Sugra localization and AdS black holes (part II)

Kiril Hristov
INRNE, Bulgarian Academy of Sciences

Workshop on Susy Localization and Holography: Black Hole Entropy and Wilson Loops

ICTP, Trieste, 9-13 July 2018

Based on..

- 1803.05920 with Ivano Lodato and Valentin Reys
- 1608.07294 with Francesco Benini and Alberto Zaffaroni

Important background literature

- Susy localization - [Pestun'07]
- (Quantum) entropy function - [Sen'08]
- Localization in supergravity - [Dabholkar, Gomes, Murthy'10-11]
- Topologically twisted index - [Benini, Zaffaroni'15-16]

Motivation

Quantum gravity?

- Supergravity can be seen as a toy model for quantum gravity at weak coupling
- Supersymmetric vacua are stable quantum states
- Supersymmetry allows for extrapolation of results from weak coupling (GR + matter) to strong coupling (novel quantum gravity effects)
- AdS/CFT gives a dual quantum picture, many exact results accessible via supersymmetric localization
- Existence of BPS (susy-preserving) black holes - an "integrable" sector of quantum gravity because of AdS_{2} near-horizon

Black holes and susy holography

- "Black holes $=$ statistical ensembles of gravitational degrees of freedom."
- What are the microscopic states that make up the black hole entropy?

$$
\begin{equation*}
S(q, p)=\log d(q, p), \quad d(q, p) \in \mathcal{Z}_{+} \tag{1}
\end{equation*}
$$

Black holes and susy holography

- "Black holes $=$ statistical ensembles of gravitational degrees of freedom."
- What are the microscopic states that make up the black hole entropy?

$$
\begin{equation*}
S(q, p)=\log d(q, p), \quad d(q, p) \in \mathcal{Z}_{+} \tag{1}
\end{equation*}
$$

- Make gradual progress, start with susy case with AdS_{2} near-horizon geometry.
- Look at sugra solutions in various dimensions, assume $\operatorname{SU}(1,1 \mid 1)$ near-horizon symmetry algebra $\left(U(1)_{R}\right.$-symmetry, unlike $S U(2)_{R}$ of [Strominger, Vafa'96]).
- Holography suggests a dual field theory picture: a susy $\mathcal{N}=2$ quantum mechanics flowing to an IR conformal point.

The field theory perspective

- Dual field theory given by a Hamiltonian H_{p} depending on black hole magnetic charges p^{i}.
- Calculate grand-canonical susy partition function

$$
\begin{equation*}
Z(\Delta, p)=\operatorname{Tr}_{\mathcal{H}}\left((-1)^{F} e^{i \Delta^{i} J_{i}} e^{-\beta H_{p}}\right), \quad<J_{i}>=q_{i} \tag{2}
\end{equation*}
$$

The field theory perspective

- Dual field theory given by a Hamiltonian H_{p} depending on black hole magnetic charges p^{i}.
- Calculate grand-canonical susy partition function

$$
\begin{equation*}
Z(\Delta, p)=\operatorname{Tr}_{\mathcal{H}}\left((-1)^{F} e^{i \Delta^{i} J_{i}} e^{-\beta H_{p}}\right), \quad<J_{i}>=q_{i} \tag{2}
\end{equation*}
$$

- Find the microcanonical partition function via a Legendre transform,

$$
\begin{equation*}
Z(\Delta, p)=\sum_{q} Z(q, p) e^{i q_{i} \Delta^{i}}, \quad Z(q, p)=\int_{\Delta} Z(\Delta, p) e^{-i q_{i} \Delta^{i}} \tag{3}
\end{equation*}
$$

The field theory perspective

- Dual field theory given by a Hamiltonian H_{p} depending on black hole magnetic charges p^{i}.
- Calculate grand-canonical susy partition function

$$
\begin{equation*}
Z(\Delta, p)=\operatorname{Tr}_{\mathcal{H}}\left((-1)^{F} e^{i \Delta^{i} J_{i}} e^{-\beta H_{p}}\right), \quad<J_{i}>=q_{i} \tag{2}
\end{equation*}
$$

- Find the microcanonical partition function via a Legendre transform,

$$
\begin{equation*}
Z(\Delta, p)=\sum_{q} Z(q, p) e^{i q_{i} \Delta^{i}}, \quad Z(q, p)=\int_{\Delta} Z(\Delta, p) e^{-i q_{i} \Delta^{i}} \tag{3}
\end{equation*}
$$

- Assume no cancellation between bosonic and fermionic states in the large charge (large N) limit, find the BH entropy in the microcanonical ensemble by a saddle point approximation,

$$
\begin{equation*}
S_{B H}(q, p) \equiv \mathcal{I}(\dot{\Delta})=\log Z(\dot{\Delta}, p)-i q_{i} \dot{\Delta}^{i},\left.\quad \frac{d \mathcal{I}}{d \Delta}\right|_{\dot{\Delta}}=0 \tag{4}
\end{equation*}
$$

Weak coupling: easy example

- Look at gapped $\mathcal{N}=2$ quantum mechanics with real masses σ^{i} : susy ground states $H=\sigma^{i} J_{i}$
- Free chiral multiplet $\left(y=e^{i(\Delta+i \beta \sigma)}\right)$:

$$
\begin{gather*}
H_{c}=\left(a^{\dagger} a+b^{\dagger} b+1\right)|\sigma|-\frac{\sigma}{2}[\bar{\psi}, \psi], \quad J_{c}=a^{\dagger} a-b^{\dagger} b+\frac{1}{2}[\bar{\psi}, \psi] \tag{5}\\
Z_{c}(y)\left(\left.\frac{\left(a^{\dagger}\right)^{n}}{n!} \right\rvert\, 0, \uparrow>\right)=\sum_{n=0}^{\infty} y^{n+1 / 2}=\frac{y^{1 / 2}}{1-y} \tag{6}
\end{gather*}
$$

Weak coupling: easy example

- Look at gapped $\mathcal{N}=2$ quantum mechanics with real masses σ^{i} : susy ground states $H=\sigma^{i} J_{i}$
- Free chiral multiplet $\left(y=e^{i(\Delta+i \beta \sigma)}\right)$:

$$
\begin{gather*}
H_{c}=\left(a^{\dagger} a+b^{\dagger} b+1\right)|\sigma|-\frac{\sigma}{2}[\bar{\psi}, \psi], \quad J_{c}=a^{\dagger} a-b^{\dagger} b+\frac{1}{2}[\bar{\psi}, \psi] \tag{5}\\
Z_{c}(y)\left(\left.\frac{\left(a^{\dagger}\right)^{n}}{n!} \right\rvert\, 0, \uparrow>\right)=\sum_{n=0}^{\infty} y^{n+1 / 2}=\frac{y^{1 / 2}}{1-y} \tag{6}
\end{gather*}
$$

- Free fermion multiplet:

$$
\begin{gather*}
H_{F}=\sigma J_{F}=\sigma\left(\lambda^{\dagger} \lambda-\frac{1}{2}\right) \tag{7}\\
Z_{F}(y)(|\uparrow>+| \downarrow>)=y^{-1 / 2}-y^{1 / 2}=\frac{1-y}{y^{1 / 2}} \tag{8}
\end{gather*}
$$

Strong coupling: localization

- Twsited index on $\mathrm{S}^{1} \times \Sigma_{g}$ via Bethe potential / twisted superpotential of the 2 d theory on Σ_{g} [Hosseini, Zaffaroni'16]:

$$
\begin{equation*}
Z(\Delta, p)=\int \mathrm{d} u \frac{Q(u, p)}{\prod_{i}\left(1-e^{i \partial \mathcal{W}(\Delta, u) / \partial u}\right)} \tag{9}
\end{equation*}
$$

- Large N evaluation, one leading solution \bar{u} of $e^{i \partial \mathcal{W} / \partial u}=1$,

$$
\begin{align*}
\mathcal{W}(\Delta, \bar{u}) & \sim F_{S^{3}}(\Delta) \tag{10}\\
\log Z(\Delta, p) & =-\sum_{i} p^{i} \frac{\partial \overline{\mathcal{W}}}{\partial \Delta^{i}} \tag{11}
\end{align*}
$$

Localization matches with sugra at large N

- Twisted index of ABJM theory [Benini, KH, Zaffaroni'15] match to asymptotically $\mathrm{AdS}_{4} \times \mathrm{S}^{7}$ black hole entropy [Cacciatori, Klemm'09] in 11d sugra (also with mass-deformation [Bobev, Min, Pilch'18])

$$
F_{S^{3}} \sim N^{3 / 2} \sqrt{\Delta^{1} \Delta^{2} \Delta^{3} \Delta^{4}}
$$

Localization matches with sugra at large N

- Twisted index of ABJM theory [Benini, KH, Zaffaroni'15] match to asymptotically $\mathrm{AdS}_{4} \times \mathrm{S}^{7}$ black hole entropy [Cacciatori, Klemm'09] in 11d sugra (also with mass-deformation [Bobev, Min, Pilch'18])

$$
F_{S^{3}} \sim N^{3 / 2} \sqrt{\Delta^{1} \Delta^{2} \Delta^{3} \Delta^{4}}
$$

- Twisted index of the D2 k theory [Guarino, Jafferis, Varela'15; Hosseini, KH, Passias'17; Benini, Khachatryan, Milan'17] match to asymptotically $\mathrm{AdS}_{4} \times \mathrm{S}^{6}$ black hole entropy [Guarino, Tarrio'17] in massive IIA 10d sugra

$$
F_{S^{3}} \sim N^{5 / 3}\left(\Delta^{1} \Delta^{2} \Delta^{3}\right)^{2 / 3}
$$

Localization matches with sugra at large N

- Twisted index of ABJM theory [Benini, KH, Zaffaroni'15] match to asymptotically $\mathrm{AdS}_{4} \times \mathrm{S}^{7}$ black hole entropy [Cacciatori, Klemm'09] in 11d sugra (also with mass-deformation [Bobev, Min, Pilch'18])

$$
F_{S^{3}} \sim N^{3 / 2} \sqrt{\Delta^{1} \Delta^{2} \Delta^{3} \Delta^{4}}
$$

- Twisted index of the D2 ${ }_{k}$ theory [Guarino, Jafferis, Varela'15; Hosseini, KH, Passias'17; Benini, Khachatryan, Milan'17] match to asymptotically $\mathrm{AdS}_{4} \times \mathrm{S}^{6}$ black hole entropy [Guarino, Tarrio'17] in massive IIA 10d sugra

$$
F_{S^{3}} \sim N^{5 / 3}\left(\Delta^{1} \Delta^{2} \Delta^{3}\right)^{2 / 3}
$$

- Twisted index of $\mathcal{N}=4$ SYM theory [Hosseini, Nedelin, Zaffaroni'16] match to asymptotically $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$ black string entropy [Benini, Bobev'13] in type IIB 10d sugra

$$
F_{S^{3}} \sim N^{2} \frac{\Delta^{1} \Delta^{2} \Delta^{3}}{\Delta^{0}}
$$

More matches with sugra

- Universal twist $\bar{\Delta}^{i} \sim \bar{p}^{i}$ RG flows match to many 10d and 11d sugra black holes [Azzurli, Bobev, Crichigno, Min, Zaffaroni'17]

$$
\log Z(\bar{\Delta}, \bar{p}) \sim F_{S^{3}}(\bar{\Delta})
$$

More matches with sugra

- Universal twist $\bar{\Delta}^{i} \sim \bar{p}^{i}$ RG flows match to many 10d and 11d sugra black holes [Azzurli, Bobev, Crichigno, Min, Zaffaroni'17]

$$
\log Z(\bar{\Delta}, \bar{p}) \sim F_{S^{3}}(\bar{\Delta})
$$

- Evidence of field theory matches to rotating black hole entropy via anomaly coefficients: $\mathcal{N}=4$ SYM theory [Hosseini, $K H$, Zaffaroni'17] to rotating $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$ black holes [Gutowski, Reall'04]; 6d $(2,0)$ theory [Hosseini, KH, Zaffaroni'18] to rotating $\mathrm{AdS}_{7} \times \mathrm{S}^{4}$ black holes [Cvetic, Gibbons, Lu, Pope'05; Chow'07]

More matches with sugra

- Universal twist $\bar{\Delta}^{i} \sim \bar{p}^{i}$ RG flows match to many 10d and 11d sugra black holes [Azzurli, Bobev, Crichigno, Min, Zaffaroni'17]

$$
\log Z(\bar{\Delta}, \bar{p}) \sim F_{S^{3}}(\bar{\Delta})
$$

- Evidence of field theory matches to rotating black hole entropy via anomaly coefficients: $\mathcal{N}=4$ SYM theory [Hosseini, KH, Zaffaroni'17] to rotating $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$ black holes [Gutowski, Reall'04]; 6d $(2,0)$ theory [Hosseini, KH, Zaffaroni'18] to rotating $\mathrm{AdS}_{7} \times \mathrm{S}^{4}$ black holes [Cvetic, Gibbons, Lu, Pope'05; Chow'07]
- Subleading corrections to large N results: $\log N$ corrections from localization computed numerically [Liu, Pando Zayas, Rathee, Zhao'17]

Entropy at finite N ?

- No cancellation between bosons and fermons assumption!(?)
- Finite N field theory (microscopic) entropy

$$
\begin{equation*}
d_{\text {micro }}^{S U S Y} \equiv Z(q, p)=\int\left(\prod_{i} \mathrm{~d} \Delta^{i}\right) \delta\left(\sum_{i} \Delta^{i}-1\right) Z(\Delta, p) e^{-i q_{i} \Delta^{i}} \tag{12}
\end{equation*}
$$

Entropy at finite N ?

- No cancellation between bosons and fermons assumption!(?)
- Finite N field theory (microscopic) entropy

$$
\begin{equation*}
d_{\text {micro }}^{S U S Y} \equiv Z(q, p)=\int\left(\prod_{i} \mathrm{~d} \Delta^{i}\right) \delta\left(\sum_{i} \Delta^{i}-1\right) Z(\Delta, p) e^{-i q_{i} \Delta^{i}} \tag{12}
\end{equation*}
$$

- Infer the exact (macroscopic) black hole entropy via the holographic dictionary

$$
\begin{equation*}
e^{S(q, p)}=d_{\text {macro }}=d_{\text {micro }} \stackrel{?}{=} d_{\text {micro }}^{S U S Y} \in \mathcal{Z}_{+} \tag{13}
\end{equation*}
$$

- Any putative quantum gravity calculation must lead to $d_{\text {macro }}$
- However, holographically $d_{\text {macro }}^{S U S Y}=d_{\text {micro }}^{S U S Y}$, no assumptions!

The question remains...

What are the microscopic states that make up the black hole entropy?

- Field theory: at weak coupling states in the grand-canonical ensemble; at strong coupling use localization / anomalies.

The question remains...

What are the microscopic states that make up the black hole entropy?

- Field theory: at weak coupling states in the grand-canonical ensemble; at strong coupling use localization / anomalies.
- Quantum gravity: at weak coupling sugra calculation (?); at strong coupling string theory (definition via the field theory dual?)

The question remains...

What are the microscopic states that make up the black hole entropy?

- Field theory: at weak coupling states in the grand-canonical ensemble; at strong coupling use localization / anomalies.
- Quantum gravity: at weak coupling sugra calculation (?); at strong coupling string theory (definition via the field theory dual?)
- In QFT well-defined microcanonical and grand-canonical ensemble; in quantum gravity so far only microcanonical ensemble?

Quantum entropy - see V. Reys' talk!

- Formal definition:

$$
\begin{equation*}
d_{\text {macro }} \equiv\left\langle\exp \left(4 \pi q_{i} \int_{0}^{2 \pi} W_{\tau}^{i} \mathrm{~d} \tau\right)\right\rangle_{E A d S_{2}=\mathcal{H}_{2}}^{\text {finite }} \tag{14}
\end{equation*}
$$

Quantum entropy - see V. Reys' talk!

- Formal definition:

$$
\begin{equation*}
d_{\text {macro }} \equiv\left\langle\exp \left(4 \pi q_{i} \int_{0}^{2 \pi} W_{\tau}^{i} \mathrm{~d} \tau\right)\right\rangle_{E A d S_{2}=\mathcal{H}_{2}}^{\text {finite }} \tag{14}
\end{equation*}
$$

- Explicit approach for $d_{\text {macro }}^{S U S Y}$: pick a sugra theory and a black hole near-horizon geometry (a BPS solution). Assume/prove the gravitational background to be fixed (freeze gravity multiplet) and perform susy localization on a curved background of the remaining (vector-, hyper-, tensor-) multiplets in the bulk.

Quantum entropy - see V. Reys' talk!

- Formal definition:

$$
\begin{equation*}
d_{\text {macro }} \equiv\left\langle\exp \left(4 \pi q_{i} \int_{0}^{2 \pi} W_{\tau}^{i} \mathrm{~d} \tau\right)\right\rangle_{E A d S_{2}=\mathcal{H}_{2}}^{\text {finite }} \tag{14}
\end{equation*}
$$

- Explicit approach for $d_{\text {macro }}^{S U S Y}$: pick a sugra theory and a black hole near-horizon geometry (a BPS solution). Assume/prove the gravitational background to be fixed (freeze gravity multiplet) and perform susy localization on a curved background of the remaining (vector-, hyper-, tensor-) multiplets in the bulk.
- Done succesfully for asymptotically $\operatorname{Mink}_{4} \times T^{6}$ solutions, $d_{\text {macro }}^{S U S Y}=d_{\text {micro }}^{S U S Y}$. Very good progress for $\operatorname{Mink}_{4} \times T^{2} \times K 3$

Quantum entropy - see V. Reys' talk!

- Formal definition:

$$
\begin{equation*}
d_{\text {macro }} \equiv\left\langle\exp \left(4 \pi q_{i} \int_{0}^{2 \pi} W_{\tau}^{i} \mathrm{~d} \tau\right)\right\rangle_{E A d S_{2}=\mathcal{H}_{2}}^{\text {finite }} \tag{14}
\end{equation*}
$$

- Explicit approach for $d_{\text {macro }}^{S U S Y}$: pick a sugra theory and a black hole near-horizon geometry (a BPS solution). Assume/prove the gravitational background to be fixed (freeze gravity multiplet) and perform susy localization on a curved background of the remaining (vector-, hyper-, tensor-) multiplets in the bulk.
- Done succesfully for asymptotically $\operatorname{Mink}_{4} \times T^{6}$ solutions, $d_{\text {macro }}^{S U S Y}=d_{\text {micro }}^{S U S Y}$. Very good progress for $\operatorname{Mink}_{4} \times T^{2} \times K 3$
- Conceptual issues (see [de Wit, Murthy, Reys'18]): 1-loop determinant of the gravity multiplet, non-compact space (Euclidean AdS_{2}), exact integration measure. Let's neglect them at a first aproximation!

4d $\mathcal{N}=2$ off-shell gauged supergravity

- Conformal sugra formalism developed in [de Wit, van Holten, van Proeyen'80], ...
- use Euclidean version for full consistency [de Wit, Reys'17]
- Weyl multiplet: metric $g_{\mu \nu}$, auxiliary tensor $T_{a b}^{ \pm}$and scalar D, gauge fields b_{μ} (dilatation), $A_{\mu}\left(S O(1,1)_{R}\right), \mathcal{V}_{\mu j}^{i}\left(S U(2)_{R}\right)$, gravitini and dilatini

4d $\mathcal{N}=2$ off-shell gauged supergravity

- Conformal sugra formalism developed in [de Wit, van Holten, van Proeyen'80], ...
- use Euclidean version for full consistency [de Wit, Reys'17]
- Weyl multiplet: metric $g_{\mu \nu}$, auxiliary tensor $T_{a b}^{ \pm}$and scalar D, gauge fields b_{μ} (dilatation), $A_{\mu}\left(S O(1,1)_{R}\right), \mathcal{V}_{\mu j}^{i}\left(S U(2)_{R}\right)$, gravitini and dilatini
- $n_{V}+1$ vector multiplets: vectors W_{μ}^{I}, real scalars $X_{ \pm}^{I}$, auxiliary triplet of scalars $Y^{i j, I}$, gaugini; scalar manifold encoded in prepotentials $\mathcal{F}^{ \pm}\left(X_{ \pm}^{I}\right)$.

4d $\mathcal{N}=2$ off-shell gauged supergravity

- Conformal sugra formalism developed in [de Wit, van Holten, van Proeyen'80], ...
- use Euclidean version for full consistency [de Wit, Reys'17]
- Weyl multiplet: metric $g_{\mu \nu}$, auxiliary tensor $T_{a b}^{ \pm}$and scalar D, gauge fields b_{μ} (dilatation), $A_{\mu}\left(S O(1,1)_{R}\right), \mathcal{V}_{\mu j}^{i}\left(S U(2)_{R}\right)$, gravitini and dilatini
- $n_{V}+1$ vector multiplets: vectors W_{μ}^{I}, real scalars $X_{ \pm}^{I}$, auxiliary triplet of scalars $Y^{i j, I}$, gaugini; scalar manifold encoded in prepotentials $\mathcal{F}^{ \pm}\left(X_{ \pm}^{I}\right)$.
- (compensating) hypermultiplet: four real scalars A_{i}^{α}, hyperini
- after gauge fixing equivalent to Poincare sugra with n_{V} vector multiplets and FI gauging ξ_{I}

On-shell solution and superalgebra

- half-BPS near-horizon geometry in off-shell formalism [de Wit, van Zalk'12], [KH, Katmadas, Lodato'16]
- gravity: $\mathrm{d} s^{2}=v_{1} \mathrm{~d} s_{A d S_{2}}^{2}+v_{2} \mathrm{~d} s_{S^{2}}^{2}, b_{\mu}=A_{\mu}=0$,

$$
D=-\left(v_{1}^{-1}+2 v_{2}^{-2}\right) / 6, T_{12}^{ \pm}=w^{ \pm}= \pm 2 v_{1}^{-1 / 2}
$$

On-shell solution and superalgebra

- half-BPS near-horizon geometry in off-shell formalism [de Wit, van Zalk'12], [KH, Katmadas, Lodato'16]
- gravity: $\mathrm{d} s^{2}=v_{1} \mathrm{~d} s_{A d S_{2}}^{2}+v_{2} \mathrm{~d} s_{S^{2}}^{2}, b_{\mu}=A_{\mu}=0$, $D=-\left(v_{1}^{-1}+2 v_{2}^{-2}\right) / 6, T_{12}^{ \pm}=w^{ \pm}= \pm 2 v_{1}^{-1 / 2}$
- vectors: $\dot{F}_{12}^{I}=e^{I}, \dot{F}_{34}^{I}=p^{I}, \dot{Y}^{i j, I}\left(\dot{X}_{ \pm}^{I}\right)$, scalars $X_{ \pm}^{I}\left(\xi_{I}, q_{I}, p^{I}\right)$ subject to attractor mechanism
- hypers: gauge fix to break $S U(2)_{R}$ to $U(1)_{R}, \mathcal{V}_{\mu j}^{i}=-2 i \xi_{I} \dot{W}_{\mu}^{I} \sigma_{3 j}^{i}$, twisting condition $\xi_{I} p^{I}=1 / 2$

On-shell solution and superalgebra

- half-BPS near-horizon geometry in off-shell formalism [de Wit, van Zalk'12], [KH, Katmadas, Lodato'16]
- gravity: $\mathrm{d} s^{2}=v_{1} \mathrm{~d} s_{A d S_{2}}^{2}+v_{2} \mathrm{~d} s_{S^{2}}^{2}, b_{\mu}=A_{\mu}=0$, $D=-\left(v_{1}^{-1}+2 v_{2}^{-2}\right) / 6, T_{12}^{ \pm}=w^{ \pm}= \pm 2 v_{1}^{-1 / 2}$
- vectors: $\dot{F}_{12}^{I}=e^{I}, \dot{F}_{34}^{I}=p^{I}, \dot{Y}^{i j, I}\left(\dot{X}_{ \pm}^{I}\right)$, scalars $X_{ \pm}^{I}\left(\xi_{I}, q_{I}, p^{I}\right)$ subject to attractor mechanism
- hypers: gauge fix to break $S U(2)_{R}$ to $U(1)_{R}, \mathcal{V}_{\mu j}^{i}=-2 i \xi_{I} \dot{W}_{\mu}^{I} \sigma_{3 j}^{i}$, twisting condition $\xi_{I} p^{I}=1 / 2$
- $S U(1,1 \mid 1)$ superalgebra, bosonic subgroups $S U(1,1) \times U(1)_{R}$
- pick localizing supercharge \mathcal{Q}, s.t. $\mathcal{Q}^{2}=\mathcal{L}_{\tau}+\delta_{U(1)_{R}}+\delta_{\text {gauge }}$ equivariant differential

Localization locus

- Weyl multiplet frozen
- vector multiplet: arbitrary functions $C_{k}^{I}(\theta, \varphi), D_{k}^{I}(\theta, \varphi)$, $Y^{i j, I}\left(C_{k}^{I}, D_{k}^{I}\right)$

$$
\begin{gather*}
\delta X_{ \pm}^{I}=\sum_{k=1}^{\infty}\left(D_{k}^{I} \pm C_{k}^{I}\right) r^{-k} \tag{15}\\
\delta W_{\tau}^{I}=\sqrt{v_{1}} \sum_{k=2}^{\infty}\left(D_{k-1}^{I}+C_{k}^{I}\right)\left(r^{1-k}-1\right) \tag{16}
\end{gather*}
$$

Localization locus

- Weyl multiplet frozen
- vector multiplet: arbitrary functions $C_{k}^{I}(\theta, \varphi), D_{k}^{I}(\theta, \varphi)$, $Y^{i j, I}\left(C_{k}^{I}, D_{k}^{I}\right)$

$$
\begin{gather*}
\delta X_{ \pm}^{I}=\sum_{k=1}^{\infty}\left(D_{k}^{I} \pm C_{k}^{I}\right) r^{-k} \tag{15}\\
\delta W_{\tau}^{I}=\sqrt{v_{1}} \sum_{k=2}^{\infty}\left(D_{k-1}^{I}+C_{k}^{I}\right)\left(r^{1-k}-1\right) \tag{16}
\end{gather*}
$$

- hypermultiplet extra constraint $\xi_{I} \delta X_{ \pm}^{I}=0$
- use integration variables $\phi_{+}^{I} \equiv 2 \dot{X}_{+}^{I} \sum_{k=1}^{\infty}\left(C_{k}^{I}+D_{k}^{I}\right)$ and $\phi_{\perp}^{I}\left(C_{k}, D_{k}\right)(\theta, \varphi)$:

$$
\begin{equation*}
\partial_{\theta, \varphi} \phi_{+}^{I}=0=\partial_{\theta, \varphi} \delta W_{\tau}^{I}, \quad \xi_{I} \phi_{+}^{I}=1 \tag{17}
\end{equation*}
$$

Classical action

- two-derivative + Wilson line action:

$$
\begin{equation*}
S^{2 d}+S^{W}=2 \pi r_{0}\left(p^{I}\left(\dot{\mathcal{F}}_{I}^{+}+\dot{\mathcal{F}}_{I}^{-}\right)+q_{I} e^{I}\right)-2 \pi\left(p^{I} \mathcal{F}_{I}^{+}\left(\phi_{+}\right)+q_{I} \phi_{+}^{I}\right) \tag{18}
\end{equation*}
$$

- holo renormalization: remove divergent piece, no finite counterterm

Classical action

- two-derivative + Wilson line action:

$$
\begin{equation*}
S^{2 d}+S^{W}=2 \pi r_{0}\left(p^{I}\left(\dot{\mathcal{F}}_{I}^{+}+\dot{\mathcal{F}}_{I}^{-}\right)+q_{I} e^{I}\right)-2 \pi\left(p^{I} \mathcal{F}_{I}^{+}\left(\phi_{+}\right)+q_{I} \phi_{+}^{I}\right) \tag{18}
\end{equation*}
$$

- holo renormalization: remove divergent piece, no finite counterterm
- reinstate Newton's constant,

$$
\begin{equation*}
d_{\text {macro }}^{S U S Y}=\int_{\phi_{+}} \exp \left[-\frac{\pi}{2 \mathcal{G}_{N}}\left(p^{I} \mathcal{F}_{I}^{+}\left(\phi_{+}\right)+q_{I} \phi_{+}^{I}\right)\right] Z_{\text {ind }}^{\mathrm{reg}}\left(\phi_{+}\right) \tag{19}
\end{equation*}
$$

- 1-loop, measure, gravity localization - hidden inside $Z_{\text {ind }}^{\text {reg }}\left(\phi_{+}\right)$

Classical action

- two-derivative + Wilson line action:

$$
\begin{equation*}
S^{2 d}+S^{W}=2 \pi r_{0}\left(p^{I}\left(\dot{\mathcal{F}}_{I}^{+}+\dot{\mathcal{F}}_{I}^{-}\right)+q_{I} e^{I}\right)-2 \pi\left(p^{I} \mathcal{F}_{I}^{+}\left(\phi_{+}\right)+q_{I} \phi_{+}^{I}\right) \tag{18}
\end{equation*}
$$

- holo renormalization: remove divergent piece, no finite counterterm
- reinstate Newton's constant,

$$
\begin{equation*}
d_{\text {macro }}^{S U S Y}=\int_{\phi_{+}} \exp \left[-\frac{\pi}{2 \mathcal{G}_{N}}\left(p^{I} \mathcal{F}_{I}^{+}\left(\phi_{+}\right)+q_{I} \phi_{+}^{I}\right)\right] Z_{\text {ind }}^{\mathrm{reg}}\left(\phi_{+}\right) \tag{19}
\end{equation*}
$$

- 1-loop, measure, gravity localization - hidden inside $Z_{\text {ind }}^{\text {reg }}\left(\phi_{+}\right)$
- higher derivative F-terms: additional $256 F_{A}$ to the classical action, string theory origin?

Saddle point $=$ attractor mechanism

- Saddle point evaluation

$$
\left.\frac{\partial}{\partial \phi_{+}^{I}}\left(p^{I} \mathcal{F}_{I}^{+}\left(\phi_{+}\right)+q_{I} \phi_{+}^{I}\right)\right|_{\dot{\phi}_{+}^{I}}=0, \quad S_{B H}=-\frac{\pi}{2 \mathcal{G}_{N}}\left(p^{I} \mathcal{F}_{I}^{+}\left(\dot{\phi}_{+}\right)+q_{I} \dot{\phi}_{+}^{I}\right)
$$

- Precise match with attractor mechanism (Lorentzian) of [Cacciatori, Klemm'09], [Dall'Agata, Gnecchi'10] after Wick rotation.

Saddle point $=$ attractor mechanism

- Saddle point evaluation

$$
\left.\frac{\partial}{\partial \phi_{+}^{I}}\left(p^{I} \mathcal{F}_{I}^{+}\left(\phi_{+}\right)+q_{I} \phi_{+}^{I}\right)\right|_{\dot{\phi}_{+}^{I}}=0, \quad S_{B H}=-\frac{\pi}{2 \mathcal{G}_{N}}\left(p^{I} \mathcal{F}_{I}^{+}\left(\dot{\phi}_{+}\right)+q_{I} \dot{\phi}_{+}^{I}\right)
$$

- Precise match with attractor mechanism (Lorentzian) of [Cacciatori, Klemm'09], [Dall'Agata, Gnecchi'10] after Wick rotation.
- Saddle point agreement between $d_{\text {macro }}^{S U S Y}$ and $d_{\text {micro }}^{S U S Y}=Z(q, p)$ in all known examples:

$$
\begin{gathered}
\mathcal{F}\left(11 d / S^{7}\right) \sim \sqrt{\phi^{0} \phi^{1} \phi^{2} \phi^{3}} \\
\mathcal{F}\left(m I I A / S^{6}\right) \sim\left(\phi^{1} \phi^{2} \phi^{3}\right)^{2 / 3} \\
\mathcal{F}\left(I I B / S^{5} \times S^{1}\right) \sim \frac{\phi^{1} \phi^{2} \phi^{3}}{\phi^{0}}
\end{gathered}
$$

Grand-canonical ensemble?

- Field theory microcanonical partition function

$$
\begin{equation*}
d_{\text {micro }}^{S U S Y}=\int\left(\prod_{i} \mathrm{~d} \Delta^{i}\right) \delta\left(\sum_{i} \Delta^{i}-1\right) Z(\Delta, p) e^{-i q_{i} \Delta^{i}} \tag{20}
\end{equation*}
$$

Grand-canonical ensemble?

- Field theory microcanonical partition function

$$
\begin{equation*}
d_{\text {micro }}^{S U S Y}=\int\left(\prod_{i} \mathrm{~d} \Delta^{i}\right) \delta\left(\sum_{i} \Delta^{i}-1\right) Z(\Delta, p) e^{-i q_{i} \Delta^{i}} \tag{20}
\end{equation*}
$$

- Supergravity localization result

$$
\begin{equation*}
d_{\text {macro }}^{S U S Y}=\int\left(\prod_{i} \mathrm{~d} \phi_{+}^{I}\right) \delta\left(\sum_{i} \phi_{+}^{I}-1\right) e^{-\frac{\pi}{2 \mathcal{G}_{N}} p^{I} \mathcal{F}_{I}^{+}} Z_{\mathrm{ind}}^{\mathrm{reg}} e^{-\frac{\pi}{2 \mathcal{G}_{N}} q_{I} \phi_{+}^{I}} \tag{21}
\end{equation*}
$$

Grand-canonical ensemble?

- Field theory microcanonical partition function

$$
\begin{equation*}
d_{\text {micro }}^{S U S Y}=\int\left(\prod_{i} \mathrm{~d} \Delta^{i}\right) \delta\left(\sum_{i} \Delta^{i}-1\right) Z(\Delta, p) e^{-i q_{i} \Delta^{i}} \tag{20}
\end{equation*}
$$

- Supergravity localization result

$$
\begin{equation*}
d_{\text {macro }}^{S U S Y}=\int\left(\prod_{i} \mathrm{~d} \phi_{+}^{I}\right) \delta\left(\sum_{i} \phi_{+}^{I}-1\right) e^{-\frac{\pi}{2 \mathcal{G}_{N}} p^{I} \mathcal{F}_{I}^{+}} Z_{\mathrm{ind}}^{\mathrm{reg}} e^{-\frac{\pi}{2 \mathcal{G}_{N}} q_{I} \phi_{+}^{I}} \tag{21}
\end{equation*}
$$

- Define grand-canonical ensemble in sugra,

$$
\begin{equation*}
Z^{\text {sugra }}\left(\phi_{+}, p\right)=\exp \left[-\frac{\pi}{2 \mathcal{G}_{N}}\left(p^{I} \mathcal{F}_{I}^{+}\left(\phi_{+}\right)\right)\right] Z_{\mathrm{ind}}^{\mathrm{reg}}\left(\phi_{+}\right) \tag{22}
\end{equation*}
$$

Speculations

What are the microscopic states that make up the black hole entropy?

- What does sugra localization count? Is it just a calculational trick or allows for a deeper interpretation?
- Precise holographic match between states in the grand-canonical ensemble?

Speculations

What are the microscopic states that make up the black hole entropy?

- What does sugra localization count? Is it just a calculational trick or allows for a deeper interpretation?
- Precise holographic match between states in the grand-canonical ensemble?
- Fuzzball proposal for AdS black holes, explicit classical geometries counted by $Z^{\text {sugra }}\left(\phi_{+}, p\right)$?

Speculations

What are the microscopic states that make up the black hole entropy?

- What does sugra localization count? Is it just a calculational trick or allows for a deeper interpretation?
- Precise holographic match between states in the grand-canonical ensemble?
- Fuzzball proposal for AdS black holes, explicit classical geometries counted by $Z^{\text {sugra }}\left(\phi_{+}, p\right)$?
- Look for the answer in Euclidean theory, [Freedman, Pufu'13], [Bobev, Elvang, Freedman, Pufu'13] and [Cassani, Martelli'14]?

Future work

- Continue the sugra localization program: 1-loop contribution, localization measure...possible hints on finite N evaluation of the matrix model in field theory?
- Understand the quantum symmetries of the problem, use more refined math tools.

Future work

- Continue the sugra localization program: 1-loop contribution, localization measure...possible hints on finite N evaluation of the matrix model in field theory?
- Understand the quantum symmetries of the problem, use more refined math tools.
- Search for possible independent meaning of macroscopic grand-canonical ensemble in Euclidean surgra?

Future work

- Continue the sugra localization program: 1-loop contribution, localization measure...possible hints on finite N evaluation of the matrix model in field theory?
- Understand the quantum symmetries of the problem, use more refined math tools.
- Search for possible independent meaning of macroscopic grand-canonical ensemble in Euclidean surgra?
- Collect more large N examples, extend to more dimensions, add rotation, exhaust susy possibilities.

Future work

- Continue the sugra localization program: 1-loop contribution, localization measure...possible hints on finite N evaluation of the matrix model in field theory?
- Understand the quantum symmetries of the problem, use more refined math tools.
- Search for possible independent meaning of macroscopic grand-canonical ensemble in Euclidean surgra?
- Collect more large N examples, extend to more dimensions, add rotation, exhaust susy possibilities.
- Go beyond susy and extremality - near AdS $_{2}$ geometries, SYK, ...

