.



Supersymmetric Localization for QEF

[ IJ, R. Gupta, Y. Ito; S. Murthy, V. Rey ’15]

1-loop determinate has the following universal form,

Zl_loop(gbl) = exp(—ag K(o! —I—ipl)).

ayc = —ad® = —1/12.
agree with the on-shell perturbative computation by [Sen]

- 1-loop for gravity multiplets ? agveyl =7



Supersymmetric Localization for QEF

[ IJ, R. Gupta, Y. Ito; S. Murthy, V. Rey ’15]

1-loop determinate has the following universal form,

Z1100p(9') = exp(—ao K(¢' +ip')).

ay = —a? = —1/12.
agree with the on-shell perturbative computation by [Sen]

. 23
*1-loop for gravity multiplets ? a(\)N "= 12

How and whether it reproduces the consistent result ?



We address two questions.



1. What is the global supercharge (¢, In supergravity?
[de Wit's talk]
* “There is no global SUSY in a theory of gravity.”
In SUGRA, the supersymmetry is gauged. Not a symmetry of functional

integral.

* Fix a background through boundary condition, AdS; x S?
then, the global supercharge (eq is inherited from the symmetry of the

background.

 Split the gravitational fields into background and quantum part.

* Need to define action of the global supercharge on the quantum

fluctuation.



1. What is the global supercharge Qeq in supergravity?

* For BRST quantization of SUSY gauge theory, we use equivariant charge
Qeq — Q + Qbrst

such that 9
eq

= H

« Example: U(1) gauge theory
Q°A, = L,A, —0,(vVA,), Qc=1v"A,

(Q + Qbrst)QAu = (Q% + QQurst + Qurst Q + Q%rst)Au
— QQAM + Q0,c
=L,A,
 Finding Q transformation for all the ghost in SUGRA can be demanding problem.
The difficulty comes from that the algebra in SUGRA is Not Lie algebra but

“soft algebra” : field dependent structure constant.



2. What are the twisted variables in supergravity and
Qeq - cOhomology?

* For 1-loop determinant we will use index theory.

D — Qoq® ® “elementary” boson
D1g
U “elementary” fermion
U — QeqV

* Once we organize all the fields in this representation, then 1-loop
determinant reduces to

7 B \/det\p H
I-loop = dete H

and this can be reproduce by computing the equivariant index.



2. What are the twisted variables in supergravity and
Qeq - cOhomology?

 and this can be reproduce by computing the equivariant index.
ind(D19)(t) := TrkerDyq e Wt _ TrcokerDyg o Ut

= Tree “Ht — TrgeHH?

md D10 ZCL et Z1toop = H )\;a(n)

n

* Thus the information of the cohomological variable is essential in this

computation.
v’ cf. [Bae, Imbimbo, Rey ’15] [Imbimbo, Rosa 18] for use of twisting for

supersymmetric solutions. Here all fluctuations.
17



O — Qoq®

pal |

U — QeqV

1. Whatis @., for SUGRA ?

2. What are the elementary variables & W& ?



O — Qoq®

pal |

U — QeqV

1. Whatis @., for SUGRA ?

Background field method of BRST and its modification
[ de Wit, S. Murthy, V. Reys *18]

2. What are the elementary variables & W& ?
Find a twisting of spinor variables



Modified BRST

[ de Wit, S. Murthy, V. Reys '18]

Background field method of BRST
Split fields into background + quantum

¢z:¢?z_|_$zj COA%&O‘—I—COA

Then the usual BRST transformation for full fields are

5brst ¢Z = A (é + C)a R(¢)az :
5brst ((03 + C)a
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Modified BRST

[ de Wit, S. Murthy, V. Reys '18]

Background field method of BRST
Split fields into background + quantum

¢z:¢?z_|_$zj COA%&O‘—I—COA
It is natural to to read off the transformation of quantum fields
Sorst @ = AE* R(9)o
Sbrst @ = A(c+ &) R($)a' — Aé¥ R(9)s

o (Y 1 o o 9 e
Obrst ¢ = ~3 ETAER f()sy
1 o o (87 1 o o 7 «
5brstca — _5 (C+C)7A (C+C)B f(ﬁb)ﬁ'y + §CWACBf(¢)ﬁ7

5brst2 = 0




Modified BRST

[ de Wit, S. Murthy, V. Reys '18]

Background field method of BRST
Split fields into background + quantum

¢Z:¢?Z‘|‘$Z, COA%&O‘—I—COA
It is natural to to read off the transformation of quantum fields
Sbrst @' = A &Y R(P)a’
Sbrst @ = A(c+ &) R($)a' — Aé¥ R(9)s

o (Y 1 o o 9 e
Obrst ¢ = ~3 ETAER f()sy
1 o o (87 1 o o 7 «
5brstca — _5 (C+C)7A (C+C)B f(ﬁb)ﬁ'y + §CWACBf(¢)ﬁ7

Simple! If the algebra is Lie algebra, then the transformation rule will
reproduce the one of usual background field method in field theory.



Modified BRST

[ de Wit, S. Murthy, V. Reys '18]

Fix the background.
There is no background value of ghost, except the isometry

Choose ¢“ to be an isometry parameter (Killing spinor)

o . Isometry
st @' = A R(D)o]
Sbrst @ = A(c+ &) R(¢)a’ — AE%R(P)a’
Gonss 8% = —5 TN (D)5,
G % = 3 (e A e+ &) F(@)p + 5 E10ER F(9)py”




Modified BRST

[ de Wit, S. Murthy, V. Reys '18]

Fix the background.
There is no background value of ghost, except the isometry

Choose ¢“ to be an isometry parameter (Killing spinor)

* For non-compact space, this isometry parameter is not normalizable,
and is no longer gauge symmetry.

*We do not need to introduce additional ghost of ghost.



Modified BRST

[ de Wit, S. Murthy, V. Reys *18]
Fix the background.

There is no background value of ghost, except the isometry

Choose ¢“ to be an isometry parameter (Killing spinor)

Isometry

Seq @' = NE* R(D)a’
Seq @ = A(é+ ) R()a’ — AR(0)a]
Joq 6% = 0

Deformation

g = —5(E+ 0)TAG@+0) f(B)5" + 5EAE f(9)5,°

Then the algebra equivariantly closes to bosonic symmetry with rigid
parameter.

o

o 0 1 o . o
(ﬁq _ 557 goz — §A2 ¢TAq Cﬁf(¢)5’7



Modified BRST

Anti-ghost and auxiliary field

Oeq b = A DB,

L.,.. i
5eq Ba — ic Acéf(gb)cbﬁf(qb)ﬁo?b
égqb — fﬁf(¢)5oz 3

b2y Ba = P f(0)sa By +E°(6+ )" R($) ' 01 f (¢) g

If f(&)sa’ isconstant, then the algebra is closed.
* It is possible by the observation that the index g3 is for bosonic symmetry.

S
62, =6



Application to supergravity

« Generically, for supergravity softness of f(¢)ga”

commutator of supersymmetries.

appears only from anti

 For the case of supergravity, (D=4 N=2 superconformal gavity)

the “modified BRST" gives the equivariant symmetry

2 =Ls+ > 0r(£h)

I,bos
h r o 1 ofJ of 9
where o= §CCfIJ”(¢),
. | °
ey = =ee fik'(9),

2



Matter coupled to supergravity

» General formulation can be applied in the same manner when matter
coupled to supergravity.

* This formalism systemize the construction the equivariant charge that was
constructed in SUSY gauge theories. :

For rigid limit of SUGRA coupled to YM theory recovers the field theory
cf. Pestun ’'07, Hama-Hosomichi ’12, David-Gava-Gupta-Narain ‘16

Qqu;in = éARAi(QO5 -+ gm) + CIRI?:(Qg + gm)

Quac’ = ~ 3% (f5c! (64 Gm) — Foc! (@) + 3¢5 forc!
Qeqb_f — BI

1,5, 0
—ePe fap?(9) frrtbx

QquI — £%5BéAfABN(gB)bI+ 9

20 = Lo+ Y 0a(é5) +6a(a),
A€bos

: l.p. ;i
il = St fap'(9).



Twisting and cohomological classification

« Reorganize the fields into the representation of cohomology complex.

P — Qeq®

oul |

U — QeqV

* This reorganization is a change of variable: local and invertible

* Find an appropriate choice of twisting of spinors such that we can find the

cohomological variables and the change of variables is non-singular.



Twisted field and algebra

1. Choose a way of twisting and make sure that it is invertible.

« 2. Start with a given component ®R of boson (or fermion) in some representation R of
gauge group. Lorentz , R-symmetry etc..

« 3. Consider its variation Qeq®r which may be a composite combination of bosons and
fermions with some coefficient made of Killing spinor and background value . Find a

fermion sz of the same representation with qu which linearly appears.

« 4, VR should not involve derivative, also the coefficient of this term should be regular.
Otherwise the invertibility will not be guaranteed.

5. If we can find such YR then we classify the ¢R as the elementary bosonic
variable in P and may exclude wR from the elementary fermionic variable v

* 6. Keep the process until the end. If we fail, reconsider the twisting.



Twisted field and algebra

1. Choose a way of twisting and make sure that it is invertible.

« 2. Start with a given component ®R of boson (or fermion) in some representation R of
gauge group. Lorentz , R-symmetry etc..

« 3. Consider its variation Qeq®r which may be a composite combination of bosons and
fermions with some coefficient made of Killing spinor and background value . Find a

fermion sz of the same representation with qu which linearly appears.

« 4, VR should not involve derivative, also the coefficient of this term should be regular.
Otherwise the invertibility will not be guaranteed.

5. If we can find such YR then we classify the ¢R as the elementary bosonic
variable in P and may exclude wR from the elementary fermionic variable v

* 6. Keep the process until the end. If we fail, reconsider the twisting.

This procedure guarantees the invertibility if considering small fluctuation.
We assume it holds even for large fluctuation.



Exercise: N=2 U(1) gauge multiple

« vector multiplet (A,,L, X, )\, Y}j) 9 B+8 F d.o.f.

and U(1) ghost multiplet (b, ¢, B) 1b + 2F d.o.f.

» Choose a twisted variable using the production by (5", yHe! ,Eijgj)
A= EA, N = BN, N = 200N
inverse relation is

A= (5jel) T (yse A+ e A+ €k gk A

» cf. We could have used another twisting using (5i ,7“75€i ,5Z-jfy55j)



Exercise: N=2 U(1) gauge multiple

* Investigate the variation and follow the procedure.

10B + 10F d.o.f. fall into a rep of this equivariant algebra

AM,XQ )\ij,b,c

elementary bosons elementary fermions
Qoq Ay = A+ e Qeqc = V' Ay +1X1(8i8") + Xa(675¢")
Y b =D
Qeq Xz = A Qb =B
Qeq AV = ErLe"YY +26(207“53)8MX2

1
-|—€SLC'7ab 7) [Fab — §(X1 ng)Tab]

1
+ 5( C,Yab 7) [Fa—il_) — g(Xl + 1X2)chl_)]



Weyl multiplet

« Weyl multiplet (efb ,wz : Af? ,Af : Vij ; TZ;‘Z X", D)

« 24 B+ 24 F d.o.f. after removing gauge redundancies.

« 43 B +40F d.o.f. if we keep all degree of freedom.

« Add 51 B +54 F ghost degree of freedom.

 Similar classification of 94B +94F fields as a representation of the equivariant
algebra



Weyl multiplet

Local symmetry

Gauge fields

Degrees of freedom

g.c.t €, 16B
Dilatation D Aﬁ) 4B
Sp. conf. K¢ fi composite
Lorentz M, wzb composite

SO(1,1)r All 4B

SU(2)g Vi 12B

Q)-susy by 32F
S-susy qbﬁ composite

Auxiliary fields | Degrees of freedom

T 6B

D 1B

X 8F




Ghost multiplets

Local symmetry Ghosts Degrees of freedom
g.c.t (cu, by, By) 8F 4B
Dilatation D (¢p,bp, Bp) 2F B
Sp. conf. K“ (c% ,b% ,B%) 8F 4B
Lorentz My, (cqb  bab  Beb) 12F 6B
U1)g (cr,br, BRr) 2F 1B
SU(2)r (cj-bhjsBhj) 6F 3B
Q-susy (ch b4 Bb) 16B SF
S-susy (ck, bl BY) 16B  8F




Twisted variables

* By projection of Killing spinors, (y5t, yHe! ,52'3-57) or (575 ,7“755i ,5ij’y5€j)

we found a choice

Yu =t Yt = e, vl = —2¢0CyY
x=ex", x* = X, X9 = —2elCysxD,
05:8w5c§, cg = 5ﬂac§, cgj = —28“6’(:‘7)
cQ :5i75cé, cQ? = ewacé, cg — —25“6’0‘7)

* Inverse relation

“huvset + vt Yae' +W€Jk8k)
(xe' + xMarse’ + X ejnyse”)
(csvse” + c&vae’ ‘|'055j e¥)
—

CQ")/5€ + CQ%&“ + chjksk)



Variation of fields

Qqulf = 5nya¢ + ¥, e + 0, c’el + cabeub — cDe + cszya v
Qeaty’ = 2Du(e +cQ)' + O] + 0uc” ) + 3¢yl — e, — 5CRY5Y),
+ bl 4+ 1T Yapvu(e + Q)" + v (n + cs)’
— 22%5Z + Y V5C + il—6fyab(Tab7M — Toabvou)si + QDMCE? + O, Lt 0,

+31 ab%b%ﬁ — %CDw P —637510 '+ )+ 1167abTab%LCQ + Y Y5C + Vs

efc...

» Write them in terms of twisted variables and try to the cohomological
classicfication.



Cohomological classification

P V]
’ég,ﬁﬁ,ﬁg,ﬁ/‘ o X
CQ,Cg, cH, et cp,
bQ,an,bg, b,u,b]\afbea
bs , bsa, b bl br,bh;

€t = "+ Qeqthy = —Csu+ AfEiE" +---

~

Qeqwﬁ;j _ Vu(ikej)k—l—-",



Cohomological classification

o v
o AlAD T gl x
CQ,Cg, cH, et cp,
bg > bQas b5 . | bu b bp .,
bs, bsa s bS bit bR bg;

Qeq T = 4i (a-ei)_legi(?%b% 52 Xij +00

*Interms of SU(2); x SU(2)_ x SU(2)g
Tt andT7 (1,3,4)and (3,1,1) but X7 (1,1,3)

 Twisting procedure maps Xij to T~C§) or Tj{) depending on a point of manifold.



Index and 1-loop



Atiyah-Bott fixed point formula

« We apply Atiyah-Bott fixed point formula to compute the index

wH wH
ind(Dl()) = Z

{z|z=x}

Tre e — Trge™
det(1 — 0x/0x)

» There are two fixed point under H=L-J: One is the center of AdS2 with the north pole
of S2, the other is the center of AdS2 with the south pole of S2




Topological twisting

- At the fixed point, the twisting between SU(2)r  symmetry and one of
SU(2) in Lorentz group SU(2)+ x SU(2)— happen.

At the fixed points, the chiral and anti chiral part of Killing spinor is
reduced.

« Atnorthpole: at n=0and ¢y =0

83—0{ — O7 5—@ X (0-3) Is’

 Atsouthpole: atn=0and ¢y ==

53—04 X (JS)i&a gi—d =0

« Therefore, SU(2)r symmetry is identified with the inverse of SU(2)-
at north pole, the inverse of SU(2), at south pole.



Twisted representation

» At the fixed point, the twisting between SU(2) R symmetry and one of SU(2) in Lorentz

group SU(2) x SU(2) happen.

NP: SU(2)4 x SU(2)_g rep

NP: SU(2);1 x SU(2)_g rep

v SP: SU(2)4r x SU(2)_ rep y SP: SU(2),.r x SU(2)_g rep
e (3,3)+(1,3)+(3,1) +(1,1) || ¥, (2,2)
Al (2,2) 71 (2,4) at NP/(4,2) at SP + (2,2)
Ap (2,2) X (1,1)
T/ ~at NP/SP | (1,3) at NP/(3,1) at SP ¢ (2,2)
o (1,1) c2b (1,3) +(3,1)
cd (1,3) at NP/(3,1) at SP D (1,1)
bq (1,1) br (1,1)
bo (2,2) bR} (1,3) at NP/(3,1) at SP
bo¥ (1,3) at NP/(3,1) at SP by (2,2)
bs (1,1) bp (1,1)
bs (2,2) b% (2,2)
bs" (1,3) at NP/(3,1) at SP b3t (1,3) + (3,1)




1-loop determinant

« Using the Atiyah-Bott fixed point formula,

2(¢* +¢%)—6(g+q¢ ) +8

md{Dio) = = e g

X 2

* From the index we read off
N I Weyl, bulk 11
Z1-100p(¢ ) = exp(—aoK(9")) B D

* Recall that the zero mode contribution of Weyl multiplet is [Sen]

ag ¥ P = 1 (=3 from bosons and +4 from fermions)

Adding this, we obtain
ag’ ' = 23/12

Which is consistent with on-shell computation.



Summary and outlook

v We have constructed the equivariant supercharge for N=2 SUGRA, and classified

the cohomological variables with appropriate twisting of variables.

v The index computation gives the 1-loop for Weyl multiplets, which agrees with on-

shell perturbative computation.

v We hope that this work brings some clarity to the idea of twisting and localization in
supergravity.

v" It may be useful in other directions.

v Other systems can be interesting AdSg1/CFT,

v" Relation of Twisting of supergravity to topological gravity?

[Witten '88] [Baulieu, Bellon, Reys '12] [Bae, Imbimbo, Rey, Rosa]



Thank you!



Remark 1 [IJ, Yuto Ito, Rajesh Gupta arXiv:1504.01700]

n
* The eigen value of H is 7 How do we get 1-loop which depends on localization

saddle through the Kahler potential elC(C') ?

Integration measure

* Definition of the functional integration means

X' =][dX'(2)T(X)

» The Jacobian can be determined by using “ultra locality argument”,

[Fujikawa, Yasuda ’84 ; Bern, Blau, Mottola ‘91
Moore, Nelson ’86]



Integration measure

» Consider the kinetic terms for graviton and scalars in the action
4 —K 1 v J
/dw voge T |Ry+ Nrj0,X 0,X7 gM]

* The metric g, is not physical metric, which is related to the physical metric in Einstein
frame.

G,UJ/ — g,uye ’ 6 — 6_2

* Then we get standard E-H action, and the kinetic terms of the scalars are
/ dz*vGe® N1 ;0, X0, X’ GH

* Looking at the factors in front of each kinetic term, the definition of norm is dictated as

H5XH2 = /d4$ GGKNL](SXI(SXJ: /d4$\/%€2€§3N[J5XI(SXJ



Integration measure

* By the following normalization condition

1 = / DX DX e I10XIP

the integration measure is defined as

DXDX = | [ dX (2)dX(z) det((H07Ny )

x,l

« Similarly, for all the fields we can define the measure.
* Note that the physical radius factor becomes, by localization, fp (X, X) = gp (C)

* The problem essentially becomes computation of the regularized power fp (O)



Integration measure

* In order to compute the regularized number, we first use the field redefinition

X =XxUp(C), Wl =wltp(0), ete.

« and compute 1-loop partition function with these variables.

v" To relate the redefined bosonic and fermionic field, it also becomes natural to consider
redefinition of the equivariant operator Q. := ¢1/2¢,'/?Q.,
so that the eigenvalue of the square of the operator is in terms of physical length

32
and so the result of the 1-loop is in terms of the physical length Qeq — 1/€P :



Remark 2 : Boundary modes (Example for 1-form)

« Boundary modes(Discrete zero mode): [Camporesi, Higuchi]

Since AdS2 is non-compact geometry, it forces us to consider

: o 0
wWh=do!, o= TR = ], 42,43,
V2m|l| 1+ coshn

which do not vanish at the boundary of AdS2, but still normalizable.

* These modes not only make QV=0, but also the original action vanishing since the field
strength is zero.

« Nevertheless, these are not pure gauge, because &' are not normalizable.

Thus this mode cannot be gauged away, and we have to separately take into account it
in the path integral . The regularized result is well understood. [Sen, Guptal



