Applications of Tensor Networks:
Machine Learning & Quantum Computing
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Outline:

* Yesterday:

» intro to tensor networks, mainly matrix product
states (MPS)

» computations with MPS

» intro to machine learning & tensor-network M.L.
e Today:

» tensor network machine learning

» quantum computing with tensor networks



Basics of Machine Learning,
Continued...



Types of learning tasks:

a priori knowledge

e Supervised learning (labeled data)

* Unsupervised learning (unlabeled data)

e Reinforcement learning (‘reward' data) low



Supervised Learning

Given labeled training data (labels A and B)

Find decision function f(x)

f(x) >0 x €A

f(x) <0 x €RB

Example: identify photos of alligators and bears




Unsupervised Learning

Given unlabeled training data {x; }
e Find function such that
e Find function such that

* Find data clusters and which data belongs to
each cluster

* Discover reduced representations of data
for other learning tasks (e.g. supervised)



General Philosophy of Machine Learning

* Solution to problem just some function y(x)

* Parameterize very flexible functions f(x)
(prefer convenient over "correct")

« Of all f that come closest to Yy for training data,
prefer the simplest f




Model Architectures



Let's discuss the 3 most used types of models
(increasing complexity)

*The linear model
* Kernel learning / support vector machines

e Neural networks



The linear model
f(x) =W -x+ W,
Where W and W, are the weights to be learned

Can be surprisingly powertul, and a usetul
starting point
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Example: Linear Supervised Learning
Recall strategy:

given training set {x,,y;}, minimize cost function

_ 1 2 o r—l—l XjEA
C—N—TZ(f(Xj)—yj) Yi=\11 x €8

J

by varying adjustable params of f

Cost function measures distance of trial function f(x;)
from idealized "indicator" function y;



Example: Linear Supervised Learning

Cost function for linear model:
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Gradient with respect to nth weight component
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Update Wn with negative gradient times small step «

oC

Wn Wn D
- Q0 A




Kernel learning

Want f(x) to separate classes, say

Linear c{assifi.er. f(x) =W -x
may be insufficient




Kernel learning

Apply non-linear "feature map" x — ¥(x)

/=




Kernel learning

Apply non-linear "feature map" x — ¥(x)

A

AT/




Kernel learning

Apply non-linear "feature map" x — ¥(x)

it

Decision function f(x) =W - ®(x)

A




Kernel learning

JEZ

Decision function f(x) =W - ®(x)

Linear classifier in feature space



Kernel learning

Example of feature map

X = (:Cla L2, :CS)

(I)(X) — (1, L1, L2, L3, L1L2, L1I3, 513‘2.213‘3)

x is "lifted" to feature space



Kernel learning

Technical notes:

e Also called "support vector machine" when using a
particular choice of cost function

e Name "kernel learning" comes from idea that ®(x)
may be too high dimensional, yet K;; = ®(x;) - ®(x,)
may be efficiently computable, enough to optimize

* Very generally, optimal weights have the form
W=> a;®(x)
J

a result known as the "representer theorem"



Kernel learning

Kernel learning still popular among academics & for
certain applications (e.g. life sciences)

But "kernelization" approach scales as N3 where N
is size of training set — very costly!

Thus kernel methods not popular with engineers

Tomorrow: learning kernel models with tensor
network weights



Neural networks

Current favorite of M.L. engineers

output

Often notated diagrammatically
(not a tensor diagram!)



Neural networks

Actually very simple: compute a function f(x) as
e Multiply input x by rectangular "weight" matrix W,

e Point-wise evaluate components of x' = WW;x by
some non-linear function [e.g. () = 1/(1 — e®i %) ]

e Multiply result by second weight matrix W5

* Plug new components into non-linearities, etc.

Wl W2
o
L3 —




Neural networks

Additional facts:

* Non-linearities o(x) called "neurons”

® Other neurons include tanh and RelLU J

* Neural net with more than one weight matrix is "deep”

e Number of neurons is arbitrary, but with enough can
represent any function

-xl- Wl WQ
2 %O/\__;O
L3




Neural networks

Many successful neural nets include "convolutional layers”
These have sparser weight layers with few parameters.

55
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stride\| o5 | Pooling pooling

Recent upsurge of neural nets since 2012 (ImageNet paper)

"Deep learning" often associated with 3 researchers:

| A
Yann LeCun (Facebook)  Geoff Hinton (Vector/Google) Yoshua Bengio (Montreal)



Other model types

Graphical models
very similar to tensor networks, except
- always interpreted as probability
- non-negative parameters only

Boltzmann machines

identical to random-bond classical Ising (T=1)
Jij values learnable parameters
generate data by sampling subset of spins

Decision trees

make decisions about input by taking
forking paths



Machine Learning Research Culture

One sub-community is academic: papers often
involve theorems

Another community is engineering-oriented: papers
focus on results, developments are intuitive/faddish

Conference talks/posters valued above journal articles

Strong industry ties: Google, Microsoft, etc. have
booths at conferences, grad students poached often



Recommended Resources

* Online book by Michael Nielsen (quant. computing author)
http://neuralnetworksanddeeplearning.com

e Caltech Lectures by Yaser Abu-Mostafa CS 156
Available on YouTube. Companion book "Learning from Data"

e M.L. review article by Pankaj Mehta, David Schwab
aimed at physicists

 TensorFlow examples (MNIST demo)

* Blogs of Chris Olah and Andrej Karpathy


http://neuralnetworksanddeeplearning.com

Tensor Network Machine Learning



Tensor Network Machine Learning

Stoudenmire, Schwab, Advanced in Neural Information
Processing Systems (NIPS), 29, 4799 [arxiv:1605.05775]




Tensor network methods admit powerful optimization
techniques, giving high precision results
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Long-distance properties due to
impurities in Luttinger liquids



Tensor networks are highly interpretable,

due to linear structure
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Ground state degeneracy

MPO "pulling through" condition

74
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Topological spin of anyons

Sahinoglu et al., arxiv:1409.2150
Williamson et al., arxiv:1412.5604
Bultinck et al., arxiv:1511.08090



Applicable to classical systems too

— tensor RG family of methods

(@) T=009T,
IBO)]| |BM| IB®| IB®)|

|B(0)| |B(1)| |B(2)| |B(3)|

ﬁéﬁéﬁ ﬁﬁ Bcrit

exact TRG(64) TRG+env(64) TEFR(64) TNR(24)

c 0.5 0.49982 0.49988 0.49942  0.50001
o 0.125 0.12498 0.12498 0.12504 0.1250004

e 1 1.00055 1.00040 0.99996  1.00009

1.125 1.12615 1.12659 1.12256  1.12492

1.125 1.12635 1.12659 1.12403  1.12510

2 2.00243 2.00549 - 1.99922

2 2.00579 2.00557 - 1.99986

2 2.00750 2.00566 - 2.00006

2 2.01061 2.00567 - 2.00168

Levin, Nave, PRL 99, 120601 (2007)
Evenbly, Vidal, PRL 115, 200401 (2015)



Wavefunction, transfer matrix just large tensors

Tensor network just a math technique

Useful for more than physics?



Machine learning has many connections to physics
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P. Mehta and D.J. Schwab, arxiv:1410.3831

S. Bradde and W. Bialek, arxiv:1610.09733
E.M. Stoudenmire, arxiv:1801.00315



More recent ideas from physics
useful for machine learning?



"MERA" tensor network

Convolutional neural network




Analogy between wavefunctions & M.L. models

machine learning — model functions
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Analogy between wavefunctions & M.L. models

machine learning — model functions
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Are tensor networks useful for
machine learning? AAAAAAA

"MERA" tensor network

Tensor networks can represent weights of
useful and interesting machine learning models

Realized benefits: Future benefits?
 Linear scaling * Interpretability / theory
» Adaptive weights  Better algorithms

« Learning data "features"” * Quantum computing



Many proposals already to use tensor networks for machine
learning

Compressing weights of neural nets (& other models)

Yu et al., Advances in Neural Information Processing (2017), arxiv:1711.00073
Izmailov et al., arxiv:1710.07324 (2017)

Yang et al., arxiv:1707.01786 (2017)

Garipov et al., arxiv:1611.03214 (2016)

Novikov et al., Advances in Neural Information Processing (2015) (arxiv:1509.06569)

Large scale PCA
Lee, Cichocki, arxiv: 1410.6895 (2014)

Gaussian Processes
Izmailov, Novikov, Kropotov, arxiv:1710.07324 (2017)

Feature extraction & tensor completion

Bengua et al., arxiv:1606.01500, arxiv:1607.03967, arxiv:1609.04541 (2016)
Phien et al., arxiv:1601.01083 (2016)
Bengua et al., IEEE Congress on Big Data (2015)



Example: compressing neural network weight layers

Novikov et al., Advances in Neural Information Processing (2015) (arxiv:1509.06569)
Garipov, Podoprikhin, Novikov, arxiv:1611.03214

 Train very "wide" model: 262,144 hidden units

* Achieve 80x compression, only 1% accuracy loss



Framework where tensor network plays
central role?

Motivation:

» Can natural images be more complex than wavefunctions?
* Import many ideas, algorithms from physics

* Improve tensor network methods



Raw data vectors
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Example: grayscale images,
components of x are pixels



Propose following model

F(x) = W - B(x)

_ $1 .52 .53 SN . —
— E W sosg-sny X1 T2T3° + - X'y s; = 0,1
S

Weights are N-index tensor
Like N-site wavefunction

Cohen et al. arxiv:1509.05009
Novikov, Trofimov, Oseledets, arxiv:1605.03795
Stoudenmire, Schwab, arxiv:1605.05775



N=3 example:
f(x) =W ®(x) = Z Wy sass T1' 057 T3]

= Wooo + Wigo x1 + Woio 22 + Woo1 3
+ Wiiox129 + Wior 123 + Woi1 2223

+ Wi z1x0x3

Contains linear classifier, plus other "feature maps”



More generally, apply local "teature maps" ¢% (z;)

F(x) = W - B(x)

Highly expressive!



X = input

For example, following local feature map

(s (s

d(x;) = {COS (§$j),sin (5%)} z; € (0,1]

Picturesque idea of pixels as "spins”




X = input

¢ = local feature map

Total feature map &(x)

PS152° SN (X) — " (le) R 2 ($2) Q- QPN (ZCN)

» Tensor product of local feature maps / vectors
» Just like product state wavefunction of spins

» Vector in 2" dimensional space



X = input

¢ = local feature map
Total feature map &(x)
More detailed notation
X =|x1, X2, T3, ... , IN] raw inputs
B(x) — -¢1($1)-® [ ¢1() ] ; [ 1 (3 ] - [ 16N ] foature
P2 (1) P2 (12) P2 (3) b2 (@N) vector




Total feature map &(x)

Tensor diagram notation

X = input

¢ = local feature map

raw inputs

feature
vector



Construct decision function f(x) =W . ®(x)

000000 o



Construct decision function

f(x) =W &(x)




Construct decision function

f(x) =W &(x)




Construct decision function

f(x) =W &(x)




Main approximation

W — ﬁ) order-N tensor

matrix

?_?_CP_CP_Q_Q product

state (MPS)

X



Main approximation

W — ﬁ) order-N tensor

matrix

product
state (MPS)

PEPS )

X




Linear scaling
Can use algorithm similar to DMRG to optimize

N = size of input

Scalingis N - Np-m°

N1 = size of training set

m = MPS bond dimension
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Linear scaling
Can use algorithm similar to DMRG to optimize

N = size of input

Scalingis N - Np-m°

N1 = size of training set

m = MPS bond dimension



Gradient step:

At each bond, update "bond tensor" by computing
and applying the gradient

f(x) = O3 OO W
0O O OO0 O ok

- 08b0688° T80

B e AP Y S




Why should this work at all?

Linear classifier f(x) =V -x exactly m=2 MPS

W —
1 0 1 0 1 0
(Vo 1w i Vo i V. i
1 =[1 0] f(x) =W - ®(x)
V, =10 V] ¢% (xj) = [1, ]

Novikov, Trofimov, Oseledets, arxiv:1605.03795



Extendable to multiple outputs

flx) =

Output is a vector over the index [

Models exhibit "feature sharing" — only differ in
center tensor



Experiment: handwriting classification (MNIST)

/

Train to 99.95% accuracy on 60,000 training images

Obtain 99.03% accuracy on 10,000 test images
(only 97 incorrect)

Stoudenmire, Schwab, arxiv:1605.05775



Papers using tensor network machine learning

Expressivity & priors of TN based models

e Levine et al., "Deep Learning and Quantum Entanglement: Fundamental Connections
with Implications to Network Design" arxiv:1704.01552

e Cohen, Shashua, "Inductive Bias of Deep Convolutional Networks through Pooling
Geometry" arxiv:1605.06743

e Cohen et al., "On the Expressive Power of Deep Learning: A Tensor Analysis" arxiv:
1509.05009

Generative Models

e Han et al., "Unsupervised Generative Modeling Using Matrix Product States" arxiv:
1709.01662

e Sharir et al., "Tractable Generative Convolutional Arithmetic Circuits" arxiv:
1610.04167

Supervised Learning

* Novikov et al., "Expressive power of recurrent neural networks", arxiv:1711.00811

e Liu et al., "Machine Learning by Two-Dimensional Hierarchical Tensor Networks: A
Quantum Information Theoretic Perspective on Deep Architectures”, arxiv:
1710.04833

e Stoudenmire, Schwab, "Supervised Learning with Quantum-Inspired Tensor
Networks", arxiv:1605.05775

* Novikov et al., "Exponential Machines", arxiv: 1605.03795



Even startups getting into the game!

Tunnel Tech, ffunnel
New York City We're hiring

Apply through Math]jobs.

LEARN MORE

Quantum Physics
for Next Generation Al

John TerriIIa

Generative Tensorial Networks (GTN), London

Generative Tensorial

Networks

Transforming drug discovery through
interdisciplinary innovation.




Tensor Network Machine Learning Studies



Unsupervised Generative Modeling Using MPS

Zhao-Yu Han, Jun Wang, Heng Fan, Lei Wang, Pan Zhang

* Map data to product state, tensor network weights

* Squared output is probability — "Born machine”

 "Perfect" sampling (no autocorrelation)
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Machine Learning By Hierarchical Tensor Networks...
Ding Liu, Shi-Ju Ran, Peter Wittek, Cheng Peng, Raul Blazquez Garcia, Gang Su, Maciej Lewenstein

* Supervised learning with tree tensor networks
¢ Tests on MNIST, CIFAR-10

e Studied properties of the trained model (feature representations, entanglement)
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Deep Learning and Quantum Entanglement...

Yoav Levine, David Yakira, Nadav Cohen, Amnon Shashua

* "ConvAC" deep neural net = tree tensor network
* Tensor network rank as capacity of model

e Experiment on "inductive bias" of model architecture

¢:
|72
B B
n Global Task Local Task
V _< 7/ & 7/ Q 100 - - 100 T
E E E E
"o/ N ro/ N ro/ N ro/ N

accuracy
accuracy

\
M ‘ M ’ M ‘ M ‘ M ‘ M ‘ M ‘ M ‘
Vinputs {

10 15 20 25 3 5 10 15 20 25
# of channels parameter - r # of channels parameter - r

Tree Network as a Inductive Bias Experiment
Deep Neural Net



Matrix Product Operators for Sequence to Sequence...

Guo, Jie, Lu, Poletti, arxiv:1803.10908

* Product-state input processed by an MPO model

* Output is an MPS, approximated as another product state

» Capabilities like recurrent neural nets; better results than LSTM!

sequence
output

MPS output

MPS input
X7

sequence
input

training
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time series prediction errors
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bidirectional-LSTM




Learning Relevant Features of Data...
E.M. Stoudenmire

* Unsupervised determination of tree tensor network (compress data)

* Supervised training of top layer

* Excellent performance with "features" determined by tree tensors

® 8 ® 8 supervised top layer
/\ /\ /\ /\
A AN /\ /\ /\ /\ /\ /\ unsupervised tree
A YA VA VA VA VA VA VA VA VA VA VA VAVAVAVA
00000000000000000000000000000000 data input

080080, 66860
009000 900009

89% accuracy on mixed training
Fashion MNIST data set supervised / unsupervised




Supervised Learning with Generalized Tensor Networks
I. Glasser, N. Pancotti, J.I. Cirac, arxiv:1806.05964

* Models where inputs are copied, then processed by multiple tensor networks

e Hybrid CNN / string bond architecture gives 92.3% on fashion MNIST test set!

X1 X2 X3 X4 Xl X2 XS X4

string-bond states entangled plaquette states fashion MNIST

Generalized Tensor Network :: ::
learning local features: M w w M L., .|

X

(a) (b)




Quantum Machine Learning with
Tensor Networks

Berkeley

Huggins, Patil, Whaley, Stoudenmire, arxiv:1803.11537

Bill Huggins Grant, Benedetti, et al., arxiv:1804.03680



What is a quantum computer?

A set of coherent qubits for which one can:
o efficiently prepare certain initial states
* apply unitary operations (usually 1- and 2-qubit)

* perform measurements
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What is a quantum computer?

A set of coherent qubits for which one can:
o efficiently prepare certain initial states
* apply unitary operations (usually 1- and 2-qubit)

* perform measurements
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Two recent ideas for machine learning
with a quantum computer

1. supervised / discriminative learning

Farhi, Neven, arxiv:1802.0600
Schuld, Killoran, arxiv:1803.07128
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Two recent ideas for machine learning
with a quantum computer

1. supervised / discriminative learning

X —

TTTTTT

[TTTT]

» prepare data as product state
» apply gates to prepared state

* measure output qubit

Farhi, Neven, arxiv:1802.0600
Schuld, Killoran, arxiv:1803.07128



Two recent ideas for machine learning
with a quantum computer

2. generative modeling

Gao, Zhang, Duan, arxiv:1711.02038
Benedetti, Garcia-Pintos, Nam, Perdomo-Ortiz, arxiv:1801.07686
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Two recent ideas for machine learning
with a quantum computer

2. generative modeling

* prepare reference state

» apply gates to qubit

11111
(TTTT

Gao, Zhang, Duan, arxiv:1711.02038
Benedetti, Garcia-Pintos, Nam, Perdomo-Ortiz, arxiv:1801.07686



Two recent ideas for machine learning
with a quantum computer

2. generative modeling

Uc
+— +—n * prepare reference state
:]] - o » apply gates to qubit
<— —4a e measure all qubits
4+— o
<t+—_—a

Gao, Zhang, Duan, arxiv:1711.02038
Benedetti, Garcia-Pintos, Nam, Perdomo-Ortiz, arxiv:1801.07686



Two issues with these proposals
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Two issues with these proposals
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discriminative generative

1. efficient parameterization of N-qubit circuit?
(vanishing gradient?*)

* McClean, Boixo, et al., arxiv:1803.11173



Two issues with these proposals

Up Ug

177777
11111
bbbbbh

[TTTT]

discriminative generative

1. efficient parameterization of N-qubit circuit?
(vanishing gradient?*)

2. require too many qubits for realistic data sizes

* McClean, Boixo, et al., arxiv:1803.11173



Tensor networks are equivalent to quantum circuits




Quantum circuit for matrix product state
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Quantum circuit for matrix product state (m = 4)

I O
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Suggests MPS parameterization of generative quantum
mode]

4_

q_

— X

Uﬂﬂﬂﬂééé

444

* much fewer parameters than arbitrary circuit

e can initialize with classically optimized MPS



Discriminative model basically the reverse
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Training a quantum program:
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Training a quantum program:

- * run the program (multiple
| times to estimate output)

I!III

e feed results to classical
algorithm

OOOOO???

 algorithm proposes new
parameters

Also possible to estimate gradient using modified circuit



Test discriminative idea, using only operations
available to quantum hardware:

Bill Huggins

Early Training Stages

8x8 images (MNIST)
distinguish 0's from 1's

Test Accuracy

0 1000 2000 3000 4000 5000
Number of SPSA Steps

Later Training Stages

0.994 A

0.992

Obtain 99% accuracy
training & test

Test Accuracy
o
O
O
o

0.986 A

10000 20000 30000 40000 50000
Number of SPSA Steps



Test discriminative idea, using only operations 5

available to quantum hardware i
Bill Huggins

Steps to train ("SPSA" algorithm):
* pick one of the angles of the unitaries
* make two new circuits:
» slight increase of the angle
» slight decrease of the angle

* evaluate both & accept the better one



Evidence of robustness to noise

Correct Classification Probability, '9 vs 4°

0.60

Increasing
noise o

0.58

— 0.56

T1[us]

P(success)

— 0.54

0.52

100
0.50

0 250 500 750 1000 1250 1500 1750
Test Examples [Ranked]

As long as correct output > 50% likely, can sample to
get correct answer



Near-term quantum computers (of high quality)
will have a limited number of qubits

IBM quantum computer



Sampling higher-dimensional output
than number of qubits

AL A
I




Sampling higher-dimensional output
than number of qubits

4_ -
4 B memory /
& } hidden state
H AN AN A A A o
T A A
T To T3 T 4 L5 L6

memory / hidden state size
exponential in number of qubits



Equivalent to sampling from a matrix product state

phaL

) ) ) ) ) ) :
1
u{l <]-v-l:l <]-u-n <]-u_n<]-u
- - - -
\—/ \—/ \—/ \—/ \—/




Test of tensor network model on actual quantum
devicel

4.4 Deployment on a quantum computer

In this experiment we deployed the Iris classifier for classes 1 and 2 (see Sec. 2) on the ibmqx4
quantum computer available in the IBM Quantum Experience. As shown in Fig. 6, this TTN
classifier has three CNOT gates and seven rotations in the Y direction. A test set of 34 unseen
examples was used to determine accuracy. For each example, the circuit was run 400 times, and
the samples were used to compute the most likely class. The circuit correctly classified 100% of
the test set, and achieved a cost function value of 0.0811 (Eq. (3)).

@m0 —o 01 | 3.64129925
By | 1.04422998
(%2R (6:)—D—{R, (65) By | 2.99327683
0, | 4.18602991
(#5)— R (8)—P—{Ry (06)—D— R (0) A 05 | 1.3215133
fs | 2.78138208
07 | 4.68090534
Ry(04)_6 7

Figure 6: Iris TTN classifier circuit schematic and parameters.

Grant, Benedetti, Cao, Hallam, Lockhart, Stojevic, Green, Severini,
arxiv:1804.03680



Learning Relevant Features of Data
With Tensor Networks

EM Stoudenmire, Quant. Sci. Tech. 3, 034003 (2018)



For amodel f(x)=W - ®(x)
Given training data {x,}

Can show optimal W is of the form
W=> a;dx;)
J

Holds for wide variety of cost functions / tasks

"representer theorem”

Scholkopf, Smola, Miiller, Neural Comp. 10, 1299 (1998)



View @S(Xj) — <I>§f as a tensor

666666 v
v

w o
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Representer theorem says

/Y = C#S 3
WS Oéj

Really just says weights in the span of {®7}



Can choose any basis for span of {7}
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Can choose any basis for span of {7}
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Can choose any basis for span of {7}

S - CLMT—‘—‘—S 38
- J




Why switch to U® basis?

Orthonormal basis

Can discard basis vectors corresponding to small s. vals.

Can compute U, fully or partially using tensor networks



Computing U? efficiently

Detfine feature space covariance matrix
(similar to density matrix)

1 Us
HS
— R— 2
P N (I)l] (SV)
Ut

Strategy: compute U? iteratively as a layered (tree)
tensor network



For efficiency, exploit product structure of ®



Compute tree tensors from reduced matrices

/ /
S S / /
5 5 [l
P12 = E —
J € training Q Q
S1 52
S1 52
/ /
S1 59
/ /
ST S
1 ©2 U
Truncate small
P12 = — Pio .
eigenvalues
UT



Compute tree tensors from reduced matrices

/ /
S3 Sy
P34 — =
jEtrammg
S3 54
/
S3 54
sh s
3 4
Usy
Truncate small
P34 — — P34 ]
eigenvalues
UT
83 54 34



Having computed a tree layer, rescale data

505553606883 .-

:é) é) é) é) é) é)cbl(x)



With all layers, have approximately diagonalized p

NV VA VA VA VA VA VA VA VA VA VA VA VA VA VAV

V4 V4 V4 V4 V4 V4 V4 V4
V4 V4 V4 V4 U
V% V%
V4
~ o
p A
A\ A\
AN ZaN AN ZaN UJr
A A A A\ A A\ A A\

AP AP A PJA P AP AP A G AP AP AP AP AP AP AP AP A

Equivalent to kernel PCA,
but linear scaling with size of data set



Can view as unsupervised learning of representation
of training data

2\ Z 2\ 2\ 2\

2\ 2\ 2\ 2\ 2\ 2\ 2\ 2\

ANLNLNLNLNLNLNLNLNLN NN NN NN
0]0]0]0]0]0]0]0]0]0]0]0]0]0]0]0]0]0]0]0]0]0]j0]j0]J0J0]0J0]0]0]0)0



Use as starting point for supervised learning

Only train top tensor for supervised task

2\ N\ 2\ 2\

2\ 2\ 2\ 2\ 2\ 2\ 2\ 2\

ANLNLNLNLNLNLNLNLNLN NN NN NN
0]0]0]0]0]0]0]0]0]0]0]0]0]0)0]0]0]0]0]0]0]0]0]0]0]0]0]0]l0]0]0]0



Experiment: handwriting classification (MNIST)

—
= N
= =
N

2\ 2\ 2\ 2\

2\ 2\ 2\ 2\ 2\ 2\ 2\ 2\
CNLNLNLNILNLNLNLDNILNLDN NN LN\ LN\

Cutoff 6x10-4 gave top indices sizes 328 and 444
Training acc: 99.68% Test acc: 98.08%



Refinements and Extensions



No reason we must base tree around p

Could reweight based on importance of samples

LO0000O0 ox)
NT“ PPPPPQP vk

2



Another idea is to mix in a "lower level" model
trained on a given task (e.g. supervised learning)

pr =

Ly 0d00bb . bbbbbs

(4

PRPPPP? PPPPPP?

It © =1, tree provides basis for provided weights

If 0 < pu<1,treeis "enriched" by data set



Experiment: mixed correlation matrix for MNIST

Using p = (1—p)p+p) [WOHW
14

with trial weights trained from a linear classifier
and u© = 0.5

Train acc: 99.798% Test acc: 98.110%
Top indices of size 279 and 393.

Comparable performance to unmixed case with
top index sizes 328 and 444



Also no reason to build entire tree

2\ 2\ N\ 2\

2\ 2\ 2\ 2\ 2\ 2\ 2\ 2\
A YA A YA PAY A AP AP ANY AP AP A AP AP AN A

Approximate top tensor by MPS



Experiment: "fashion MNIST" dataset
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60,000 training images
10,000 testing images
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"fashion MNIST" dataset

*Dimension of top "site" indices

*Used 4 tree tensor layers

Experiment

ranged from 11 to 30
* Top MPS bond dimension of 300

and 30 sweeps
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"fashion MNIST" dataset

*Used 4 tree tensor layers

Experiment
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ranged from 11 to 30
* Top MPS bond dimension of 300

*Dimension of top "site" indices

and 30 sweeps

: 88.97%

Test acc
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Experiment: "fashion MNIST" dataset
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*Used 4 tree tensor layers
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*Dimension of top "site" indices
ranged from 11 to 30 3 J,.,.,,w.;;,;u,.;‘.w;..,,,;i,'

* Top MPS bond dimension of 300
and 30 sweeps

Train acc: 95.38% Test acc: 88.97%

Comparable to XGBoost (89.8%), AlexNet (89.9%),
Keras Conv Net (87.6%)

Best (w/o preprocessing) is GooglLeNet at 93.7%



Much Room for Improvement

*Use MERA instead of tree layers
* Optimize all layers, not just top, for specific task

*[terate mixed approach: feed trained network into
new covariance/density matrix

» Stochastic gradient based training



Recap & Future Directions

* Models with tensor network weights have
interesting capabilities

* Same models can be applied on classical or
quantum hardware

* Tensor networks can be used for adaptive,
unsupervised learning similar to renormalization

group

s
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