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The main use of the internet is to share cute pictures of cats and dogs 

The human brain is very good at recognising which is which 
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We recognise and classify objects - 
quickly 
robustly 
reliably 

and we don’t use conventional logic (i.e. flow charts) 

This attacks a very general statistics/data problem: 

Physicist: is this event signal or background 
     is the track a muon or a pion?  
Astronomer: is this blob a star or a galaxy? 
Doctor: is this patient sick or well? 
Banker: is this company a sound investment or junk? 
Employer: is this applicant employable or a liability? 

Classification
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Neural Networks

The brain is made of ~100,000,000,000 neurons. 
Each neuron has MANY inputs. From external 

sources (eyes, ears...) or from other neurons. 
Each neuron has one output connected to MANY 

externals (muscles or other neurons). 
The neuron forms a function of the inputs and 

presents it to all the outputs.
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Artificial Neural Networks

F ( y)= 1
1+e− y

Neuron/node  i has many inputs Uj.  Apply weights, form yi=Σ wijUj 
and generate output  Ui=F(yi ) = F(Σ wijUj)  
F is thresholding function.  Output increases monotonically from 0 to1.  
Linear central region but saturates at extremes.

U i= F (∑ wij u j)

Often use logistic (sigmoid) function   

Sometimes  use 
F(y)=tanh(y) 
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Duplicate the working of brain neurons in software

Can simulate 
networks with 
various topologies
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The Multilayer Perceptron 

Nodes arranged in layers.  
First layer – input 
Last layer –single output, ideally 1 

(for S)  or 0 (for B)  
In between - ‘hidden’ layers 
Action is sychronised: all of first layer 

effects the second (effectively) 
simultaneously, then second layer 
effects third, etc

A network architecture for  binary classification: 
recognise data ‘events’ (all of the same format) 
as belonging to one of 2 classes. 
e.g. Signal or Background?   (S or B?)
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How do we set the weights? 
ByTraining:using samples of known events
Present events whose type is known:  has a desired 

output T, which is  0 or 1. Call the actual output U.  
Define ‘Badness’  B= ½ (U-T)2.  “Training the net” means 

adjusting the weights to reduce total (or average) B. 
Strategy: change each weight wij by step proportional to   

-dB/dwij .  
Do this event by event (or in batches, for efficiency). 
All we need do is calculate those differentials... start with 

final layer and work backwards ('back-propagation')
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Performance: Output histograms

Select signal by requiring U>cut 

Small cut value: high efficiency but high 
background 

Large cut value: low background but low 
efficiency 
  

Exactly where to put the cut depends on  
(i) The penalties for Type I and Type II errors 
(ii) The prior probabilities of S and B  

Reminder: 
Type I error: excluding a signal event 
Type II error: including a background event
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After training - over the whole training sample  
many times -  the outputs from the S and B 
samples will look something like this

Note the actual shape of the histograms 
means nothing. Any transformation of the 
x-axis does not affect the results
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Performance: ROC* plots

Fs

Fb

Loose cut

Tight cut

1

0
0

1

  

If net is working, background falls 
faster than efficiency 

No discrimination gives 45 degree line 

The bigger the bulge, the better 

To draw ROC plot can use 
histograms, or go back to raw data, 
rank it according to the output (use R 
function order), and step through it
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*Receiver Operating Characteristic

Plot fraction of background accepted 
against fraction of signal accepted, sliding the  
cut from 0 (nothing) to 1 (everything) 

(Note that conventions vary on how to do this)
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Training, over-training, testing, validating

Network is trained on the sample, and then re-trained, and then re-re-
trained…getting better all the time, as measured by ∑(Ti-Ui)2 

An ‘over-trained’  network will select peculiarities of individual events 
in the sample. Improved performance on training sample but worse 
performance on other samples 

Recommended procedure: have separate training sample (about 80% 
of data) and testing sample (remaining 20%). Train on training sample 
until performance on testing sample stops improving 

Easy to do if you have lots of samples - which is generaly the case for   
large Monte Carlo samples but not for real data 

Validating.  Given output X, what can you say about probability of S or 
B?  (i.e. those histograms)    Separate sample needed for validation. 

Or cross-validation. For each event, train on the rest of the sample 
and compare truth and prediction, avoiding bias.   (If too slow, use 
sub-samples ‘K-fold cross validation’) 
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Warning! Language ambiguities

• Signal Efficiency 
Fraction of signal events remaining after the cut 

• Background Efficiency 
(i) Fraction of background events remaining after the cut, OR 

(ii) fraction of background events removed by cut 

• Contamination (or Contamination probability) 
(i) Fraction of background events remaining after cut  

OR (ii) fraction of selected events which are background 

• Purity 
Fraction of selected events which are signal 

• True positive rate 
Same as signal efficiency - not purity 

•  False positive rate 
Same as background efficiency (i) - not Contamination
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Neural Network Regression

Not considered here but trivial extension - 

Desired output not simple true/false but numeric 

Examples: 
• House price from location, no. of rooms, etc 
• Pupil progress from past performance+background 

Train to minimise 1/2 (T-U)2, test, predict as before, but T is  
a (scaled) number, not just 0 or 1. 

NN classification is just a subset of NN regression
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Problem

Tell a camel from a dromedary: 
Given 5 inputs, and events of 2 types: 
 either 1-2-3-2-1 (+ noise)   or 0-4-1-4-0 (+noise)
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Camel Dromedary

 
The camel has a single hump; 
The dromedary , two; 
Or else the other way around.
I’m never sure. Are you? 
 
Ogden Nash

ro

http://www.poemhunter.com/ogden-nash/poems/
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sample1  
0 -0.05997873 3.881889 1.060744 4.022852 -0.05597012 
1 0.881978 2.055923 3.158514 1.972982 1.190973 
0 0.07778947 3.950015 0.9496442 3.976893 0.04745127 
1 0.9759833 2.03223 2.990049 2.017683 1.062813 
0 -0.001502924 3.862673 0.8942838 4.020337 -0.02683437 
0 0.07309237 3.982063 1.043907 3.860677 -0.1394614 
1 1.075466 1.973227 3.115331 1.935488 0.9712817 
… 

sample2 
0 1.587052 4.715568 -0.8595715 1.504009 2.145417 
1 2.52062 2.682234 3.909693 0.2611399 0.3924642 
1 -0.5450664 -1.449915 -0.2813677 4.057942 0.9299015 
0 -1.047951 4.223808 3.068302 9.673196 3.915838 
1 -2.863264 1.250906 0.293735 -0.2080808 -0.6673748 
1 -0.2963963 2.988054 1.449716 2.326187 -0.5594592 
1 4.581936 6.263028 5.522227 3.473845 -2.042601 
… 
sample3 
0 -0.7064082 3.266121 0.2208592 4.825086 0 
0 0.912854 3.48706 0.3057296 4.402847 -0.07224356 
0 0.2116067 4.659067 0.9210807 4.95437 -0.7723788 
1 0.7854812 2.079436 1.336324 2.16746 0.5728526 
0 0.1380971 0 1.143737 4.632105 0.2767737 
0 0.4398898 4.436032 1.55822 3.477277 0.3308824 
1 0 1.320041 3.46353 1.087296 1.499402 
…

3 samples to work on: 
Download from http://barlow.web.cern.ch/barlow/Sample1.txt etc
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Small 
added 
noise

 
Large 
added 
noise

 
Medium 
added 

noise plus some 
losses

First 
column is 

0 or 1 for C 
or D

http://barlow.web.cern.ch/barlow/Sample1.txt
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This page intentionally left blank 

as a reminder to organise work groups
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ALPHA=0.05  #  learning parameter 

nodes=c(5,7,10,1)       # 5 inputs, 2 hidden layers, with 7 and 10 nodes , 1 output 
nlayers=length(nodes) -1          # 3  sets of weights 

net=list() # set up empty list 
#  net[[ j ]] holds weight matrix feeding nodes of layer j+1 from nodes in layer j 
   
#   make weights and fill with random numbers 
for(j in 1:nlayers) net[[ j ]] <- matrix(runif(nodes[ j ]*nodes[ j +1 ]),nodes[j+1],nodes[j]) 
  
netsays <- function(x) { #  Returns net output for some input vector x 
       for(j in 1:nlayers) x <- 1/(1+exp(-net[[ j ]] %*% x)) 
       return(x) 
        } 

 backprop <- function(layer,n1,n2,factor){ # recursive function  used for back-propagation 
        if(layer>1) for(n in 1:nodes[layer-1])  
              backprop(layer-1,n2,n,factor*net[[layer]][n1,n2]*r[[iayer]][n2]*(1-r[[layer]][n2])) 
        net[[layer]][n1,n2] <<- net[[layer]][n1,n2] - ALPHA*factor*r[[layer]][n2] 
        } 

netlearns <- function(x,truth) { # like netsays but changes weights 
        r <<- list()   # to contain the outputs of all nodes in all layers 
        r[[1]] <<- x     # the input layer 
        for(layer in 1:nlayers) r[[layer+1]] <<- as.vector(1/(1+exp(-net[[layer]] %*% r[[layer]]))) 
        u <- r[[nlayers+1]] # final answer, for convenience 
        for(n in 1:nodes[nlayers]) backprop(nlayers,1,n,(u-truth)*u*(1-u)) 
        } 

Write your own ANN - 
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install.packages(‘neuralnet’) 

library(neuralnet) 

  
help(neuralnet) 

df <- data.frame(truth,input1,input2) 
nnet<-neuralnet(truth~input1+input2,df,c(4,5)) 

nnet<-neuralnet(V1~V2+V3+V4+V5+V6,df,c(4,5), 
     lifesign=‘full’, 
     algorithm=‘backprop’, 
     learningrate=0.05, 
     linear.output=FALSE 
     ) 

plot(nnet) 

test=compute(nnet,t(c(1,2,3,2,1))) 
test$net.result 

Or download Fritsch & Günther’s  package 

Do this once. It asks you to choose a 
mirror. Tip - don’t choose an https site 

Do this once per session 

Just do this! and read it all very 
carefully, twice  
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Very basic example

Nice picture of net

how it’s used

https://cran.r-project.org/web/packages/neuralnet/neuralnet.pdf

less basic example
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Lab Session

6 Questions 

1.What is the effect of varying the learning parameter α? 
2.What is the effect of using more, or fewer, nodes in the hidden layers? 
3.What is the effect of using more, or fewer, hidden layers? 
4.What is the effect of pre-processing the input data to give each data input 

mean zero and standard deviation 1? If you feel strong enough, also try 
Principal Component Analysis 

5.What is the effect of using a tanh function rather than a sigmoid ? (Use different 
differential) 

6.What happens if a network trained on one sample is applied to another 
sample?

The ‘what is the effect of…’ questions, refer to both the eventual separation and the 
training time. Sample 2 and sample 3 can be used for this - sample 1 is too easy. 
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Some (possibly) useful R stuff
sample <- read.table(“Sample1.txt”,header=FALSE) 
Nsample <- dim(sample)[1] 
print(head(sample)) 
for (i in 1:Nsample) {print(sample[i,1]); print(sample[i,-1])} 
plot(c(0,1),c(0,1)) 
v <- netsays(t(sample[,-1])) 
p <- sample[order(v),1] 
nc <- sum(sample[,1]==0) 
nd <- Nsample-nc 
nnc <- nc 
nnd <- nd 
for (i in 1:length(p)) {if(p[i]==1) {nd <- nd-1} else {nc <- nc-1} 
 points(nc/nnc,nd/nnd,pch=‘.') } 

vc <- rep(0,nnc) 
vd <- rep(0,nnd) 
nc <- 0 
nd <- 0 
for (i in 1:Nsample){ 
    itype <- sample[i,1] 
    isay <- netsays(as.numeric(sample[i,-1])) 
    if(itype==0) {nc <- nc+1;vc[nc] <- isay} else {nd<- nd+1;vd[nd] <- isay} 
} 

hc <- hist(vc,breaks=seq(0,1,.05)) 
hd <- hist(vd,breaks=seq(0,1,.05)) 
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Either write your own code, or download the neuralnet package, as directed 

Set up a network with 2 hidden layers, with 8 and 5 nodes 

Train and test with the file sample1. It should achieve perfect  separation. If not, keep 
trying till you do. 

Train and test with sample2. Draw ROC plots to show the performance. Make sure 
you are not over-training. 

Now try sample3 in the same way.  

Tackle your allocated question. Prepare a couple of slides to show your results, for 
presentation in the round-up session. 

When you’re done, if you’ve time, tackle any of the other problems that look 
interesting. 

Lab Session
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