
CODATA School - Roger Barlow -Artificial Neural Networks

Artificial Neural
Networks

Roger Barlow

!1

CODATA School - Roger Barlow -Artificial Neural Networks
!2

The main use of the internet is to share cute pictures of cats and dogs

The human brain is very good at recognising which is which

CODATA School - Roger Barlow -Artificial Neural Networks
!3

CODATA School - Roger Barlow -Artificial Neural Networks

We recognise and classify objects -
quickly
robustly
reliably

and we don’t use conventional logic (i.e. flow charts)

This attacks a very general statistics/data problem:

Physicist: is this event signal or background
 is the track a muon or a pion?
Astronomer: is this blob a star or a galaxy?
Doctor: is this patient sick or well?
Banker: is this company a sound investment or junk?
Employer: is this applicant employable or a liability?

Classification

!4

CODATA School - Roger Barlow -Artificial Neural Networks

Neural Networks

The brain is made of ~100,000,000,000 neurons.
Each neuron has MANY inputs. From external

sources (eyes, ears...) or from other neurons.
Each neuron has one output connected to MANY

externals (muscles or other neurons).
The neuron forms a function of the inputs and

presents it to all the outputs.

!5

CODATA School - Roger Barlow -Artificial Neural Networks

Artificial Neural Networks

F (y)= 1
1+e− y

Neuron/node i has many inputs Uj. Apply weights, form yi=Σ wijUj
and generate output Ui=F(yi) = F(Σ wijUj)
F is thresholding function. Output increases monotonically from 0 to1.
Linear central region but saturates at extremes.

U i= F (∑ wij u j)

Often use logistic (sigmoid) function

Sometimes use
F(y)=tanh(y)

!6

Duplicate the working of brain neurons in software

Can simulate
networks with
various topologies

CODATA School - Roger Barlow -Artificial Neural Networks

The Multilayer Perceptron 

Nodes arranged in layers.
First layer – input
Last layer –single output, ideally 1

(for S) or 0 (for B)
In between - ‘hidden’ layers
Action is sychronised: all of first layer

effects the second (effectively)
simultaneously, then second layer
effects third, etc

A network architecture for binary classification:
recognise data ‘events’ (all of the same format)
as belonging to one of 2 classes.
e.g. Signal or Background? (S or B?)

!7

CODATA School - Roger Barlow -Artificial Neural Networks

How do we set the weights?
ByTraining:using samples of known events
Present events whose type is known: has a desired

output T, which is 0 or 1. Call the actual output U.
Define ‘Badness’ B= ½ (U-T)2. “Training the net” means

adjusting the weights to reduce total (or average) B.
Strategy: change each weight wij by step proportional to

-dB/dwij .
Do this event by event (or in batches, for efficiency).
All we need do is calculate those differentials... start with

final layer and work backwards ('back-propagation')

!8

CODATA School - Roger Barlow -Artificial Neural Networks
!9

CODATA School - Roger Barlow -Artificial Neural Networks

Performance: Output histograms

Select signal by requiring U>cut

Small cut value: high efficiency but high
background

Large cut value: low background but low
efficiency

Exactly where to put the cut depends on
(i) The penalties for Type I and Type II errors
(ii) The prior probabilities of S and B

Reminder:
Type I error: excluding a signal event
Type II error: including a background event

!10

After training - over the whole training sample
many times - the outputs from the S and B
samples will look something like this

Note the actual shape of the histograms
means nothing. Any transformation of the
x-axis does not affect the results

CODATA School - Roger Barlow -Artificial Neural Networks

Performance: ROC* plots

Fs

Fb

Loose cut

Tight cut

1

0
0

1

If net is working, background falls
faster than efficiency

No discrimination gives 45 degree line

The bigger the bulge, the better

To draw ROC plot can use
histograms, or go back to raw data,
rank it according to the output (use R
function order), and step through it

!11

*Receiver Operating Characteristic

Plot fraction of background accepted
against fraction of signal accepted, sliding the
cut from 0 (nothing) to 1 (everything)

(Note that conventions vary on how to do this)

X

X

Y

Y

Z

Z

CODATA School - Roger Barlow -Artificial Neural Networks

Training, over-training, testing, validating

Network is trained on the sample, and then re-trained, and then re-re-
trained…getting better all the time, as measured by ∑(Ti-Ui)2

An ‘over-trained’ network will select peculiarities of individual events
in the sample. Improved performance on training sample but worse
performance on other samples

Recommended procedure: have separate training sample (about 80%
of data) and testing sample (remaining 20%). Train on training sample
until performance on testing sample stops improving

Easy to do if you have lots of samples - which is generaly the case for
large Monte Carlo samples but not for real data

Validating. Given output X, what can you say about probability of S or
B? (i.e. those histograms) Separate sample needed for validation.

Or cross-validation. For each event, train on the rest of the sample
and compare truth and prediction, avoiding bias. (If too slow, use
sub-samples ‘K-fold cross validation’)

!12

CODATA School - Roger Barlow -Artificial Neural Networks

Warning! Language ambiguities

• Signal Efficiency
Fraction of signal events remaining after the cut

• Background Efficiency
(i) Fraction of background events remaining after the cut, OR

(ii) fraction of background events removed by cut

• Contamination (or Contamination probability)
(i) Fraction of background events remaining after cut

OR (ii) fraction of selected events which are background

• Purity
Fraction of selected events which are signal

• True positive rate
Same as signal efficiency - not purity

• False positive rate
Same as background efficiency (i) - not Contamination

!13

CODATA School - Roger Barlow -Artificial Neural Networks
!14

Neural Network Regression

Not considered here but trivial extension -

Desired output not simple true/false but numeric

Examples:
• House price from location, no. of rooms, etc
• Pupil progress from past performance+background

Train to minimise 1/2 (T-U)2, test, predict as before, but T is
a (scaled) number, not just 0 or 1.

NN classification is just a subset of NN regression

CODATA School - Roger Barlow -Artificial Neural Networks

Problem

Tell a camel from a dromedary:
Given 5 inputs, and events of 2 types:
 either 1-2-3-2-1 (+ noise) or 0-4-1-4-0 (+noise)

!15

Camel Dromedary

The camel has a single hump;
The dromedary , two;
Or else the other way around.
I’m never sure. Are you?

Ogden Nash

ro

http://www.poemhunter.com/ogden-nash/poems/

CODATA School - Roger Barlow -Artificial Neural Networks

sample1
0 -0.05997873 3.881889 1.060744 4.022852 -0.05597012
1 0.881978 2.055923 3.158514 1.972982 1.190973
0 0.07778947 3.950015 0.9496442 3.976893 0.04745127
1 0.9759833 2.03223 2.990049 2.017683 1.062813
0 -0.001502924 3.862673 0.8942838 4.020337 -0.02683437
0 0.07309237 3.982063 1.043907 3.860677 -0.1394614
1 1.075466 1.973227 3.115331 1.935488 0.9712817
…

sample2
0 1.587052 4.715568 -0.8595715 1.504009 2.145417
1 2.52062 2.682234 3.909693 0.2611399 0.3924642
1 -0.5450664 -1.449915 -0.2813677 4.057942 0.9299015
0 -1.047951 4.223808 3.068302 9.673196 3.915838
1 -2.863264 1.250906 0.293735 -0.2080808 -0.6673748
1 -0.2963963 2.988054 1.449716 2.326187 -0.5594592
1 4.581936 6.263028 5.522227 3.473845 -2.042601
…
sample3
0 -0.7064082 3.266121 0.2208592 4.825086 0
0 0.912854 3.48706 0.3057296 4.402847 -0.07224356
0 0.2116067 4.659067 0.9210807 4.95437 -0.7723788
1 0.7854812 2.079436 1.336324 2.16746 0.5728526
0 0.1380971 0 1.143737 4.632105 0.2767737
0 0.4398898 4.436032 1.55822 3.477277 0.3308824
1 0 1.320041 3.46353 1.087296 1.499402
…

3 samples to work on:
Download from http://barlow.web.cern.ch/barlow/Sample1.txt etc

!16

Small
added
noise

Large
added
noise

Medium
added

noise plus some
losses

First
column is

0 or 1 for C
or D

http://barlow.web.cern.ch/barlow/Sample1.txt

CODATA School - Roger Barlow -Artificial Neural Networks
!17

This page intentionally left blank

as a reminder to organise work groups

CODATA School - Roger Barlow -Artificial Neural Networks !18

ALPHA=0.05 # learning parameter

nodes=c(5,7,10,1) # 5 inputs, 2 hidden layers, with 7 and 10 nodes , 1 output
nlayers=length(nodes) -1 # 3 sets of weights

net=list() # set up empty list
net[[j]] holds weight matrix feeding nodes of layer j+1 from nodes in layer j

make weights and fill with random numbers
for(j in 1:nlayers) net[[j]] <- matrix(runif(nodes[j]*nodes[j +1]),nodes[j+1],nodes[j])

netsays <- function(x) { # Returns net output for some input vector x
 for(j in 1:nlayers) x <- 1/(1+exp(-net[[j]] %*% x))
 return(x)
 }

 backprop <- function(layer,n1,n2,factor){ # recursive function used for back-propagation
 if(layer>1) for(n in 1:nodes[layer-1])
 backprop(layer-1,n2,n,factor*net[[layer]][n1,n2]*r[[iayer]][n2]*(1-r[[layer]][n2]))
 net[[layer]][n1,n2] <<- net[[layer]][n1,n2] - ALPHA*factor*r[[layer]][n2]
 }

netlearns <- function(x,truth) { # like netsays but changes weights
 r <<- list() # to contain the outputs of all nodes in all layers
 r[[1]] <<- x # the input layer
 for(layer in 1:nlayers) r[[layer+1]] <<- as.vector(1/(1+exp(-net[[layer]] %*% r[[layer]])))
 u <- r[[nlayers+1]] # final answer, for convenience
 for(n in 1:nodes[nlayers]) backprop(nlayers,1,n,(u-truth)*u*(1-u))
 }

Write your own ANN -

CODATA School - Roger Barlow -Artificial Neural Networks

install.packages(‘neuralnet’)

library(neuralnet)

help(neuralnet)

df <- data.frame(truth,input1,input2)
nnet<-neuralnet(truth~input1+input2,df,c(4,5))

nnet<-neuralnet(V1~V2+V3+V4+V5+V6,df,c(4,5),
 lifesign=‘full’,
 algorithm=‘backprop’,
 learningrate=0.05,
 linear.output=FALSE
)

plot(nnet)

test=compute(nnet,t(c(1,2,3,2,1)))
test$net.result

Or download Fritsch & Günther’s package

Do this once. It asks you to choose a
mirror. Tip - don’t choose an https site

Do this once per session

Just do this! and read it all very
carefully, twice

!19

Very basic example

Nice picture of net

how it’s used

https://cran.r-project.org/web/packages/neuralnet/neuralnet.pdf

less basic example

CODATA School - Roger Barlow -Artificial Neural Networks

Lab Session

6 Questions

1.What is the effect of varying the learning parameter α?
2.What is the effect of using more, or fewer, nodes in the hidden layers?
3.What is the effect of using more, or fewer, hidden layers?
4.What is the effect of pre-processing the input data to give each data input

mean zero and standard deviation 1? If you feel strong enough, also try
Principal Component Analysis

5.What is the effect of using a tanh function rather than a sigmoid ? (Use different
differential)

6.What happens if a network trained on one sample is applied to another
sample?

The ‘what is the effect of…’ questions, refer to both the eventual separation and the
training time. Sample 2 and sample 3 can be used for this - sample 1 is too easy.

!20

CODATA School - Roger Barlow -Artificial Neural Networks
!21

Some (possibly) useful R stuff
sample <- read.table(“Sample1.txt”,header=FALSE)
Nsample <- dim(sample)[1]
print(head(sample))
for (i in 1:Nsample) {print(sample[i,1]); print(sample[i,-1])}
plot(c(0,1),c(0,1))
v <- netsays(t(sample[,-1]))
p <- sample[order(v),1]
nc <- sum(sample[,1]==0)
nd <- Nsample-nc
nnc <- nc
nnd <- nd
for (i in 1:length(p)) {if(p[i]==1) {nd <- nd-1} else {nc <- nc-1}
 points(nc/nnc,nd/nnd,pch=‘.') }

vc <- rep(0,nnc)
vd <- rep(0,nnd)
nc <- 0
nd <- 0
for (i in 1:Nsample){
 itype <- sample[i,1]
 isay <- netsays(as.numeric(sample[i,-1]))
 if(itype==0) {nc <- nc+1;vc[nc] <- isay} else {nd<- nd+1;vd[nd] <- isay}
}

hc <- hist(vc,breaks=seq(0,1,.05))
hd <- hist(vd,breaks=seq(0,1,.05))

CODATA School - Roger Barlow -Artificial Neural Networks

Either write your own code, or download the neuralnet package, as directed

Set up a network with 2 hidden layers, with 8 and 5 nodes

Train and test with the file sample1. It should achieve perfect separation. If not, keep
trying till you do.

Train and test with sample2. Draw ROC plots to show the performance. Make sure
you are not over-training.

Now try sample3 in the same way.

Tackle your allocated question. Prepare a couple of slides to show your results, for
presentation in the round-up session.

When you’re done, if you’ve time, tackle any of the other problems that look
interesting.

Lab Session

!22

