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Introductions and Motivations

Supersymmetric localization

• is a powerful technique to evaluate supersymmetric 
observables exactly. 

• has provided non trivial checks of several conjectural     
dualities in susy QFT in various dim. 

• has also provided highly non trivial checks for AdS/CFT. 

• has been focussed mostly on susy QFT defined on curved 
but compact spaces without boundary.

( Dabholkar, Drukker,Gomes,
Grassi, Marino, Putrov, Sen.)



Introductions and Motivations

Rigid susy QFT can also be defined on curved but non compact 
spaces.

Non compact spaces of the form                   are relevant in 
evaluating black hole entropy as well as entanglement entropy in 
conformal field theories.

AdSn ⇥ Sm

Localization on non compact spaces is a harder problem for two 
reasons:

1. needs to worry about boundary terms in susy variations, 

2.  needs to include boundary conditions.



On Boundary Conditions

On non compacts spaces the boundary conditions defines the 
problem. 

Typically the natural boundary conditions one imposes on the 
quantum fluctuations are normalizable boundary conditions w.r.t 

These boundary conditions tell us which fluctuations to integrate 
over in the path integral to compute the observable.
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Black Hole Entropy

Quantum entropy of an extremal black hole is given as 

One loop computations were performed with normalizable 
boundary conditions on all the fields.
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Basic idea : If there exist a fermionic symmetry Q such that

Q2 = Lv

combinations of various 
symmetry like gauge 
transformation, R-symmetry 
etc.
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We want to put            susy QFT with           on a background 
which admits one or more rigid supercharges.

N = 2 U(1)R

The background metric is

ds2 = d⌧2 + L2(dr2 + sinh2 r d✓2)

We want to solve

We require that the killing vector is

Supersymmetry on AdS2 ⇥ S1

(Closset,Dumitrescu,
Festuccia,Komargodski)
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We need to turn on background value of some supergravity 
fields
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The killing spinors are given by

The supersymmetry algebra on the background
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Chern-Simons+Matter
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We consider Chern-Simons theory coupled to a fundamental 
matter.

The theory is described by
S = SC.S. + Smatter

where
SC.S. =
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boundary terms =
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Smatter = Q-exact + boundary terms

SUSY of Action

The vector multiplet+chiral multiplet is supersymmetric upto 
boundary terms.

where

The boundary terms go to zero with normalizable and smoothness 
conditions on all the fields.

In particular, the action of the chiral multiplet is Q-exact.



Boundary Condition on Chiral Multiplet

The normalizable boundary conditions on                are  AdS2 ⇥ S1
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Localization Manifold
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We add following positive definite Q-exact terms

Solutions:
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DF (↵) : Fermionic kinetic operator
DB(↵): Bosonic kinetic operator

Partition Function

Thus the partition function is given as

The one loop determinant can be evaluated using Green’s 
function of the kinetic operator.

fermionic Green’s function bosonic Green’s function



D(x)S(x) = 0

Green’s Function : Methodology 1

We first find the solutions to the differential equation
This does not have  
a global solution.Let

Then the Green’s function is given as

G(x, y) = c

h
⇥(y � x)S1(x)S2(y) +⇥(x� y)S1(y)S2(x)

i
.

S1(x) : is a valid solution near           . x ! 0

S2(x) x ! 1: is a valid solution near            .                  } Smoothness and 
bdy. conditions.

Green’s function is a solution to the differential equation
D(x)G(x, y) = �(x, y)

D(x): is a differential operator without zero modes.



Green’s Function : Methodology 2

G(x, y) = c

h
⇥(y � x)S1(x)S2(y) +⇥(x� y)S1(y)S2(x)

i
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The Green’s function is

•  The Green’s function is continuous at           .     x = y

Properties :

• The first derivative of the Green’s function is discontinuous 
at         . The discontinuity fixes the constant   .x = y

c

For fermionic case, the Green’s function is discontinuous. 



E.O.M 

then its super partner also satisfies the same equation

,DX0 = 0

DQX0 = 0 .

Consequence of the supersymmetry: if     satisfies  X0

A solution for     is also sol. for        provided it is consistent 
with the respective bdy. and smoothness conditions. 

QX0X0

{X1, QX0}
for chiral, the fermions are

If bdy. conditions are consistent with susy, the Green’s function 
for bosonic fields and fermionic fields are related.
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Solutions to E.O.M

Explicitly obtaining the solutions for fields in chiral multiplet and 
analysing their asymptotic behaviour, we find that 
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Solutions to E.O.M:2
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When normalizable bdy. conditions are consistent with susy, 
after integration by parts, we find 

B.T. : bdy. terms, functions of solns.         and         .     S1(z) S2(z)
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One Loop Determinant 1

We want to evaluate

For chiral multiplet
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When normalizable bdy. conditions are not consistent with 
susy, after integration by parts, we find 

One Loop Determinant 2

Bulk Terms : bulk terms, functions of solns.         and         .     S1(z) S2(z)
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x̂ = 2|p|+�� 2Ln+ 2iLq↵ , ŷ = 2|p|��+ 2Ln� 2iLq↵ .Here

Chiral Multiplet Result

The one loop determinant is
Boundary terms from susy region
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The one loop determinant from another Q-exact deformations is
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Some Comments

• Bulk terms depend on the Q-exact action.

• The result is consistent with explicit one loop calculation 
for free chiral multiplet using eigen function method.

• If the bdy. conditions consistent with susy, the variation is given 
in terms of bdy. terms. Boundary terms are independent of Q-
exact action.



Index Result
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We also computed the one loop result using the index of D10

In the case of chiral multiplet, we get
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The one loop determinant of the vector multiplet using the index 
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This computation is relevant for the black hole entropy. 

The metric background admits killing spinors with or without 
graviphoton background.

AdS2 ⇥ S2
We have computed partition function of a hypermultiplet on   
              background with equal radius. 

The computations are performed using normalizable boundary 
conditions. Naively it is not consistent with susy.

However, we find that in this case there are no bulk terms.

Hypermultiplet on AdS2 ⇥ S2



Result on AdS2 ⇥ S2

When T = T̄ = 0 , we find

T = T̄ 6= 0On the other hand for the black hole background i.e.
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(Murthy, Reys)

same as S4



• We have computed one loop partition function of Chern 
Simons theory coupled to a chiral multiplet on                .AdS2 ⇥ S1

• One loop result of vector multiplet based on normalizable 
boundary conditions for gauge field is same as that on     with 
some conditions on   . Also consistent with explicit index 
calculations.

S3

• One loop result for the chiral multiplet based on normalizable 
boundary conditions depends on the Q-exact actions. 

Summary of Results :AdS2 ⇥ S1

• Disagreement if there exist an integer 
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L : ratio of the radius of          to that of     . AdS2 S1

� : R-charge of the chiral multiplet

L



AdS2 ⇥ S2Summary of Results :

• We have computed the one loop partition function of a 
hypermultiplet on               using normalizable boundary 
conditions.

AdS2 ⇥ S2

• In this case, we find that the normalizable boundary conditions 
are consistent with susy.

• The result of hypermultiplet is consistent with the index answer.
(Murthy, Reys)



Conclusion

• We developed Green’s function method to compute one loop 
determinant and incorporate bdy. conditions on AdS-spaces. 

• When bdy. conditions are consistent with susy, the variation 
of the one loop determinant is a total derivative.  

A general proof is still missing.

• The Green’s function is harder to compute for higher spins 
fields. The difficulty increases with space time dimension. 

• One of the advantage of the Green’s function method compared 
to index calculation is that one just needs asymptotic behaviour 
of the solutions.



Future Directions

• Next we want to apply the Green’s function method to 
higher spin fields. 

• It will be interesting to compute the one loop determinant in 
the case for black holes in AdS spaces. 

• It will be interesting to generalize to higher dimensional 
AdS spaces.



Thank You.


