Twisting and localization in Supergravity: equivariant cohomology of BPS black holes

Imtak Jeon
HRI, Allahabad
Workshop on Supersymmetric Localization and Holography: Black Hole Entropy and Wilson Loops
ICTP, Trieste
10 July 2018

Based on arXiv:1806.04479 with Sameer Murthy (King's College)

Motivation

\checkmark Supersymmetric localization [Duistermatt-Heckman, Witten, Schwarz-Zaboronsky]

- a very powerful tool for exact computation
- many applications for field theories in various backgrounds
[Nekrasov, Pestun....]
\checkmark Application to supergravities ?

It could also be applied to the SUGRA because the supersymmetric localization principle is very general.

Need an off-shell formulation of supergravity
We have off-shell formulations for SUGRA up to $\mathrm{N}=2$ (4d), called "Superconformal formulation".
[de Wit, van Proeyen, van Holten...]
[de Wit, V. Reys '17] for Euclidean SUGRA

Will provide exact computation of supergravity. We can see quantum/exact holography
\checkmark Our interest is in BPS black hole entropy for AdS2/CFT1

Black hole entropy formula

- For large charge limit (thermodynamic limit) in BPS black hole

$$
\frac{A_{H}(p, q)}{4 G_{N}}=\ln d_{\text {micro }}(p, q)
$$

\checkmark Our interest is in BPS black hole entropy for AdS2/CFT1

Black hole entropy formula

- For finite charge

$$
\frac{A_{H}(p, q)}{4 G_{N}}+O\left(\frac{1}{Q}\right)=\ln d_{\text {micro }}(p, q)
$$

[Strominger, Vafa '96]
\checkmark Our interest is in BPS black hole entropy for AdS2/CFT1

Black hole entropy formula

- For finite charge

$$
\frac{A_{H}(p, q)}{4 G_{N}}+O\left(\frac{1}{Q}\right)=\ln d_{m i c r o}(p, q)
$$

[Strominger, Vafa '96]
\rightarrow Quantum entropy function
\checkmark For extremal black hole, the entropy formula has been generalized to Quantum entropy function [Sen '08]

$$
\exp \left(S_{\mathrm{BH}}^{\mathrm{qu}}(q, p)\right) \equiv W(q, p)=\int_{\mathrm{AdS}_{2}}\left[D \phi_{\text {sugra }}\right] \exp \left(-i q_{I} \oint_{\tau} A^{I}-S_{\text {sugra }}\left(\phi_{\text {sugra }}\right)\right)
$$

\checkmark It is a partition function in supergravity with Wilson loop and AdS2 boundary condition.
\checkmark Many tests for perturbative quantum correction


```
[ Sen, Banerjee, Gupta, Mandal, Lal, Thakur, '10-'14,
Larsen, Keeler, Lisbão '14,'15]
```

\checkmark We want to apply the supersymmetric localization.

Supersymmetric Localization for QEF

Modify the action

$$
\begin{gathered}
S \longrightarrow S+\lambda Q_{\mathrm{eq}} \mathcal{V} \\
\mathcal{V}=\int d^{4} x \sqrt{g} \sum_{\psi} \bar{\psi} Q_{\mathrm{eq}} \psi
\end{gathered}
$$

- We choose a canonical choice for \mathcal{V} :

The summation is over all the physical fermions of the theory.

- The algebra of our fermionic symmetry closes to compact bosonic symmetry:

$$
Q_{\mathrm{eq}}^{2}=H\left(=L_{0}-J_{0}\right)
$$

- At $\lambda \rightarrow \infty$ the saddle point approximation is exact, and new saddle point appears which satisfies $Q_{\text {eq }} \mathcal{V}=0 \quad$ i.e.
"Localization saddle point"

$$
Q_{\mathrm{eq}} \psi=0, \quad \text { for all physical fermions } \psi
$$

Supersymmetric Localization for QEF

Localization saddle point solutions

- The Weyl multiplet is localized to $A d S_{2} \times S^{2}$ configuration.

$$
d s^{2}=\ell^{2}\left(d \eta^{2}+\sinh ^{2} \eta d \tau^{2}\right)+\ell^{2}\left(d \psi^{2}+\sin ^{2} \psi d \phi^{2}\right)
$$

where ℓ is scale parameter fixed to arbitrary constant by the Weyl scaling symmetry.

- The off-shell contribution of gravity comes in the physical metric $G_{\mu \nu}$ from the scalar in vector multiplet through the Kahler potential, for its relation to metric in Weyl multiplet

$$
G_{\mu \nu}=e^{\mathcal{K}(X, \bar{X})} g_{\mu \nu}
$$

- In vector multiplets sector, the solution is labeled by one parameter for each multiplets.

$$
X^{I}=X_{*}^{I}+\frac{C^{I}}{\ell \cosh \eta}, \quad Y_{12}^{I}=\frac{2 C^{I}}{\ell^{2} \cosh ^{2} \eta}
$$

Supersymmetric Localization for QEF

- [Dabholkar, Gomes, Murthy '11]

$$
\begin{aligned}
W^{\mathrm{pert}}(q, p) & =\int_{\mathcal{M}_{Q}} \prod_{I=0}^{n_{\mathrm{v}}} d \phi^{I} \exp \left(-\pi q_{I} \phi^{I}+4 \pi \operatorname{Im} F\left(\left(\phi^{I}+\mathrm{i} p^{I}\right) / 2\right)\right) Z_{1-\text { loop }}^{Q_{\mathrm{eq}} \mathcal{V}}\left(\phi^{I}\right) \\
& \text { where } \phi^{I}=e_{*}^{I}+2 C^{I}
\end{aligned}
$$

- Considered some $\mathrm{N}=2$ truncation of $\mathrm{N}=8$ SUGRA with an assumption of $Z_{1-\text { loop }}$ and considered the microstate counting of $\frac{1}{8} B P S$ black hole in type II on $T^{\wedge} 6$, and showed that the integration over the saddle point would give precise agreement.
-The measure should be given through the 1-loop determinant.

Supersymmetric Localization for QEF

- [IJ, R. Gupta, Y. Ito; S. Murthy, V. Rey '15]

1-loop determinate has the following universal form,

$$
\begin{aligned}
& Z_{1 \text {-loop }}\left(\phi^{I}\right)=\exp \left(-a_{0} \mathcal{K}\left(\phi^{I}+\mathrm{i} p^{I}\right)\right) \\
& a_{0}^{\mathrm{vec}}=-a_{0}^{\mathrm{hyp}}=-1 / 12
\end{aligned}
$$

agree with the on-shell perturbative computation by [Sen]
-1-loop for gravity multiplets ? $\quad a_{0}^{\text {Weyl }}=$?

Supersymmetric Localization for QEF

- [IJ, R. Gupta, Y. Ito; S. Murthy, V. Rey '15]

1-loop determinate has the following universal form,

$$
\begin{aligned}
& Z_{1 \text {-loop }}\left(\phi^{I}\right)=\exp \left(-a_{0} \mathcal{K}\left(\phi^{I}+\mathrm{i} p^{I}\right)\right) . \\
& a_{0}^{\mathrm{vec}}=-a_{0}^{\mathrm{hyp}}=-1 / 12
\end{aligned}
$$

agree with the on-shell perturbative computation by [Sen]
-1-loop for gravity multiplets ? $\quad a_{0}^{\mathrm{Weyl}}=\frac{23}{12}$

How and whether it reproduces the consistent result ?

We address two questions.

1. What is the global supercharge $Q_{\text {eq }}$ in supergravity?

-"There is no global SUSY in a theory of gravity." In SUGRA, the supersymmetry is gauged. Not a symmetry of functional integral.

- Fix a background through boundary condition, $A d S_{2} \times S^{2}$ then, the global supercharge $Q_{\text {eq }}$ is inherited from the symmetry of the background.
- Split the gravitational fields into background and quantum part.
- Need to define action of the global supercharge on the quantum fluctuation.

1. What is the global supercharge $Q_{\text {eq }}$ in supergravity?

- For BRST quantization of SUSY gauge theory, we use equivariant charge

$$
Q_{\mathrm{eq}}=Q+Q_{\mathrm{brst}}
$$

such that

$$
Q_{\mathrm{eq}}^{2}=H
$$

- Example: $\mathrm{U}(1)$ gauge theory

$$
\begin{aligned}
Q^{2} A_{\mu}=\mathcal{L}_{v} & A_{\mu}-\partial_{\mu}\left(v^{\nu} A_{\nu}\right), \quad Q c=v^{\nu} A_{\nu} \\
\left(Q+Q_{\mathrm{brst}}\right)^{2} A_{\mu} & =\left(Q^{2}+Q Q_{\mathrm{brst}}+Q_{\mathrm{brst}} Q+Q_{\mathrm{brst}}^{2}\right) A_{\mu} \\
& =Q^{2} A_{\mu}+Q \partial_{\mu} c \\
& =\mathcal{L}_{v} A_{\mu}
\end{aligned}
$$

- Finding Q transformation for all the ghost in SUGRA can be demanding problem. The difficulty comes from that the algebra in SUGRA is Not Lie algebra but "soft algebra" : field dependent structure constant.

2. What are the twisted variables in supergravity and $Q_{\text {eq }}$ - cohomology?

- For 1-loop determinant we will use index theory.

- Once we organize all the fields in this representation, then 1-loop determinant reduces to

$$
Z_{\text {1-loop }}=\sqrt{\frac{\operatorname{det}_{\Psi} H}{\operatorname{det}_{\Phi} H}}
$$

and this can be reproduce by computing the equivariant index.

2. What are the twisted variables in supergravity and $Q_{\text {eq }}$ - cohomology?

- and this can be reproduce by computing the equivariant index.

$$
\begin{gathered}
\operatorname{ind}\left(D_{10}\right)(t):=\operatorname{Tr}_{\text {Ker } D_{10}} e^{-i H t}-\operatorname{Tr}_{\text {Coker } D_{10}} e^{-i H t} \\
=\operatorname{Tr}_{\Phi} e^{-i H t}-\operatorname{Tr}_{\Psi} e^{-i H t} \\
\operatorname{ind}\left(D_{10}\right)(t)=\sum_{n} a(n) e^{-i \lambda_{n} t} \longrightarrow Z_{\text {l-loop }}=\prod_{n} \lambda_{n}^{-a(n)}
\end{gathered}
$$

- Thus the information of the cohomological variable is essential in this computation.
\checkmark cf. [Bae, Imbimbo, Rey '15] [Imbimbo, Rosa '18] for use of twisting for supersymmetric solutions. Here all fluctuations.

1. What is Q_{eq} for SUGRA ?
2. What are the elementary variables Φ, Ψ ?

3. What is $Q_{\text {eq }}$ for SUGRA ? Background field method of BRST and its modification
[de Wit, S. Murthy, V. Reys '18]
4. What are the elementary variables Φ, Ψ ?

Find a twisting of spinor variables

Modified BRST

Background field method of BRST

Split fields into background + quantum

$$
\phi^{i}=\dot{\phi}^{i}+\tilde{\phi}^{i}, \quad c^{\alpha} \rightarrow \dot{c}^{\alpha}+c^{\alpha}
$$

Then the usual BRST transformation for full fields are

$$
\begin{aligned}
\delta_{\mathrm{brst}} \phi^{i} & =\Lambda(\stackrel{\circ}{c}+c)^{\alpha} R(\phi)_{\alpha}{ }^{i}, \\
\delta_{\mathrm{brst}}(\stackrel{i}{c}+c)^{\alpha} & =-\frac{1}{2}(\stackrel{\delta}{c}+c)^{\gamma} \Lambda(\stackrel{c}{c}+c)^{\beta} f(\phi)_{\beta \gamma}^{\alpha} .
\end{aligned}
$$

$$
\delta_{\mathrm{brst}}^{2}=0
$$

Modified BRST

Background field method of BRST

Split fields into background + quantum

$$
\phi^{i}=\dot{\phi}^{i}+\tilde{\phi}^{i}, \quad c^{\alpha} \rightarrow \dot{c}^{\alpha}+c^{\alpha}
$$

It is natural to to read off the transformation of quantum fields

$$
\begin{aligned}
\delta_{\mathrm{brst}} \dot{\phi}^{i}= & \Lambda \dot{c}^{\alpha} R(\dot{\phi})_{\alpha}{ }^{i} \\
\delta_{\mathrm{brst}} \widetilde{\phi}^{i}= & \Lambda(c+\dot{c})^{\alpha} R(\phi)_{\alpha}^{i}-\Lambda \dot{c}^{\alpha} R(\AA \dot{\phi})_{\alpha}{ }^{i} \\
\delta_{\mathrm{brst}} \dot{c}^{\alpha}= & -\frac{1}{2} \stackrel{\circ}{c}^{\gamma} \Lambda \dot{c}^{\beta} f(\dot{\phi})_{\beta \gamma}{ }^{\alpha} \\
\delta_{\mathrm{brst}} c^{\alpha}= & -\frac{1}{2}(c+\stackrel{\circ}{c})^{\gamma} \Lambda(c+\stackrel{\circ}{c})^{\beta} f(\phi)_{\beta \gamma}{ }^{\alpha}+\frac{1}{2} \stackrel{\circ}{c}^{\gamma} \Lambda \dot{c}^{\beta} f(\dot{\phi})_{\beta \gamma}{ }^{\alpha} \\
& \delta_{\mathrm{brst}}^{2}=0
\end{aligned}
$$

Modified BRST

Background field method of BRST

Split fields into background + quantum

$$
\phi^{i}=\dot{\phi}^{i}+\tilde{\phi}^{i}, \quad c^{\alpha} \rightarrow \dot{c}^{\alpha}+c^{\alpha}
$$

It is natural to to read off the transformation of quantum fields

$$
\begin{aligned}
& \delta_{\text {brst }} \dot{\phi}^{i}=\Lambda \dot{c}^{\alpha} R(\dot{\phi})_{\alpha}{ }^{i} \\
& \delta_{\text {brst }} \widetilde{\phi}^{i}=\Lambda(c+\dot{c})^{\alpha} R(\phi)_{\alpha}{ }^{i}-\Lambda \dot{c}^{\alpha} R(\dot{\phi})_{\alpha}{ }^{i} \\
& \delta_{\text {brst }} \dot{c}^{\alpha}=-\frac{1}{2} \dot{c}^{\gamma} \Lambda \dot{c}^{\beta} f(\grave{\phi})_{\beta \gamma}{ }^{\alpha} \\
& \delta_{\text {brst }} c^{\alpha}=-\frac{1}{2}(c+\dot{c})^{\gamma} \Lambda(c+\dot{c})^{\beta} f(\phi)_{\beta \gamma}{ }^{\alpha}+\frac{1}{2} \dot{c}^{\gamma} \Lambda \dot{c}^{\beta} f(\grave{\phi})_{\beta \gamma}{ }^{\alpha}
\end{aligned}
$$

Simple! If the algebra is Lie algebra, then the transformation rule will reproduce the one of usual background field method in field theory.

Modified BRST

Fix the background.

- There is no background value of ghost, except the isometry

Choose $\stackrel{\circ}{c}^{\alpha}$ to be an isometry parameter (Killing spinor)

$$
\begin{aligned}
& \delta_{\mathrm{brst}} \dot{\phi}^{i}= \Lambda \dot{c}^{\alpha} R(\dot{\phi})_{\alpha}{ }^{i} \\
& \delta_{\mathrm{brst}} \widetilde{\phi}^{i}= \Lambda(c+\stackrel{\circ}{c})^{\alpha} R(\phi)_{\alpha}{ }^{i}-\Lambda \dot{c}^{\alpha} R(\dot{\phi})_{\alpha}{ }^{i} \\
& \delta_{\mathrm{brst}} \dot{c}^{\alpha}=-\frac{1}{2} \dot{c}^{\gamma} \Lambda \dot{c}^{\beta} f(\dot{\phi})_{\beta \gamma}{ }^{\alpha} \\
& \delta_{\mathrm{brst}} c^{\alpha}=-\frac{1}{2}(c+\dot{c})^{\gamma} \Lambda(c+\stackrel{\circ}{c})^{\beta} f(\phi)_{\beta \gamma}{ }^{\alpha}+\frac{1}{2} \dot{c}^{\gamma} \Lambda \dot{c}^{\beta} f(\dot{\phi})_{\beta \gamma}{ }^{\alpha} \\
& \delta_{\mathrm{brst}}{ }^{2}=0
\end{aligned}
$$

Modified BRST

Fix the background.

- There is no background value of ghost, except the isometry

Choose $\stackrel{\circ}{c}^{\alpha}$ to be an isometry parameter (Killing spinor)

- For non-compact space, this isometry parameter is not normalizable, and is no longer gauge symmetry.
-We do not need to introduce additional ghost of ghost.

Modified BRST

Fix the background.

- There is no background value of ghost, except the isometry Choose $\stackrel{\circ}{c}^{\alpha}$ to be an isometry parameter (Killing spinor)

$$
\begin{aligned}
& \delta_{\mathrm{eq}} \dot{\phi}^{i}=\Lambda \dot{c}^{\alpha} R(\phi)_{\alpha}{ }^{i} \quad \text { Isometry } \\
& \delta_{\mathrm{eq}} \widetilde{\phi}^{i}=\Lambda(\dot{c}+c)^{\alpha} R(\phi)_{\alpha}{ }^{i}-\Lambda \dot{c}^{\alpha} \alpha(\dot{\phi})_{\alpha}{ }^{i} \\
& \delta_{\mathrm{eq}} \dot{c}^{\alpha}=0 \quad \text { Deformation } \\
& \delta_{\mathrm{eq}} c^{\alpha}=-\frac{1}{2}(\dot{c}+c)^{\gamma} \Lambda(\dot{c}+c)^{\beta} f(\phi)_{\beta \gamma}{ }^{\alpha}+\frac{1}{2} \dot{c}^{\gamma} \Lambda \dot{c}^{\beta} f(\phi)_{\beta \gamma}{ }^{\alpha}
\end{aligned}
$$

- Then the algebra equivariantly closes to bosonic symmetry with rigid parameter.

$$
\delta_{\mathrm{eq}}^{2}=\delta_{\dot{\xi}}, \quad \dot{\xi}^{\alpha}=\frac{1}{2} \Lambda_{2} \dot{c}^{\gamma} \Lambda_{1} \dot{c}^{\beta} f(\dot{\phi})_{\beta \gamma}{ }^{\alpha}
$$

Modified BRST

Anti-ghost and auxiliary field

$$
\begin{aligned}
\delta_{\mathrm{eq}} b_{\alpha} & =\Lambda B_{\alpha} \\
\delta_{\mathrm{eq}} B_{\alpha} & =\frac{1}{2} \dot{c}^{\sigma} \Lambda \dot{c}^{\delta} f(\stackrel{\circ}{\phi})_{\delta \sigma}^{\beta} f(\phi)_{\beta \alpha}{ }^{\gamma} b_{\gamma} \\
\delta_{\mathrm{eq}}^{2} b_{\alpha} & =\dot{\xi}^{\beta} f(\phi)_{\beta \alpha}{ }^{\gamma} b_{\gamma} \\
\delta_{\mathrm{eq}}^{2} B_{\alpha} & =\dot{\xi}^{\beta} f(\phi)_{\beta \alpha}{ }^{\gamma} B_{\gamma}+\dot{\xi}^{\beta}(\stackrel{\circ}{c}+c)^{\kappa} R(\phi)_{\kappa}^{i} \partial_{i} f(\phi)_{\beta \alpha}{ }^{\gamma} b_{\gamma}
\end{aligned}
$$

- If $f(\phi)_{\beta \alpha}{ }^{\gamma}$ is constant, then the algebra is closed.
- It is possible by the observation that the index β is for bosonic symmetry.

$$
\delta_{\mathrm{eq}}^{2}=\stackrel{\circ}{\delta}_{\stackrel{\circ}{\xi}}
$$

Application to supergravity

- Generically, for supergravity softness of $f(\phi)_{\beta \alpha}{ }^{\gamma}$ appears only from anti commutator of supersymmetries.
- For the case of supergravity, ($\mathrm{D}=4 \mathrm{~N}=2$ superconformal gavity)
the "modified BRST" gives the equivariant symmetry

$$
Q_{\mathrm{eq}}^{2}=\mathcal{L}_{\hat{v}}+\sum_{I, \text { bos }} \delta_{I}\left(\varepsilon_{3}^{I}\right)
$$

where

$$
\begin{aligned}
\stackrel{v}{ }^{\mu} & :=\frac{1}{2}{ }_{c}{ }^{J} \stackrel{c}{c}^{I} f_{I J}{ }^{\mu}(\dot{\phi}), \\
\varepsilon_{3}^{I} & :=\frac{1}{2}{ }_{c^{K}}{ }^{\circ}{ }^{\circ} f_{J K} f^{I}(\dot{\phi}),
\end{aligned}
$$

Matter coupled to supergravity

- General formulation can be applied in the same manner when matter coupled to supergravity.
-This formalism systemize the construction the equivariant charge that was constructed in SUSY gauge theories. :

For rigid limit of SUGRA coupled to YM theory recovers the field theory cf. Pestun '07, Hama-Hosomichi '12, David-Gava-Gupta-Narain '16

$$
\begin{aligned}
& Q_{\mathrm{eq}} \widetilde{\phi}_{m}^{i}=\stackrel{i}{c}^{A} R_{A}{ }^{i}\left(\dot{\phi}+\widetilde{\phi}_{m}\right)+c^{I} R_{I}{ }^{i}\left(\dot{\phi}+\widetilde{\phi}_{m}\right) \\
& Q_{\mathrm{eq}} c^{I}=-\frac{1}{2}{ }_{c}{ }^{C}{ }_{c}{ }^{B}\left(f_{B C}{ }^{I}\left(\dot{\phi}+\widetilde{\phi}_{m}\right)-f_{B C}{ }^{I}(\dot{\phi})\right)+\frac{1}{2} c^{K} c^{J} f_{J K}{ }^{I} \\
& Q_{\text {eq }} b_{I}=B_{I}
\end{aligned}
$$

$$
\begin{aligned}
& Q_{\mathrm{eq}}^{2}=\mathcal{L}_{\hat{v}}+\sum_{A \in \text { bos }} \delta_{A}\left(\varepsilon_{3}^{A}\right)+\delta_{G}(\grave{a}), \\
& \stackrel{\circ}{a}^{I}=\frac{1}{2} \stackrel{\circ}{c} \stackrel{\circ}{c}^{A} f_{A B}{ }^{I}(\dot{\phi}) .
\end{aligned}
$$

Twisting and cohomological classification

- Reorganize the fields into the representation of cohomology complex.

- This reorganization is a change of variable: local and invertible
- Find an appropriate choice of twisting of spinors such that we can find the cohomological variables and the change of variables is non-singular.

Twisted field and algebra

-1. Choose a way of twisting and make sure that it is invertible.
-2. Start with a given component ϕ_{R} of boson (or fermion) in some representation R of gauge group. Lorentz , R-symmetry etc..
-3. Consider its variation $Q_{\mathrm{eq}} \phi_{R}$ which may be a composite combination of bosons and fermions with some coefficient made of Killing spinor and background value. Find a fermion ψ_{R} of the same representation with ϕ_{R} which linearly appears.
-4. ψ_{R} should not involve derivative, also the coefficient of this term should be regular. Otherwise the invertibility will not be guaranteed.

- 5. If we can find such ψ_{R} then we classify the ϕ_{R} as the elementary bosonic variable in Φ and may exclude ψ_{R} from the elementary fermionic variable Ψ.
-6. Keep the process until the end. If we fail, reconsider the twisting.

Twisted field and algebra

-1. Choose a way of twisting and make sure that it is invertible.
-2. Start with a given component ϕ_{R} of boson (or fermion) in some representation R of gauge group. Lorentz , R-symmetry etc..
-3. Consider its variation $Q_{\mathrm{eq}} \phi_{R}$ which may be a composite combination of bosons and fermions with some coefficient made of Killing spinor and background value. Find a fermion ψ_{R} of the same representation with ϕ_{R} which linearly appears.
-4. ψ_{R} should not involve derivative, also the coefficient of this term should be regular. Otherwise the invertibility will not be guaranteed.

- 5. If we can find such ψ_{R} then we classify the ϕ_{R} as the elementary bosonic variable in Φ and may exclude ψ_{R} from the elementary fermionic variable Ψ.
-6. Keep the process until the end. If we fail, reconsider the twisting.
This procedure guarantees the invertibility if considering small fluctuation.
We assume it holds even for large fluctuation.

Exercise: $\mathrm{N}=2 \mathrm{U}(1)$ gauge multiple

- vector multiplet $\quad\left(A_{\mu}, X, \lambda^{i}, Y_{i j}\right)$ and $\mathrm{U}(1)$ ghost multiplet $\quad(b, c, B) \quad 1 \mathrm{~b}+2 \mathrm{~F}$ d.o.f.
- Choose a twisted variable using the production by $\left(\gamma_{5} \varepsilon^{i}, \gamma^{\mu} \varepsilon^{i}, \varepsilon_{i j} \varepsilon^{j}\right)$

$$
\lambda=\bar{\varepsilon}_{i} \gamma_{5} \lambda^{i}, \quad \lambda_{\mu}=\bar{\varepsilon}_{i} \gamma_{\mu} \lambda^{i}, \quad \lambda^{i j}=-2 \varepsilon^{(i} C \lambda^{j)}
$$

inverse relation is

$$
\lambda^{i}=\left(\bar{\varepsilon}_{j} \varepsilon^{j}\right)^{-1}\left(\gamma_{5} \varepsilon^{i} \lambda+\gamma^{\mu} \varepsilon^{i} \lambda_{\mu}+\epsilon_{j k} \varepsilon^{k} \lambda^{i j}\right)
$$

- cf. We could have used another twisting using $\left(\varepsilon^{i}, \gamma^{\mu} \gamma_{5} \varepsilon^{i}, \varepsilon_{i j} \gamma_{5} \varepsilon^{j}\right)$

Exercise: N=2 U(1) gauge multiple

- Investigate the variation and follow the procedure.
$10 \mathrm{~B}+10 \mathrm{~F}$ d.o.f. fall into a rep of this equivariant algebra

Φ	Ψ
$\widetilde{A}_{\mu}, \widetilde{X}_{2}$	$\lambda^{i j}, b, c$

elementary bosons
elementary fermions

$$
\begin{aligned}
& Q_{\mathrm{eq}} \widetilde{A}_{\mu}=\lambda_{\mu}+\partial_{\mu} c \\
& Q_{\mathrm{eq}} \widetilde{X}_{2}=\lambda
\end{aligned}
$$

$$
Q_{\mathrm{eq}} c=v^{\mu} \widetilde{A}_{\mu}+\mathrm{i} \widetilde{X}_{1}\left(\bar{\varepsilon}_{i} \varepsilon^{i}\right)+\widetilde{X}_{2}\left(\bar{\varepsilon}_{i} \gamma_{5} \varepsilon^{i}\right)
$$

$$
Q_{\mathrm{eq}} b=B
$$

$$
Q_{\mathrm{eq}} \lambda^{i j}=\bar{\varepsilon}_{k} \varepsilon^{k} Y^{i j}+2 \varepsilon^{(i} C \gamma^{\mu} \varepsilon^{j)} \partial_{\mu} X_{2}
$$

$$
+\varepsilon_{+}^{(i} C \gamma^{a b} \varepsilon_{+}^{j)}\left[F_{a b}^{-}-\frac{1}{8}\left(X_{1}-\mathrm{i} X_{2}\right) T_{a b}^{-}\right]
$$

$$
+\varepsilon_{-}^{(i} C \gamma^{a b} \varepsilon_{-}^{j)}\left[F_{a b}^{+}-\frac{1}{8}\left(X_{1}+\mathrm{i} X_{2}\right) T_{a b}^{+}\right]
$$

Weyl multiplet

- Weyl multiplet $\quad\left(e_{\mu}^{a}, \psi_{\mu}^{i}, A_{\mu}^{D}, A_{\mu}^{R}, \mathcal{V}_{\mu j}^{i} ; T_{a b}^{i j}, \chi^{i}, D\right)$
- $24 \mathrm{~B}+24 \mathrm{~F}$ d.o.f. after removing gauge redundancies.
- $43 \mathrm{~B}+40 \mathrm{~F}$ d.o.f. if we keep all degree of freedom.
- Add $51 \mathrm{~B}+54 \mathrm{~F}$ ghost degree of freedom.
- Similar classification of 94B +94F fields as a representation of the equivariant algebra

Weyl multiplet

Local symmetry	Gauge fields	Degrees of freedom
g.c.t	e_{μ}^{a}	16 B
Dilatation D	A_{μ}^{D}	4 B
Sp. conf. K^{a}	f_{μ}^{a}	composite
Lorentz $M_{a b}$	$\omega_{\mu}^{a b}$	composite
$S O(1,1)_{R}$	A_{μ}^{R}	4 B
$S U(2)_{R}$	$\mathcal{V}_{\mu j}^{i}$	12 B
Q-susy	ψ_{μ}^{i}	32 F
S-susy	ϕ_{μ}^{i}	composite
	Auxiliary fields	Degrees of freedom
	$T_{a b}^{ \pm}$	6 B
	χ^{i}	1 B

Ghost multiplets

Local symmetry	Ghosts	Degrees of freedom	
g.c.t	$\left(c_{\mu}, b_{\mu}, B_{\mu}\right)$	8 F	4 B
Dilatation D	$\left(c_{D}, b_{D}, B_{D}\right)$	2 F	B
Sp. conf. K^{a}	$\left(c_{K}^{a}, b_{K}^{a}, B_{K}^{a}\right)$	8 F	4 B
Lorentz $M_{a b}$	$\left(c_{M}^{a b}, b_{M}^{a b}, B_{M}^{a b}\right)$	12 F	6 B
$U(1)_{R}$	$\left(c_{R}, b_{R}, B_{R}\right)$	2 F	1 B
$S U(2)_{R}$	$\left(c_{R j}^{i}, b_{R j}^{i}, B_{R j}^{i}\right)$	6 F	3 B
Q-susy	$\left(c_{Q}^{i}, b_{Q}^{i}, B_{Q}^{i}\right)$	16 B	8 F
S-susy	$\left(c_{S}^{i}, b_{S}^{i}, B_{S}^{i}\right)$	16 B	8 F

Twisted variables

- By projection of Killing spinors, $\left(\gamma_{5} \varepsilon^{i}, \gamma^{\mu} \varepsilon^{i}, \varepsilon_{i j} \varepsilon^{j}\right)$ or $\left(\varepsilon^{i}, \gamma^{\mu} \gamma_{5} \varepsilon^{i}, \varepsilon_{i j} \gamma_{5} \varepsilon^{j}\right)$ we found a choice

$$
\begin{gathered}
\psi_{\mu}=\varepsilon_{i} \gamma_{5} \psi_{\mu}^{i}, \quad \psi_{\mu}^{a}=\varepsilon_{i} \gamma^{a} \psi_{\mu}^{i}, \quad \psi_{\mu}^{i j}=-2 \varepsilon^{(i} C \psi_{\mu}^{j)}, \\
\chi=\varepsilon_{i} \chi^{i}, \quad \chi^{a}=\varepsilon_{i} \gamma_{5} \gamma^{a} \chi^{i}, \quad \chi^{i j}=-2 \varepsilon^{(i} C \gamma_{5} \chi^{j)}, \\
c_{S}=\varepsilon_{i} \gamma_{5} c_{S}^{i}, \quad c_{S}^{a}=\varepsilon_{i} \gamma^{a} c_{S}^{i}, \quad c_{S}^{i j}=-2 \varepsilon^{(i} C c_{S}^{j)} \\
c_{Q}=\varepsilon_{i} \gamma_{5} c_{Q}^{i}, \quad c_{Q}^{a}=\varepsilon_{i} \gamma^{a} c_{Q}^{i}, \quad c_{Q}^{i j}=-2 \varepsilon^{(i} C c_{Q}^{j)} .
\end{gathered}
$$

- Inverse relation

$$
\begin{aligned}
\psi_{\mu}^{i} & =\left(\varepsilon_{i} \varepsilon^{i}\right)^{-1}\left(\psi_{\mu} \gamma_{5} \varepsilon^{i}+\psi_{\mu}^{a} \gamma_{a} \varepsilon^{i}+\psi_{\mu}^{i j} \varepsilon_{j k} \varepsilon^{k}\right) \\
\chi^{i} & =\left(\varepsilon_{i} \varepsilon^{i}\right)^{-1}\left(\chi \varepsilon^{i}+\chi^{a} \gamma_{a} \gamma_{5} \varepsilon^{i}+\chi^{i j} \varepsilon_{j k} \gamma_{5} \varepsilon^{k}\right) \\
c_{S}^{i} & =\left(\varepsilon_{i} \varepsilon^{i}\right)^{-1}\left(c_{S} \gamma_{5} \varepsilon^{i}+c_{S}^{a} \gamma_{a} \varepsilon^{i}+c_{S}^{i j} \varepsilon_{j k} \varepsilon^{k}\right) \\
c_{Q}^{i} & =\left(\varepsilon_{i} \varepsilon^{i}\right)^{-1}\left(c_{Q} \gamma_{5} \varepsilon^{i}+c_{Q}^{a} \gamma_{a} \varepsilon^{i}+c_{Q}^{i j} \varepsilon_{j k} \varepsilon^{k}\right)
\end{aligned}
$$

Variation of fields

$$
\begin{aligned}
Q_{\mathrm{eq}} \widetilde{e}_{\mu}{ }^{a}= & \bar{\varepsilon}_{i} \gamma^{a} \psi_{\mu}{ }^{i}+c^{\nu} \partial_{\nu} e_{\mu}^{a}+\partial_{\mu} c^{\nu} e_{\nu}^{a}+c^{a b} e_{\mu b}-c_{D} e_{\mu}^{a}+\overline{Q_{i}} \gamma^{a} \psi_{\mu}{ }^{i}, \\
Q_{\mathrm{eq}} \psi_{\mu}{ }^{i}= & 2 \mathcal{D}_{\mu}\left(\varepsilon+c_{Q}\right)^{i}+c^{\nu} \partial_{\nu} \psi_{\mu}{ }^{i}+\partial_{\mu} c^{\nu} \psi_{\nu}{ }^{i}+\frac{1}{4} c^{a b} \gamma_{a b} \psi_{\mu}{ }^{i}-\frac{1}{2} c_{D} \psi_{\mu}{ }^{i}-\frac{1}{2} c_{R} \gamma_{5} \psi_{\mu}{ }^{i} \\
& +c^{i}{ }_{j} \psi_{\mu}{ }^{i}+\mathrm{i} \frac{1}{16} T^{a b} \gamma_{a b} \gamma_{\mu}\left(\varepsilon+c_{Q}\right)^{i}+\gamma_{\mu} \gamma_{5}\left(\eta+c_{S}\right)^{i}, \\
= & 2 \widetilde{\mathcal{D}}_{\mu} \varepsilon^{i}+\gamma_{\mu}{ }_{\mu} \gamma_{5} c_{S}^{i}+\mathrm{i} \frac{1}{16} \gamma_{a b}\left(T^{a b} \gamma_{\mu}-T^{\circ}{ }^{a b} \gamma_{\mu}\right) \varepsilon^{i}+2 \mathcal{D}_{\mu} c_{Q}^{i}+c^{\nu} \partial_{\nu} \psi_{\mu}{ }^{i}+\partial_{\mu} c^{\nu} \psi_{\nu}{ }^{i} \\
& \quad+\frac{1}{4} c^{a b} \gamma_{a b} \psi_{\mu}{ }^{i}-\frac{1}{2} c_{D} \psi_{\mu}{ }^{i}-\frac{1}{2} c_{R} \gamma_{5} \psi_{\mu}{ }^{i}+c^{i}{ }_{j} \psi_{\mu}{ }^{i}+\mathrm{i} \frac{1}{16} \gamma_{a b} T^{a b} \gamma_{\mu} c_{Q}^{i}+\widetilde{\gamma}_{\mu} \gamma_{5} c_{S}^{i}+\widetilde{\gamma}_{\mu} \gamma_{5} \eta^{i}
\end{aligned}
$$

etc...
-Write them in terms of twisted variables and try to the cohomological classicfication.

Cohomological classification

Φ	Ψ
$\widetilde{e}_{\mu}^{a}, \widetilde{A}_{\mu}^{R}, \widetilde{A}_{\mu}^{D}, \widetilde{T}_{a b}^{+/-}$	$\psi_{\mu}, \psi_{\mu}^{i j}, \chi$,
$c_{Q}, c_{Q}^{i j}$,	$c^{\mu}, c_{M}^{a b}, c_{D}$,
$b_{Q}, b_{Q a}, b_{Q}^{i j}$,	$b_{\mu}, b_{M}^{a b}, b_{D}$,
$b_{S}, b_{S a}, b_{S}^{i j}$	$b_{K}^{a}, b_{R}, b_{R j}^{i}$

$$
\begin{aligned}
& Q_{\mathrm{eq}} \tilde{e}_{\mu}{ }^{a}=\psi_{\mu}{ }^{a}+\cdots \\
& Q_{\mathrm{eq}} \psi_{\mu}=-c_{S \mu}+\widetilde{A}_{\mu}^{R} \bar{\varepsilon}_{i} \varepsilon^{i}+\cdots, \\
& Q_{\mathrm{eq}} \psi_{\mu}^{i j}=\widetilde{\mathcal{V}}_{\mu}{ }^{(i}{ }_{k} \epsilon^{j) k}+\cdots,
\end{aligned}
$$

Cohomological classification

$$
\begin{array}{|c|c|}
\hline \Phi & \Psi \\
\hline \widetilde{e}_{\mu}^{a}, \widetilde{A}_{\mu}^{R}, \widetilde{A}_{\mu}^{D}, \widetilde{T}_{a b}^{+/-} & \psi_{\mu}, \psi_{\mu}^{i j}, \chi, \\
c_{Q}, c_{Q}^{i j}, & c^{\mu}, c_{M}^{a b}, c_{D}, \\
b_{Q}, b_{Q a}, b_{Q}^{i j}, & b_{\mu}, b_{M}^{a b}, b_{D}, \\
b_{S}, b_{S a}, b_{S}^{i j} & b_{K}^{a}, b_{R}, b_{R j}^{i} \\
\hline
\end{array}
$$

- In terms of $S U(2)_{+} \times S U(2)_{-} \times S U(2)_{R}$

$$
\tilde{T}_{a b}^{+} \text {and } \tilde{T}_{a b}^{-} \quad(1,3,1) \text { and }(3,1,1) \text { but } \chi^{i j}(1,1,3)
$$

- Twisting procedure maps $\chi^{i j}$ to $\tilde{T}_{a b}^{-}$or $\tilde{T}_{a b}^{+}$depending on a point of manifold.

Index and 1-loop

Atiyah-Bott fixed point formula

- We apply Atiyah-Bott fixed point formula to compute the index

$$
\operatorname{ind}\left(D_{10}\right)=\sum_{\{x \mid \widetilde{x}=x\}} \frac{\operatorname{Tr}_{\Phi} e^{-i t H}-\operatorname{Tr}_{\Psi} e^{-i t H}}{\operatorname{det}(1-\partial \widetilde{x} / \partial x)}
$$

- There are two fixed point under H= L-J: One is the center of AdS2 with the north pole of S2, the other is the center of AdS2 with the south pole of S2

Topological twisting

- At the fixed point, the twisting between $S U(2)_{R} \quad$ symmetry and one of $\mathrm{SU}(2)$ in Lorentz group $S U(2)_{+} \times S U(2)_{-}$happen.
- At the fixed points, the chiral and anti chiral part of Killing spinor is reduced.
- At north pole : at $\eta=0$ and $\psi=0$

$$
\varepsilon_{+\alpha}^{i}=0, \quad \varepsilon_{-\dot{\alpha}}^{i} \propto\left(\sigma_{3}\right)^{i}{ }_{\dot{\alpha}}
$$

- At south pole: at $\eta=0$ and $\psi=\pi$

$$
\varepsilon_{+\alpha}^{i} \propto\left(\sigma_{3}\right)^{i}{ }_{\alpha}, \quad \varepsilon_{-\dot{\alpha}}^{i}=0
$$

- Therefore, $S U(2)_{R}$ symmetry is identified with the inverse of $S U(2)_{-}$ at north pole, the inverse of $S U(2)_{+}$at south pole.

Twisted representation

- At the fixed point, the twisting between $\operatorname{SU}(2) \mathrm{R}$ symmetry and one of $\mathrm{SU}(2)$ in Lorentz group $\operatorname{SU}(2) \times \mathrm{SU}(2)$ happen.

Φ	$\mathrm{NP}: S U(2)_{+} \times S U(2)_{-R}$ rep SP: $S U(2)_{+R} \times S U(2)_{-}$rep	Ψ	$\mathrm{NP}: S U(2)_{+} \times S U(2)_{-R}$ rep SP: $S U(2)_{+R} \times S U(2)_{-R}$ rep
\widetilde{e}_{μ}^{a}	$(3,3)+(1,3)+(3,1)+(1,1)$	ψ_{μ}	$(2,2)$
\widetilde{A}_{μ}^{R}	$(2,2)$	$\psi_{\mu}^{i j}$	$(2,4)$ at $\mathrm{NP} /(4,2)$ at $\mathrm{SP}+(2,2)$
\widetilde{A}_{μ}^{D}	$(2,2)$	χ	$(1,1)$
$T_{a b}^{+/-}$at $\mathrm{NP} / \mathrm{SP}$	$(1,3)$ at $\mathrm{NP} /(3,1)$ at SP	c_{μ}	$(2,2)$
c_{Q}	$(1,1)$	$c_{M}^{a b}$	$(1,3)+(3,1)$
$c_{Q}^{i j}$	$(1,3)$ at $\mathrm{NP} /(3,1)$ at SP	c_{D}	$(1,1)$
b_{Q}	$(1,1)$	b_{R}	$(1,1)$
$b_{Q \mu}$	$(2,2)$	b_{R}^{i}	$(1,3)$ at $\mathrm{NP} /(3,1)$ at SP
$b_{Q}{ }^{i j}$	$(1,3)$ at $\mathrm{NP} /(3,1)$ at SP	b_{μ}	$(2,2)$
b_{S}	$(1,1)$	b_{D}	$(1,1)$
$b_{S \mu}$	$(2,2)$	b_{K}^{a}	$(2,2)$
$b_{S}{ }^{i j}$	$(1,3)$ at $\mathrm{NP} /(3,1)$ at SP	$b_{M}^{a b}$	$(1,3)+(3,1)$

1-loop determinant

- Using the Atiyah-Bott fixed point formula,

$$
\operatorname{ind}\left(D_{10}\right)=\frac{2\left(q^{2}+q^{-2}\right)-6\left(q+q^{-1}\right)+8}{\left(1-q^{-1}\right)^{2}(1-q)^{2}} \times 2
$$

- From the index we read off

$$
Z_{1 \text {-loop }}\left(\phi^{I}\right)=\exp \left(-a_{0} \mathcal{K}\left(\phi^{I}\right)\right) \quad a_{0}^{\text {Weyl, bulk }}=\frac{11}{12}
$$

-Recall that the zero mode contribution of Weyl multiplet is [Sen]

$$
\left.a_{0}^{\text {Weyl, bdry }}=1 \text { (}-3 \text { from bosons and }+4 \text { from fermions }\right)
$$

Adding this, we obtain

$$
a_{0}^{\mathrm{Weyl}}=23 / 12
$$

Which is consistent with on-shell computation.

Summary and outlook

\checkmark We have constructed the equivariant supercharge for $N=2$ SUGRA, and classified the cohomological variables with appropriate twisting of variables.
\checkmark The index computation gives the 1-loop for Weyl multiplets, which agrees with onshell perturbative computation.
\checkmark We hope that this work brings some clarity to the idea of twisting and localization in supergravity.
\checkmark It may be useful in other directions.
\checkmark Other systems can be interesting $A d S_{d+1} / C F T_{d}$
\checkmark Relation of Twisting of supergravity to topological gravity?
[Witten '88] [Baulieu, Bellon, Reys '12] [Bae, Imbimbo, Rey, Rosa]

Thank you!

- The eigen value of H is $\frac{n}{\ell}$. How do we get 1 -loop which depends on localization saddle through the Kahler potential $e^{\mathcal{K}(C)}$?

Integration measure

- Definition of the functional integration means

$$
\mathcal{D} X^{I}=\prod_{x, I} \mathrm{~d} X^{I}(x) \mathcal{J}(X)
$$

- The Jacobian can be determined by using "ultra locality argument",

> [Fujikawa, Yasuda ’84 ; Bern, Blau, Mottola ‘91 Moore, Nelson '86]

Integration measure

- Consider the kinetic terms for graviton and scalars in the action

$$
\int \mathrm{d} x^{4} \sqrt{g} e^{-K}\left[R_{g}+N_{I J} \partial_{\mu} X^{I} \partial_{\nu} \bar{X}^{J} g^{\mu \nu}\right]
$$

- The metric $g_{\mu \nu}$ is not physical metric, which is related to the physical metric in Einstein frame.

$$
G_{\mu \nu}=g_{\mu \nu} e^{-K}, \quad e^{-K}=\frac{\ell_{P}^{2}}{\ell^{2}}
$$

- Then we get standard E-H action, and the kinetic terms of the scalars are

$$
\int \mathrm{d} x^{4} \sqrt{G} e^{K} N_{I J} \partial_{\mu} X^{I} \partial_{\nu} \bar{X}^{J} G^{\mu \nu}
$$

- Looking at the factors in front of each kinetic term, the definition of norm is dictated as

$$
\|\delta X\|^{2}:=\int \mathrm{d}^{4} x \sqrt{G} e^{K} N_{I J} \delta X^{I} \delta \bar{X}^{J}=\int \mathrm{d}^{4} x \sqrt{g_{0}} \ell^{2} \ell_{P}^{2} N_{I J} \delta X^{I} \delta \bar{X}^{J}
$$

Integration measure

- By the following normalization condition

$$
1=\int \mathcal{D} X \mathcal{D} \bar{X} e^{-\|\delta X\|^{2}}
$$

the integration measure is defined as

$$
\mathcal{D} X \mathcal{D} \bar{X}=\prod_{x, I} \mathrm{~d} X^{I}(x) \mathrm{d} \bar{X}^{I}(x) \operatorname{det}\left(\ell_{P}^{2} \ell^{2} N_{I J}\right)
$$

- Similarly, for all the fields we can define the measure.
- Note that the physical radius factor becomes, by localization, $\ell_{P}(X, \bar{X})=\ell_{P}(\vec{C})$
- The problem essentially becomes computation of the regularized power $\ell_{P}(\vec{C})$

Integration measure

- In order to compute the regularized number, we first use the field redefinition

$$
\tilde{X}^{I}:=X^{I} \ell_{P}(\vec{C}) \ell, \quad \tilde{W}_{\mu}^{I}:=W_{\mu}^{I} \ell_{P}(\vec{C}), \quad \text { etc. }
$$

- and compute 1-loop partition function with these variables.
\checkmark To relate the redefined bosonic and fermionic field, it also becomes natural to consider redefinition of the equivariant operator $\quad \tilde{Q}_{\text {eq }}:=\ell^{1 / 2} \ell_{P}^{-1 / 2} Q_{\mathrm{eq}}$ so that the eigenvalue of the square of the operator is in terms of physical length and so the result of the 1-loop is in terms of the physical length $\tilde{Q}_{\text {eq }}^{2} \rightarrow 1 / \ell_{P}$.

Remark 2 : Boundary modes (Example for 1-form)

- Boundary modes(Discrete zero mode):
[Camporesi, Higuchi]
Since AdS2 is non-compact geometry, it forces us to consider

$$
W^{l}=d \Phi^{l}, \quad \Phi^{l}=\frac{1}{\sqrt{2 \pi|l|}}\left[\frac{\sinh \eta}{1+\cosh \eta}\right]^{|l|} e^{i l \theta}, \quad l= \pm 1, \pm 2, \pm 3, \cdots
$$

which do not vanish at the boundary of AdS2, but still normalizable.

- These modes not only make QV=0, but also the original action vanishing since the field strength is zero.
- Nevertheless, these are not pure gauge, because Φ^{l} are not normalizable.

Thus this mode cannot be gauged away, and we have to separately take into account it in the path integral. The regularized result is well understood.
[Sen, Gupta]

