Hands-On Exercise: Implementing a Basic
Recommender

In this Hands-On Exercise, you will build a movie recommendation engine. You will use both the
Content-based Filtering approach and the Collaborative Filtering approach to build a basic movie
recommendation engine.

The Dataset

The dataset used was from Movielens, and is publicly available here
(http://grouplens.org/datasets/movielens/).

In a bid to keep the recommender simple, we will use the smallest dataset available (ml-latest-small.zip)
Prerequisites:

1. Install RStudio
2. Open RStudio and install the following packages (if you don’t already have them)

> install.packages (“data.table”)
> install.packages (“ggplot2”)

> install.packages (“recommenderlab”)

Exercise #1:

1. Download, save and extract files

Note the location of where the files are. You will need the path shortly

3. Examine the files (movies & ratings) in Excel or spreadsheet program to get a sense of the file
structures

4. You can delete the timestamp column in the ratings csv file

Open your R console

6. Explore the structure of the files

N

o

> movies = read.csv(“path-to-your-movies.csv file”) //

> str (movies) //

'data.frame': 9125 obs. of 3 variables:
$ movieId: int 1 2 3 4 56 7 8 9 10 ...
$ title : Factor w/ 9123 levels "'burbs, The (1989)"™,..: 8301 4319 3421 8648 2762 3592 6860 8253 7673 3288 ...

$ genres : Factor w/ 902 levels " (no genres listed)",..: 329 394 687 646 596 242 687 377 2 124 ...

http://grouplens.org/datasets/movielens/
http://grouplens.org/datasets/movielens/

> head (movies,

movieId

d o b L Ry
=1 N b Ll Ry

oW
=
s
0w

> ratings

n=10) //show first 10 rows of movie dataset
citle genres
Toy Story (1955) Adventure |Animation|Children|Comedy|Fantasy
Jumanji (15955) Bdventure |Children|Fantasy
Grumpier 0ld Men (13595) Comedy | Romance
Waiting to Exhale (1595) Comedy | Drama | Romance
Father of the Bride Part II (1595) Comedy
Heat (199%5) Action|Crime |Thriller
Eabrima (1935) Comedy | Romance
Tom and Huck (1995) Adventure |Children
Sudden Death (1955) Action

GoldenEye (189955) Action|Adventure |Thriller

= read.csv (“path-to-your-ratings.csv file”) //load ratings.csv file

> str(ratings)//list the structure of movies

'data.frame':
$ userId
$ movieId
$ rating
$ timestamp:

> head(ratings,

100004 obs.

of

4 variables:

:int 1111111111 ...
: int 31 1029 1061 1129 1172 1263 1287 1293 1339 1343 ...
:num 2.5 3 3242223.52 ...

int 1260759144 1260759179 1260759182 1260759185 1260759205 1260759151 1260759187 1260759148
1260759125 1260759131 ...

n=10)

userld movieId rating

1 1
2 1
3 1
4 1
5 1
& 1
7 1
g 1
3 1
10 1

31
1028
1061
11239
1172
1263
1287
1293
1338
1343

Exercise #2:

[LS T PRI % T % I U TR SR % R LI PV S]

L Ty B e Y i e Y O e Y

//show first 10 rows of ratings dataset

Yesterday, you did visualizations in R using ggplot2. Now is your time to brag about your awesome
visualization skills. Let us see which group creates some innovative visualizations from the ratings dataset.
7. Create a basic histogram with count on the y-axis and unique ratings on the x-axis
8. Now, wow us! — Do your thing, create an amazing visualization

Content-based Filtering Approach

Like the name suggests, the Content-based Filtering approach involves analyzing an item a user
interacted with, and giving recommendations that are similar in content to that item. Content, in this
case, refers to a set of attributes/features that describes your item. For a movie recommendation
engine, a content-based approach would be to recommend movies that are of highest similarity based
on its features, such as genres, actors, directors, year of production, etc. The assumption here is that
users have preferences for a certain type of product, so we try to recommend a similar product to what

the user has expressed liking for. Also, the goal here is to provide alternatives or substitutes to the item
that was viewed.

We will be building a basic content-based recommender engine based on movie genres only.

Exercise #3:

1. Obtain the movie features matrix by using the tstrsplit () function from the data.table
package to split the pipe-separated genres available in the movies dataset. You may use the
following steps:

a. Create a dataframe of movies$genres (each genre is separated into columns) called
“movgen”

b. Leveragethe tstrsplit () function to split pipe-separated genres and create a
resulting data frame called “movgen2”. tstrsplit () isaconvenient wrapper
function to split a column using strsplit () and assign the transposed result to
individual columns.

c. Column names should be labeled, 1 through 7

2. Your result should look like the table extract below

Before split: (movgen)

moviesfgenres
1l Adventure |Animation|Children|Comedy|Fantasy
2 Adventure |Children|Fantasy
3 Comedy | Romance
4 Comedy | Drama | Romance

After Split: (movgen2)

1 2 3 4 g & 7
1l Adventure Animation Children Comedy Fantasy <NL> <HA>
2 Adventure Children Fantasy <ML <HA> <NA> <NL>
3 Comedy REomance <ML <ML <HA> <MNL> <NL>
4 Comedy Drama Romance <ML <MA> <INA» <MNL>

Exercise #4:

Create a matrix with columns representing every unique genre, and indicate whether a genre was
present or not in each movie.
Use the following 18 unique genres
movgen list <- ¢ ("Action", "Adventure", "Animation",
"Children" , "Comedy", "Crime", "Documentary", "Drama",
"Fantasy", "Film-Noir", "Horror", "Musical", "Mystery",
"Romance", "Sci-Fi", "Thriller", "War", "Western")
You may use the following steps:
a. Create an empty matrix “movgen matrix” with 18 columns and (n+1) rows, where
n=number of rows in the data set
Set first row to genre list
Set column names to genre list
d. Iterate through movgen matrix and populate with value 1, corresponding to
associated genres in movgen?2
. Convert to a data frame movgen matrix2.
f. Ensure you convert the characters to integers as you will perform some computations in
the following exercises with the values in the matrix

o T

4. Your result should look like the table extract below

W Ll Ry

LAetion Adventure Animation Children Comedy Crime Documentary Drama Fanta:s

Q 1 1 1 1 0 4] 4]

Q 1 Q 1 0 0 9] 9]
a a a a 1 0 4] 4]
a a a a 1 0 0 1

We have now obtained the movie genres matrix. Each column represents a unique movie genre, and
each row is a unique movie. We have 18 unique genres and n unique movies.

Exercise #5: Create a User Matrix

Convert the ratings dataset into a binary format “binary ratings” to keep things simple.
Ratings of 4 and 5 are mapped to 1, representing likes, and ratings of 3 and below are mapped to
-1, representing dislikes.

Your result should look like the table extract below

userId movieId rating

[.

1 31 -1
1029 -1
1061 -1
1123 -1
1172 1

3. Use the dcast() function in the reshape2 package to transform the data from a long format to a

wide format.

4. This also creates many NA values because not every user rated every movie. Substitute the NA
values with 0. Use the code segment below accordingly

> binary ratings2 <- dcast (binary ratings, movieId~userId, value.var = "ratin
g", na.rm=FALSE)

for (i in 1l:ncol (binary ratings2)) {
binary ratings2[which(is.na(binary ratings2[,i]) == TRUE),i] <- 0
}

binary ratings2 = binary ratings2[,-1] #remove movieIds col. Rows are movieId
s, cols are userlds

5. The matrix has 9066 rows, representing the movields, and 671 columns, representing the userlds.
The matrix should look like that below

1234586 789 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 !
io000000-19091 0 0 0 1 0-1 0 0 0-1 1 0 0-1 0 0©0¢ 1 0 0 0 1 0 0 0 O
2000000 OOOC O O O© © O0-1 o O 0-1 0 0 O O O 0 O O O O0-1 0 1 0 O
3sop00010 OO0 O O © © © © © 0 0-1 0 0 O O O-1 0 O O© O O 0 O O O
4000000 000 0 0 0 0 0 0 0O 0 0-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O
s¢o00000 OOOC O O O © ©0 1 © 0-1 0 0O 0 O O O © O O O O O 0 O O O

6. You might notice that the movies dataset has 9125 movies, but the ratings dataset only has 9066
movies. To deal with this, remove the movies that have never been rated from the genres matrix.
Use the code below:

> #Remove rows that are not rated from movies dataset

unique movielIds <- length (unique (movies$movieId)) #9125

unique ratings <- length (unique (ratings$movieId)) #9066
movies2 <- movies[-which ((unique movieIds %in% unique ratings) == FALSE),]

rownames (movies?2) <- NULL
#Remove rows that are not rated from movgen matrix2

movgen matrix3 <- movgen matrix2[-which ((unique movieIds %in% unique_ ratings)
== FALSE),]

rownames (movgen matrix3) <- NULL

7. Now we can calculate the dot product of the genre matrix (movgen_matrix3) and the ratings
matrix (binary_ratings2) and obtain the user profiles. Ensure you convert to binary scale
8. The resulting User Profile should look like below

=]

o
I S S S

I N e s = SR

.71 r,81 [,91 [,10] [,11] [, [,131 [,14] [,151 [.16] [,17] [,18] [,19]

[¥]

O OOOOOQO
(7]

[R e R ===
.
S

N N = =y e
.
tn

R e e e e e
-
o

[N N -

[1-1
[2,1
[3,1
[4,]1
[5.1
[6,]
[7.1

B,
[2,1
10,1

[l =Y =R R T T T T]

1 12]
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1

O R R ROO0 O R
R e e
N
FoOOKrROoOOOOOO
N N ==
FOORRPROOODOO
Coo0OoO0OOO0OOO
PR OoOOROROOO

This user profiles shows the aggregated inclination of each user towards movie genres. Each column
represents a unique userld, and positive values shows a preference towards a certain genre. The values
were again simplified into a binary matrix — positive values were mapped to 1 to represent likes,
negative values were mapped to 0 to represent dislikes.

Now that we have the user profiles, we can go 2 ways from here.

1. Predict if a user likes an item based on the item descriptions (movie genres). This can be done by
predicting user movie ratings.

2. Assume that users like similar items, and retrieve movies that are closest in similarity to a user’s
profile, which represents a user’s preference for an item’s feature.

Exercise #6: Create the Recommendation

1. Choose the second approach

2. Use Jaccard Distance to measure the similarity between user profiles, and the movie genre
matrix. Consider only the ONE user in the dataset.
HINT: Use the “proxy” package

3. What are your recommendation?

User-Based Collaborative Filtering Approach

The User-Based Collaborative Filtering approach groups users according to prior usage behavior or
according to their preferences, and then recommends an item that a similar user in the same group
viewed or liked. To put this in layman terms, if user 1 liked movie A, B and C, and if user 2 liked movie A
and B, then movie C might make a good recommendation to user 2. The User-Based Collaborative
Filtering approach mimics how word-of-mouth recommendations work in real life.

You will use User-Based Collaborative Filtering to generate a top-10 recommendation list for users using
the recommenderlab package available in R. The recommenderlab package makes it easy to implement
some of the popular collaborative filtering algorithms.

Exercise #7: Recommendation Models.

e Display the model applicable to the objects of type realRatingMatrix using
recommenderRegistrySget_entries:

> library(recommenderlab)
> recommender models <- recommenderRegistry$get entries(dataType = "realRatin
gMatrix")

> names (recommender models)

[1] "IBCF_realRatingMatrix" "POPULAR_realRatingMatrix" "RANDOM_realRatingMatrix"
"RERECOMMEND_realRatingMatrix" "SVD_realRatingMatrix"

[6] "SVDF_realRatingMatrix" "UBCF_realRatingMatrix"
o Describe these models

> lapply (recommender models, "[[", "description")

e We plan to use UBCF. Check the parameters of this model.

> recommender models$SUBCF realRatingMatrixS$parameters

e List the parameters of the model. What do they mean?

Exercise #8: Create Recommender Model.

Data Preprocessing

We need a ratings matrix to build a recommender model with recommenderlab. This can, again, be
easily done with the dcast() function in the reshape2 package.

> library (reshape?2)

> #Create ratings matrix. Rows = userId, Columns = movielId
rating matrix <- dcast(ratings, userId~movield, value.var = "rating", na.rm=F
ALSE)

> rating matrix <- as.matrix(ratingmat[,-1]) #remove userIds

Creation of the Recommender Model

The User-based Collaborative Filtering recommender model was created with recommenderlab with the
below parameters and the ratings matrix:

e Method: UBCF
e Similarity Calculation Method: Cosine Similarity
e Nearest Neighbors: 30

The predicted item ratings of the user will be derived from the 5 nearest neighbors in its neighborhood.
When the predicted item ratings are obtained, the top 10 most highly predicted ratings will be returned
as the recommendations.

1. Usethe dcast () functioninthe reshape2 package to create ratings matrix
“ubcf ratingmatrix” with rows = userld, columns = movield

2. Use the parameters listed above for the UBCF recommender

3. Convert rating matrix (rating matrix)into a recommenderlab sparse matrix

4. Normalize the data

5. Create Recommender Model. "UBCF" stands for User-Based Collaborative Filtering

6. Obtain recommendations

7. Your result for the first user should look like this below:

movield citcle genres

6434 45459 X-HMen: The Last Stand (2008) BActcion|Sci-Fi|Thriller
6033 31431 Boogevman (2005) Drama|Horror|Mysterv|Thriller
8672 114254 1871 (2014) Documentary
7832 875388 Dolly Sisters, The (1945) Drama |[Musical | Eomance
8904 134158 Eeturn to Sender (2015) Thriller
7306 70762 Curiosity of Chance, The (2008) Comedy
3085 3870 Cur Town (1940) Drama
222 2439 Immprtal Belowved (1994) Drama | Romance
2008 2504 200 Cigarettes (1999) Comedy | Drama

1561 1598 Exorcist II: The Heretic (1877} Horror

