Recommender Systems

Instructor: Ekpe Okorafor

- 1. Accenture Big Data Academy
- 2. Computer Science African University of Science & Technology

Objectives

Objectives

- What is the difference between content based and collaborative filtering
- recommender systems
- Which limitations recommender systems frequently encounter
- How collaborative filtering can identify similar users and items
- How Tanimoto and Euclidean distance similarity metrics work

Outline

- What is a recommender system?
- Types of collaborative filtering
- Limitations of recommender systems
- Fundamental concepts
- Essential points
- Conclusion
- Hands-On Exercise: Implementing a Basic Recommender

Outline

- What is a recommender system?
- Types of collaborative filtering
- Limitations of recommender systems
- Fundamental concepts
- Essential points
- Conclusion
- Hands-On Exercise: Implementing a Basic Recommender

What is a Recommender System?

Amazon

- Amazon doesn't know what it is like to have a device that lets you listen to music or take digital pictures or how you feel like when you buy the latest device
- Amazon does know that people who bought a certain device also bought other devices
- Patterns in the data can used to make recommendations
- If you've built up a long purchase history you'll often see
- pretty sophisticated recommendations

Netflix

- Netflix is an online DVD rental company that recommends movies to subscribers
- 2006: Netflix announce \$1 million to the first person who can improve the accuracy of its recommendation algorithm by 10%
- How can an algorithm recommend movies?
- By leveraging patterns in data (and lots of it)

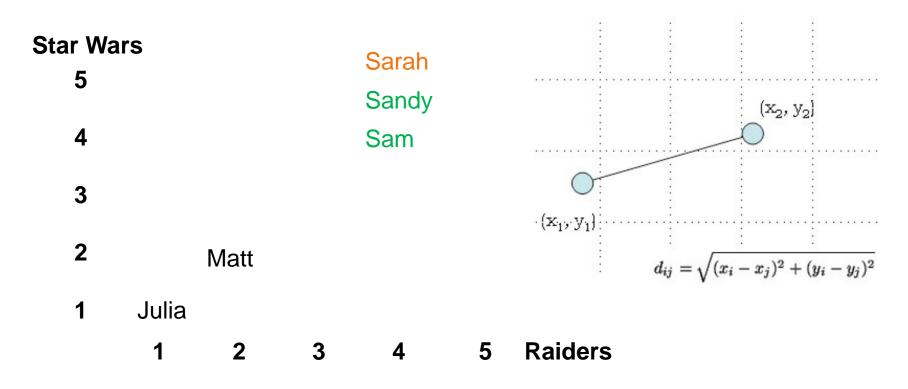
Dataset: Movie Critics

Critic	Star Wars	Raiders of the Lost Arc Casablanca		Sound of Music
Sam	4	4	1	2
Sandy	5	4	2	1
Matt	2	2	4	3
Julia	2	1	3	4
Sarah	5	?	?	2

- How could an algorithm use this data to recommend movies?
- How would you do it

Making a Recommendation

- Sarah hasn't seen Raiders, but gave Star Wars five stars
- It is a good bet she'll like Raiders too



Features

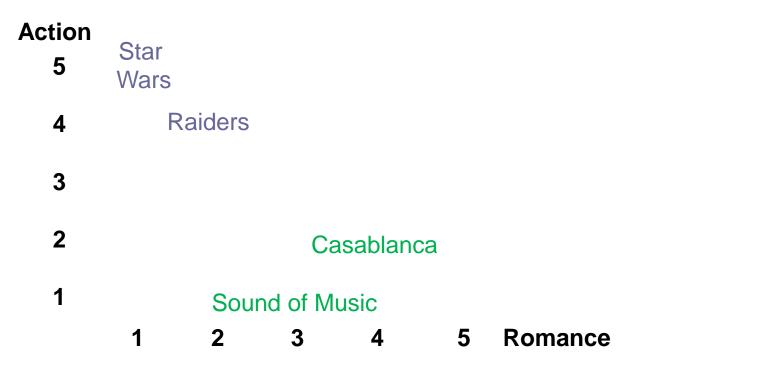
- We used features to compare critics
- Feature: a data attribute used to make a comparison
- Quantify attributes of an object (size, weight, color, shape, density) in a way a computer can understand
- Quality is important
 - A good feature discriminates between classes
 - Think: how well does a feature help us tell two things apart?

Features to compare movies

Feature	Star Wars	Raiders of the Lost Arc	Casahlanca	
Action (1 to 5)	5	4	2	1
Romance (1 to 5)	1	2	4	3
Length (min)	121	115	102	174
Harrison Ford	Υ	Υ	N	N
Year	1977	1981	1942	1965

Feature Space

- We can compare the similarity of movies in feature space using the same technique we used to compare movie critics.
- So we can compare items and people in the same way!



Content-Based Recommenders

- Content based recommenders consider an item's attributes
 - These attributes describe the item.
- Examples of item attributes
 - Movies: actor, director, screenwriter, producer, and location
 - Music: songwriter, style, musicians, vocalist, meter, and tempo
 - Books: author, publisher, subject, illustrations, and page count
- A user's taste defines values and weights for each attribute
 - These are supplied as input to the recommender

Content-Based Recommenders (Cont'd)

- Content based recommenders are domain specific
 - Because attributes don't transcend item types
- Examples of content based recommendations
 - You like 1977's science fiction films starring Mark Hamill, try Star Wars
 - You like rock music from the 1980's, try Beat It

Collaborative Filtering

- Collaborative filtering is an inherently social system
 - It recommends items based on preferences of similar users
- It's similar to how you get recommendations from friends
 - Query those people who share your interests
 - They'll know movies you haven't seen and would probably like
 - And you'll be able to recommend some to them
- This approach is not domain-specific
 - System doesn't "know" anything about the items it recommends
 - The same algorithm can used to recommend any type of product
- We'll discuss collaborative filtering in detail during this talk

Hybrid Recommenders

- Content-based and collaborative filtering are two approaches
- Each has advantages and limitations
 - We'll discuss these in a moment
- It's also possible to combine these approaches
 - For example, predict rating using content-based approach
 - Then predict rating using collaborative filtering
 - Finally, average these values to create a hybrid prediction
- Research demonstrates that this can offer better results than using either system on its own
 - Neflix and other companies use hybrid recommenders

Outline

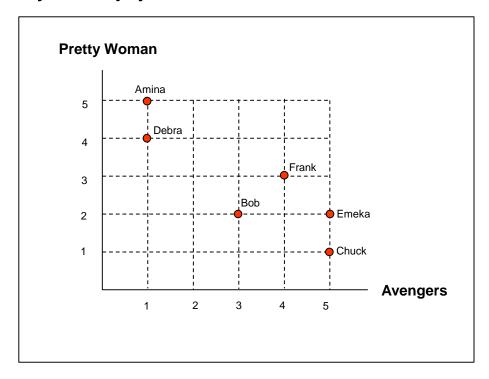
- What is a recommender system?
- Types of collaborative filtering
- Limitations of recommender systems
- Fundamental concepts
- Essential points
- Conclusion
- Hands-On Exercise: Implementing a Basic Recommender

Types of Collaborative Filtering

- Collaborative filtering can be subdivided into two main types
- User-based: "What do users similar to you like?"
 - For a given user, find other people who have similar tastes
 - Then, recommend items based on past behavior of those users
- Item-based: "What is similar to other items you like?"
 - Given items that a user likes, determine which items are similar
 - Make recommendations to the user based on those items

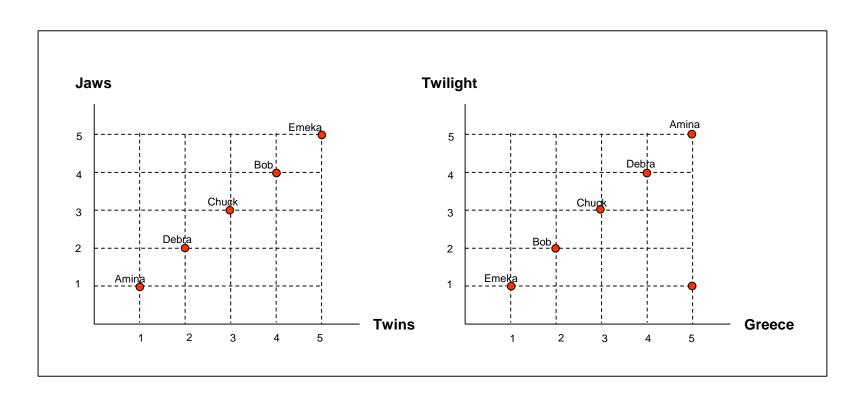
User-Based Collaborative Filtering

- User-based collaborative filtering is social
 - It takes a "people first" approach, based on common interests
- In this example, Amina and Debra have similar tastes
 - Each is likely to enjoy a movie that the other rated highly



Item-Based Collaborative Filtering

- After examining more of these ratings, patterns emerge
 - Strong correlations between movies suggest they are similar



Item-Based Collaborative Filtering (con't)

- The item-based approach was popularized by Amazon
 - Given previous purchases, what would you be likely to buy?
- Our example Movies could also use item-based filtering
 - Suggest Twins after customer adds Jaws to the queue
- Item-based CF usually scales better than user-based
 - Successful companies have more users than products

Outline

- What is a recommender system?
- Types of collaborative filtering
- Limitations of recommender systems
- Fundamental concepts
- Essential points
- Conclusion
- Hands-On Exercise: Implementing a Basic Recommender

Limitations

The cold start problem is a limitation of collaborative filtering

- CF finds recommendations based on actions of similar users
- So what do you do for a startup?
 - A new service has no users, similar or otherwise!
- One workaround is to use content-based filtering at first
 - Eventually you'll have enough data for collaborative filtering
 - You can transition via a hybrid approach as you add users

Performance of sparse matrix operations

- Consider a dataset has 14 million customers and 100,000 movies
- A matrix representation will have 1.4 trillion elements
 - Even active customers have only seen a few hundred movies
 - And they haven't rated all of these

Limitations (cont'd)

People aren't very good at rating things

- You may need to identify and correct for individual biases
- Observe user behavior instead of asking for ratings

Individual tastes aren't always predictable

- One person may love Halloween, Friday the 13th, and Saw
- Unlike similar users, this person may also love Mary Poppins
- As always, using more input data will likely produce better results

A single account may correspond to multiple users

– Does the account holder like Bambi? Or is it her daughter?

Limitations (cont'd)

Item-based CF may predict previously satisfied needs

- The goal of item-based CF is to identify similar products
- More helpful with pre-purchase suggestions than post-purchase
 - If I bought a toaster, ads for other toasters aren't helpful
 - But ads for bagels and jam might be helpful
- Not an issue for some products (like movies or music)

Outline

- What is a recommender system?
- Types of collaborative filtering
- Limitations of recommender systems
- Fundamental concepts
- Essential points
- Conclusion
- Hands-On Exercise: Implementing a Basic Recommender

Input Data

The recommender accepts preference data as input

- These preferences represent what users like and dislike
- Content-based recommenders also use attributes about an item

Input preferences can be collected in two ways

- Explicit: we ask users to rate items that they like or dislike
 - Neflix star ratings
 - TiVO "thumbs up" ratings
 - "How would you rank these items?"
- Implicit: we observe user behavior to determine their preferences
 - Which movies does a customer watch?
 - Does customer move a movie up or down in the queue?
 - Does the customer finish the movie?

Evaluating Input

How does collaborative filtering work?

- Create a matrix of users and items, populated with preferences
- For a given user, identify other users with similar tastes
- Find items new to this user, but rated highly by similar users

	Amina	Bob	Chuck	Debra	Emeka	Frank	Gina
Airplane	1	4			5		
Bambi	4			5		2	
Caddyshack		4	3		4		5
Dracula			5			4	
Eat Pray Love		2		5	1		1
Friday		4					5
Gunsmoke						4	5
Hang 'Em High			5			4	5
Iron Man			3	1	4		5
Jane Eyre	5						
The Karate Kid	4		5	5	3		

Debra has preferences similar to Amina

	Amina	Bob	Chuck	Debra	Emeka	Frank	Gina
Airplane	1	4			5		
Bambi	4		-	5		2	
Caddyshack		4	3		4		5
Dracula			5			4	
Eat Pray Love		2		5	1		1
Friday		4					5
Gunsmoke						4	5
Hang 'Em High			5			4	5
Iron Man			3	1	4		5
Jane Eyre	5						
The Karate Kid	4		5	5	3		

 Based on this, we could recommend Eat Pray Love to Amina

	Amina	Bob	Chuck	Debra	Emeka	Frank	Gina
Airplane	1	4			5		
Bambi	4			5		2	
Caddyshack		4	3		4		5
Dracula			5			4	
Eat Pray Love		4 2		5	1		1
Friday		4					5
Gunsmoke						4	5
Hang 'Em High			5			4	5
Iron Man			3	1	4		5
Jane Eyre	5						
The Karate Kid	4		5	5	3		

Similarly, we could recommend Jane Eyre to Debra

	Amina	Bob	Chuck	Debra	Emeka	Frank	Gina
Airplane	1	4			5		
Bambi	4			5		2	
Caddyshack		4	3		4		5
Dracula			5			4	
Eat Pray Love		2		5	1		1
Friday		4					5
Gunsmoke						4	5
Hang 'Em High			5			4	5
Iron Man			3	1	4		5
Jane Eyre	5						
The Karate Kid	4		5	5	3		

- More users mean stronger signals and better recommendations
 - Whose preferences are similar to Bob?

	Amina	Bob	Chuck	Debra	Emeka	Frank	Gina
Airplane	1	4			5		
Bambi	4			5		2	
Caddyshack		4	3		4		5
Dracula			5			4	
Eat Pray Love		2		5	1		1
Friday		4					5
Gunsmoke						4	5
Hang 'Em High			5			4	5
Iron Man			3	1	4		5
Jane Eyre	5						
The Karate Kid	4		5	5	3		

Both Emeka and Gina's preferences are similar to Bob

Ratings they share produce better recommendations for Bob

	Amina	Bob	Chuck	Debra	Emeka	Frank	Gina
Airplane	1	4			5		
Bambi	4			5		2	
Caddyshack		4	3		4		5
Dracula			5			4	
Eat Pray Love		2		5	1		1
Friday		4					5
Gunsmoke						4	5
Hang 'Em High			5			4	5
Iron Man			3	1	4		5
Jane Eyre	5						
The Karate Kid	4		5	5	3		

- We could recommend Gunsmoke, Karate Kid, or Iron Man to Bob
 - Highest confidence about Iron Man, based on stronger signal

	Amina	Bob	Chuck	Debra	Emeka	Frank	Gina
Airplane	1	4			5		
Bambi	4			5		2	
Caddyshack		4	3		4		5
Dracula			5			4	
Eat Pray Love		2		5	1		1
Friday		4					5
Gunsmoke						4	5
Hang 'Em High			5			4	5
Iron Man			3	1	4		5
Jane Eyre	5						
The Karate Kid	4		5	5	3		

Basic Similarity Metrics

It's easy for humans to see similarities between users

- But how can a computer find these similarities?
- More importantly, how we can measure them?

There are many similarity metrics

We'll briefly cover two now

Choosing one involves several factors, including

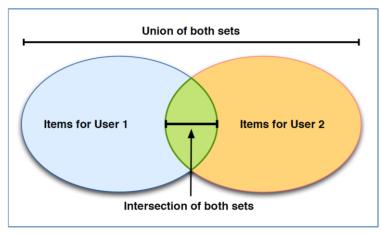
- The type of preference data available
- Performance at scale

They work by comparing vectors of data

- The elements could be users or items
- You need to calculate metrics for every pair

Tanimoto Coefficient

- Tanimoto coefficient is applicable when you have binary (boolean) data
 - Did customer watch a given movie or not?
 - Did customer finish this movie or not?
- Also known as the Jaccard coefficient, Tanimoto compares two sets
 - Based on the ratio of union (all items) and intersection (common items)



Tanimoto Coefficient (cont'd)

The Tanimoto coefficient is easy to compute in R

```
Tanimoto <- function(set_a, set_b) {
   intersection <- set_a &(set_b)

len_a <- len(set_a)
   len_b <- len(set_b)
   len_i <- len(intersection)

return float(len_i) / (len_a + len_b - len_i)
}</pre>
```

- The value ranges between 0.0 and 1.0
 - A value of 1.0 indicates both sets exactly match one another
 - Value moves towards 0.0 as number of common items decreases

Tanimoto Coefficient (cont'd)

Consider the following input

An 'X' in the matrix below indicates customer watched the movie

	Amina	Frank	Gina
Airplane		X	Х
Bambi	X	X	
Caddyshack		X	Х
Eat Pray Love	X		
Gunsmoke		Х	Х
Hang 'Em High		Х	Х

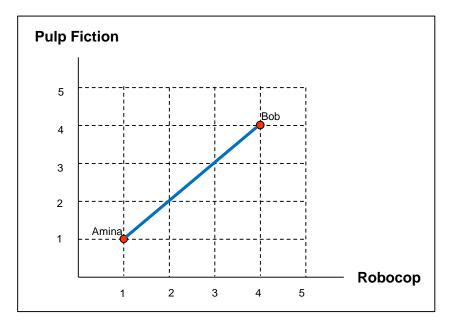
- Frank and Gina share similar taste (value = 0.8)
- But Amina and Gina don't (value = 0.0)

Euclidean Distance

- Euclidean distance is a measure of similarity for numeric data
 - "How many stars did the customer give this movie?"
 - "How many times did the customer watch this movie?"

Effectively the same as plotting it and measuring with

a ruler



Euclidean Distance (con't)

- Euclidean distance is also easy to calculate in R
 - Simple calculation based on parallel elements from each list

```
euclidean <- function(set_a, set_b) {
   sqrt(sum((set_a - set_b) ^ 2))

   library(foreach)
   foreach(i = 1:nrow(set_a), .combine = c)
      %do% euclidean(set_a[i,],set_b[i,])
}</pre>
```

- A lower number indicates a stronger similarity
 - Though this is often inverted to provide a value in the 0.0 1.0 range

Euclidean Distance (cont'd)

Consider the following input

Each element in the matrix below is the user's rating of a movie

	Amina	Frank	Gina
Airplane	1	4	5
Bambi	4	2	1
Caddyshack	2	4	5
Eat Pray Love	5	1	1
Gunsmoke	1	5	5
Hang 'Em High	1	4	5

- Frank and Gina's preferences are close What is the distance?
- Amina and Gina's preferences aren't, distance?

Euclidean Distance (cont'd)

Consider the following input

Each element in the matrix below is the user's rating of a movie

	Amina	Frank	Gina
Airplane	1	4	5
Bambi	4	2	1
Caddyshack	2	4	5
Eat Pray Love	5	1	1
Gunsmoke	1	5	5
Hang 'Em High	1	4	5

- Frank and Gina's preferences are close What is the distance? (distance of 2.0)
- Amina and Gina's preferences aren't (distance of 9.05)

Recommender Output

Quick recap of how a user-based recommender works

- Takes preference data as input
- It finds similar users based on similarity metrics

What does a recommender produce as output?

- A list of items along with the predicted ratings for each
- What do we do with this output?
 - Remove items known to be of little value
 - Sort remaining items in descending order of predicted rating
 - Present this to the user in the application

Outline

- What is a recommender system?
- Types of collaborative filtering
- Limitations of recommender systems
- Fundamental concepts
- Essential points
- Conclusion
- Hands-On Exercise: Implementing a Basic Recommender

Essential Points

- Recommenders are filtering systems
- Content-based recommenders consider item attributes
- Collaborative filters consider actions of other users
- Preferences can be collected implicitly or explicitly
- Similarity metrics are chosen, in part, based on data type

Outline

- What is a recommender system?
- Types of collaborative filtering
- Limitations of recommender systems
- Fundamental concepts
- Essential points
- Conclusion
- Hands-On Exercise: Implementing a Basic Recommender

Conclusion

In this session you have learned

- What is the difference between content-based and collaborative filtering recommender systems
- Which limitations recommender systems frequently encounter
- How collaborative filtering can identify similar users and items
- How Tanimoto and Euclidean distance similarity metrics work

Outline

- What is a recommender system?
- Types of collaborative filtering
- Limitations of recommender systems
- Fundamental concepts
- Essential points
- Conclusion
- Hands-On Exercise: Implementing a Basic Recommender

What is a Recommender System?

