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Based on..

I 1803.05920 with Ivano Lodato and Valentin Reys

I 1608.07294 with Francesco Benini and Alberto Zaffaroni

Important background literature

I Susy localization - [Pestun’07]

I (Quantum) entropy function - [Sen’08]

I Localization in supergravity - [Dabholkar, Gomes, Murthy’10-11]

I Topologically twisted index - [Benini, Zaffaroni’15-16]



Motivation

Quantum gravity?

I Supergravity can be seen as a toy model for quantum gravity at
weak coupling

I Supersymmetric vacua are stable quantum states

I Supersymmetry allows for extrapolation of results from weak
coupling (GR + matter) to strong coupling (novel quantum gravity
effects)

I AdS/CFT gives a dual quantum picture, many exact results
accessible via supersymmetric localization

I Existence of BPS (susy-preserving) black holes - an ”integrable”
sector of quantum gravity because of AdS2 near-horizon



Black holes and susy holography

I ”Black holes = statistical ensembles of gravitational degrees of
freedom.”

I What are the microscopic states that make up the black hole
entropy?

S(q, p) = log d(q, p) , d(q, p) ∈ Z+ (1)

I Make gradual progress, start with susy case with AdS2 near-horizon
geometry.

I Look at sugra solutions in various dimensions, assume SU(1, 1|1)
near-horizon symmetry algebra (U(1)R-symmetry, unlike SU(2)R of
[Strominger, Vafa’96]).

I Holography suggests a dual field theory picture: a susy N = 2
quantum mechanics flowing to an IR conformal point.
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The field theory perspective

I Dual field theory given by a Hamiltonian Hp depending on black
hole magnetic charges pi.

I Calculate grand-canonical susy partition function

Z(∆, p) = TrH((−1)F ei∆
iJie−βHp) , < Ji >= qi (2)

I Find the microcanonical partition function via a Legendre transform,

Z(∆, p) =
∑
q

Z(q, p)eiqi∆
i

, Z(q, p) =

∫
∆

Z(∆, p)e−iqi∆
i

(3)

I Assume no cancellation between bosonic and fermionic states in the
large charge (large N) limit, find the BH entropy in the
microcanonical ensemble by a saddle point approximation,

SBH(q, p) ≡ I(∆̇) = logZ(∆̇, p)− iqi∆̇i ,
dI
d∆
|∆̇ = 0 (4)
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Weak coupling: easy example

I Look at gapped N = 2 quantum mechanics with real masses σi:
susy ground states H = σiJi

I Free chiral multiplet (y = ei(∆+iβσ)):

Hc = (a†a+ b†b+ 1)|σ| − σ

2
[ψ,ψ] , Jc = a†a− b†b+

1

2
[ψ,ψ] (5)

Zc(y)(
(a†)n

n!
|0, ↑>) =

∞∑
n=0

yn+1/2 =
y1/2

1− y
(6)

I Free fermion multiplet:

HF = σJF = σ

(
λ†λ− 1

2

)
(7)

ZF (y)(| ↑> +| ↓>) = y−1/2 − y1/2 =
1− y
y1/2

(8)
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Strong coupling: localization

I Twsited index on S1 × Σg via Bethe potential / twisted
superpotential of the 2d theory on Σg [Hosseini, Zaffaroni’16]:

Z(∆, p) =

∫
du

Q(u, p)∏
i

(
1− ei∂W(∆,u)/∂u

) (9)

I Large N evaluation, one leading solution ū of ei∂W/∂u = 1,

W(∆, ū) ∼ FS3(∆) (10)

logZ(∆, p) = −
∑
i

pi
∂W
∂∆i

(11)



Localization matches with sugra at large N

I Twisted index of ABJM theory [Benini, KH, Zaffaroni’15] match to
asymptotically AdS4×S7 black hole entropy [Cacciatori, Klemm’09] in
11d sugra (also with mass-deformation [Bobev, Min, Pilch’18])

FS3 ∼ N3/2
√

∆1∆2∆3∆4

I Twisted index of the D2k theory [Guarino, Jafferis, Varela’15; Hosseini,

KH, Passias’17; Benini, Khachatryan, Milan’17] match to asymptotically
AdS4×S6 black hole entropy [Guarino, Tarrio’17] in massive IIA 10d
sugra

FS3 ∼ N5/3(∆1∆2∆3)2/3

I Twisted index of N = 4 SYM theory [Hosseini, Nedelin, Zaffaroni’16]

match to asymptotically AdS5×S5 black string entropy [Benini,

Bobev’13] in type IIB 10d sugra

FS3 ∼ N2 ∆1∆2∆3

∆0
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More matches with sugra

I Universal twist ∆̄i ∼ p̄i RG flows match to many 10d and 11d sugra
black holes [Azzurli, Bobev, Crichigno, Min, Zaffaroni’17]

logZ(∆̄, p̄) ∼ FS3(∆̄)

I Evidence of field theory matches to rotating black hole entropy via
anomaly coefficients: N = 4 SYM theory [Hosseini, KH, Zaffaroni’17]

to rotating AdS5×S5 black holes [Gutowski, Reall’04]; 6d (2, 0) theory
[Hosseini, KH, Zaffaroni’18] to rotating AdS7×S4 black holes [Cvetic,

Gibbons, Lu, Pope’05; Chow’07]

I Subleading corrections to large N results: logN corrections from
localization computed numerically [Liu, Pando Zayas, Rathee, Zhao’17]



More matches with sugra

I Universal twist ∆̄i ∼ p̄i RG flows match to many 10d and 11d sugra
black holes [Azzurli, Bobev, Crichigno, Min, Zaffaroni’17]

logZ(∆̄, p̄) ∼ FS3(∆̄)

I Evidence of field theory matches to rotating black hole entropy via
anomaly coefficients: N = 4 SYM theory [Hosseini, KH, Zaffaroni’17]

to rotating AdS5×S5 black holes [Gutowski, Reall’04]; 6d (2, 0) theory
[Hosseini, KH, Zaffaroni’18] to rotating AdS7×S4 black holes [Cvetic,

Gibbons, Lu, Pope’05; Chow’07]

I Subleading corrections to large N results: logN corrections from
localization computed numerically [Liu, Pando Zayas, Rathee, Zhao’17]



More matches with sugra

I Universal twist ∆̄i ∼ p̄i RG flows match to many 10d and 11d sugra
black holes [Azzurli, Bobev, Crichigno, Min, Zaffaroni’17]

logZ(∆̄, p̄) ∼ FS3(∆̄)

I Evidence of field theory matches to rotating black hole entropy via
anomaly coefficients: N = 4 SYM theory [Hosseini, KH, Zaffaroni’17]

to rotating AdS5×S5 black holes [Gutowski, Reall’04]; 6d (2, 0) theory
[Hosseini, KH, Zaffaroni’18] to rotating AdS7×S4 black holes [Cvetic,

Gibbons, Lu, Pope’05; Chow’07]

I Subleading corrections to large N results: logN corrections from
localization computed numerically [Liu, Pando Zayas, Rathee, Zhao’17]



Entropy at finite N?

I No cancellation between bosons and fermons assumption!(?)

I Finite N field theory (microscopic) entropy

dSUSYmicro ≡ Z(q, p) =

∫ (∏
i

d∆i

)
δ(
∑
i

∆i − 1)Z(∆, p)e−iqi∆
i

(12)

I Infer the exact (macroscopic) black hole entropy via the holographic
dictionary

eS(q,p) = dmacro = dmicro
?
= dSUSYmicro ∈ Z+ (13)

I Any putative quantum gravity calculation must lead to dmacro
I However, holographically dSUSYmacro = dSUSYmicro , no assumptions!
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The question remains...

What are the microscopic states that make up the black hole
entropy?

I Field theory: at weak coupling states in the grand-canonical
ensemble; at strong coupling use localization / anomalies.

I Quantum gravity: at weak coupling sugra calculation (?); at strong
coupling string theory (definition via the field theory dual?)

I In QFT well-defined microcanonical and grand-canonical ensemble;
in quantum gravity so far only microcanonical ensemble?
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Quantum entropy - see V. Reys’ talk!

I Formal definition:

dmacro ≡
〈

exp

(
4πqi

∫ 2π

0

W i
τdτ

)〉finite
EAdS2=H2

(14)

I Explicit approach for dSUSYmacro: pick a sugra theory and a black hole
near-horizon geometry (a BPS solution). Assume/prove the
gravitational background to be fixed (freeze gravity multiplet) and
perform susy localization on a curved background of the remaining
(vector-, hyper-, tensor-) multiplets in the bulk.

I Done succesfully for asymptotically Mink4 × T 6 solutions,
dSUSYmacro = dSUSYmicro . Very good progress for Mink4 × T 2 ×K3

I Conceptual issues (see [de Wit, Murthy, Reys’18]): 1-loop determinant
of the gravity multiplet, non-compact space (Euclidean AdS2), exact
integration measure. Let’s neglect them at a first aproximation!
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4d N = 2 off-shell gauged supergravity

I Conformal sugra formalism developed in [de Wit, van Holten, van

Proeyen’80], ...

I use Euclidean version for full consistency [de Wit, Reys’17]

I Weyl multiplet: metric gµν , auxiliary tensor T±ab and scalar D, gauge
fields bµ (dilatation), Aµ (SO(1, 1)R), Viµj (SU(2)R), gravitini and
dilatini

I nV + 1 vector multiplets: vectors W I
µ , real scalars XI

±, auxiliary

triplet of scalars Y ij,I , gaugini; scalar manifold encoded in
prepotentials F±(XI

±).

I (compensating) hypermultiplet: four real scalars Aαi , hyperini

I after gauge fixing equivalent to Poincare sugra with nV vector
multiplets and FI gauging ξI
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On-shell solution and superalgebra

I half-BPS near-horizon geometry in off-shell formalism [de Wit, van

Zalk’12], [KH, Katmadas, Lodato’16]

I gravity: ds2 = v1ds2
AdS2

+ v2ds2
S2 , bµ = Aµ = 0,

D = −(v−1
1 + 2v−2

2 )/6, T±12 = w± = ±2v
−1/2
1

I vectors: Ḟ I12 = eI , Ḟ I34 = pI , Ẏ ij,I(ẊI
±), scalars XI

±(ξI , qI , p
I)

subject to attractor mechanism

I hypers: gauge fix to break SU(2)R to U(1)R, Viµj = −2iξIẆ
I
µσ

i
3j ,

twisting condition ξIp
I = 1/2

I SU(1, 1|1) superalgebra, bosonic subgroups SU(1, 1)× U(1)R
I pick localizing supercharge Q, s.t. Q2 = Lτ + δU(1)R + δgauge

equivariant differential
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Localization locus

I Weyl multiplet frozen

I vector multiplet: arbitrary functions CIk(θ, ϕ), DI
k(θ, ϕ),

Y ij,I(CIk , D
I
k)

δXI
± =

∞∑
k=1

(DI
k ± CIk)r−k (15)

δW I
τ =
√
v1

∞∑
k=2

(DI
k−1 + CIk)(r1−k − 1) (16)

I hypermultiplet extra constraint ξIδX
I
± = 0

I use integration variables φI+ ≡ 2ẊI
+

∑∞
k=1(CIk +DI

k) and
φI⊥(Ck, Dk)(θ, ϕ):

∂θ,ϕφ
I
+ = 0 = ∂θ,ϕδW

I
τ , ξIφ

I
+ = 1 (17)
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Classical action

I two-derivative + Wilson line action:

S2d+SW = 2πr0

(
pI(Ḟ+

I + Ḟ−I
)

+qIe
I)−2π

(
pIF+

I (φ+) + qIφ
I
+

)
(18)

I holo renormalization: remove divergent piece, no finite counterterm

I reinstate Newton’s constant,

dSUSYmacro =

∫
φ+

exp
[
− π

2GN
(
pIF+

I (φ+) + qIφ
I
+

)]
Zreg

ind(φ+) (19)

I 1-loop, measure, gravity localization - hidden inside Zreg
ind(φ+)

I higher derivative F-terms: additional 256FA to the classical action,
string theory origin?
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I reinstate Newton’s constant,

dSUSYmacro =

∫
φ+

exp
[
− π

2GN
(
pIF+

I (φ+) + qIφ
I
+

)]
Zreg

ind(φ+) (19)

I 1-loop, measure, gravity localization - hidden inside Zreg
ind(φ+)

I higher derivative F-terms: additional 256FA to the classical action,
string theory origin?



Saddle point = attractor mechanism

I Saddle point evaluation

∂

∂φI+

(
pIF+

I (φ+)+qIφ
I
+

)
|φ̇I+ = 0 , SBH = − π

2GN
(
pIF+

I (φ̇+)+qI φ̇
I
+

)
I Precise match with attractor mechanism (Lorentzian) of [Cacciatori,

Klemm’09], [Dall’Agata, Gnecchi’10] after Wick rotation.

I Saddle point agreement between dSUSYmacro and dSUSYmicro = Z(q, p) in all
known examples:

F(11d/S7) ∼
√
φ0φ1φ2φ3

F(mIIA/S6) ∼ (φ1φ2φ3)2/3

F(IIB/S5 × S1) ∼ φ1φ2φ3

φ0
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Grand-canonical ensemble?

I Field theory microcanonical partition function

dSUSYmicro =

∫ (∏
i

d∆i

)
δ(
∑
i

∆i − 1)Z(∆, p)e−iqi∆
i

(20)

I Supergravity localization result

dSUSYmacro =

∫ (∏
i

dφI+

)
δ(
∑
i

φI+ − 1)e
− π

2GN
pIF+

I Zreg
ind e

− π
2GN

qIφ
I
+

(21)

I Define grand-canonical ensemble in sugra,

Zsugra(φ+, p) = exp
[
− π

2GN
(
pIF+

I (φ+)
)]
Zreg

ind(φ+) (22)
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Speculations

What are the microscopic states that make up the black hole
entropy?

I What does sugra localization count? Is it just a calculational trick or
allows for a deeper interpretation?

I Precise holographic match between states in the grand-canonical
ensemble?

I Fuzzball proposal for AdS black holes, explicit classical geometries
counted by Zsugra(φ+, p)?

I Look for the answer in Euclidean theory, [Freedman, Pufu’13], [Bobev,

Elvang, Freedman, Pufu’13] and [Cassani, Martelli’14]?
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Future work

I Continue the sugra localization program: 1-loop contribution,
localization measure...possible hints on finite N evaluation of the
matrix model in field theory?

I Understand the quantum symmetries of the problem, use more
refined math tools.

I Search for possible independent meaning of macroscopic
grand-canonical ensemble in Euclidean surgra?

I Collect more large N examples, extend to more dimensions, add
rotation, exhaust susy possibilities.

I Go beyond susy and extremality - near AdS2 geometries, SYK, ...
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