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Turbulence:	Enduring	Fascina'on	
and	Challenge	

`Turbulence	is	the	most	
important	unsolved	
problem	of	classical	
physics.'		
-	Richard	Feynman	-	

Da	Vinci	

3	



‘When	I	die	and	go	to	Heaven	
there	are	two	maOers	on	
which	I	hope	for	
enlightenment.	One	is	
quantum	electrodynamics	and	
the	other	is	the	turbulent	
mo'on	of	fluids.		And	about	
the	former	I	am	really	rather	
op'mis'c.’	-Horace	Lamb-	

Turbulence:	Enduring	Fascina'on	
and	Challenge	

Da	Vinci	
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Millenium	Prize:	Existence	and	Smoothness	of	
Navier	Stokes	
‘This	is	the	equa'on	which	governs	the	flow	of	
fluids	such	as	water	and	air.	However,	there	is	
no	proof	for	the	most	basic	ques'ons	one	can	
ask:	do	solu'ons	exist,	and	are	they	unique?	
Why	ask	for	a	proof?	Because	a	proof	gives	not	
only	cer'tude,	but	also	understanding.’	

Turbulence:	Enduring	Fascina'on	
and	Challenge	

Da	Vinci	
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How	long	can	rolling	waters	remain	impure?			

Turbulence:	Why	is	it	Important?	
Dye	in	Pipe	Flow	

Re+	
•  Turbulence	makes	things	happen:	

•  Incredibly	effec've	at	mixing	/	
transpor'ng	par'cles,	
momentum,	heat,		etc.	

•  Much	more	effec've	than	laminar	
flow	or	molecular	diffusion	
(typically	factor	of	~Re	faster—i.e.	
104-107!)	
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Fundamental	Turbulence	Paradigm	

εk ∝ k
−5/3

Kolmogorov	
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Large	scales	 Small	scales	

Turbulence:	
Energy	
1.  Injec'on	
2.  Redistribu'on	
3.  Dissipa'on		



Moments	of	Distribu'on	
Func'on	

.	

.	
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How	To	Solve	for	Distribu'on	
Func'on	

+	
Maxwell’s	Equa'ons	
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Kine'c	Theory	=	Infinite	
Hierarchy	of	Moment	Equa'ons	
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Kine'c	Theory	=	Infinite	
Hierarchy	of	Moment	Equa'ons	

11	



Kine'c	Theory	=	Infinite	
Hierarchy	of	Moment	Equa'ons	
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Navier	Stokes	=	Limi'ng	Case	of	
Plasma	Fluid	Equa'ons	

q	è	0,	incompressibility,	etc.	
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Fluid	Dynamics	Described	by	
Single	Fluid	Equa'on	
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Plasma:	Challenge	and	Opportunity	
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Many	Non-Fusion	Applica'ons	
•  Founda'on	for	space	and	astrophysical	turbulence	

–  G.	G.	Howes	et	al.	ApJ,	(2006).	
–  A.	A.	Schekochihin	et	al.	ApJS,	(2009).	

•  Solar	wind	turbulence	
–  G.	G.	Howes,	et	al.	Phys.	Rev.	Le/.,	(2011).	
–  J.	M.	TenBarge	et	al.		Physics	of	Plasmas,	(2012).	
–  D.	Told	et	al.	Phys.	Rev.	Le/.	(2015).	

•  Magne'c	reconnec'on	
–  J.	M.	TenBarge,	et	al.	Physics	of	Plasmas	(2014).	
–  M.	J.	Pueschel,,	et	al.	ApJS,	(2014).	

•  Fundamental	turbulence	
–  Tatsuno	et	al.	Phys.	Rev.	Le/.	(2009)	
–  Banon-Navarro	et	al.	Phys.	Rev.	Le/.	(2011)	
–  Teaca	et	al.	Phys.	Rev.	Le/.	(2012)	
–  Hatch	et	al.	Phys.	Rev.	Le/.	(2011,2013)	

•  Codes	
–  AstroGK	(based	on	fusion	code	GS2)	
–  GENE	
–  Others	
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Compare	/	Contrast	with	Fluid	
Turbulence	
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What Drives Turbulence in a Tokamak? 

•  Several	drive	mechanisms	for	fluid	turbulence	
•  Kelvin-Helmholtz	(shear	flow)	
•  Rayleigh	Taylor	(density	gradient)	

•  There	exist	a	whole	zoo	of	instabili'es	(ITG,	ETG,	TEM,	
MTM,	KBM,	etc.),	each	with	both	instability	and	wave-
like	proper'es	

•  (Jonathan	Citrin	will	discuss	further	in	later	lecture)	
•  Driven	by	extreme	gradients	in	fusion	plasmas	(usually	
gradients	in	temperature,	density)	

•  I	will	briefly	introduce	the	ion	temperature	gradient	
(ITG)	instability	

•  Perhaps	the	most	important	instability	for	tokamak	
transport	
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Ion Temperature Gradient Instability 
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Ion Temperature Gradient Instability 
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Fundamental	Turbulence	Paradigm	

εk ∝ k
−5/3

Kolmogorov	
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Large	scales	 Small	scales	

Turbulence:	
Energy	
1.  Injec'on	
2.  Redistribu'on	
3.  Dissipa'on		



Fluid Turbulence - Saturation 
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Hydrodynamic turbulence:
Navier Stokes equation è Kolmogorov picture:

1.  Energy drive (stresses) at large scales.
2.  Conservative nonlinear energy transfer through inertial range of scales.
3.   Dissipation at small scales.

Saturation è Energy drive at large scales balances with dissipation at small 
scales.

k

Drive Dissipation

Inertial
Range



Dissipation mechanisms 
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∇Dissipa'on	in	fluid	turbulence:	

	
	
Re=largeèsmall	scale	dissipa'on	

Dissipa'on	in	kine'c	plasma	turbulence:	
	
	
		=smallèsmall	scale	dissipa'on	in	velocity	space	
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Dissipation in gyrokinetic ITG turbulence 
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Q=gradient	drive	
C=collisional	dissipa'on	

k

Drive Dissipation
Inertial
Range

Contrast:	



Dissipation in gyrokinetic ITG turbulence 
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Q=gradient	drive	
C=collisional	dissipa'on	

Small	scales	develop	in	
velocity	space	even	at	drive	
scales	in	real	space.	
èScale	range	of	drive	and	
dissipaHon	overlap!	
D.	R.	Hatch	et	al.	PRL,	2011.		
(Also	a	cascade	at	higher	k	
Banon	Navarro,	PRL,	2011.)	



Model—`Reduced	Gyrokine'cs’	
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The gyroaverage operator in the Poisson equation is approximated by assuming that the v⌅ dependence of the perturbed
distribution function is Maxwellian (i.e., of the form e�µ), in which case the Poisson equation is modified only by an exponential
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This is the same assumption used in Ref. [? ]. For a discussion of the limitations of this approximation, see Ref. [? ]. For our
purposes, these limitations are not of critical importance as we only need some reasonable mechanism to provide stabilization
of high-k⌅ modes, and wish to leave effects such as nonlinear perpendicular phase mixing for future work.
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Hermite	representa'on:	
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Equa'ons:	

DNA	code:	
Reduced	GK	model:	
As	simple	as	possible	while	s'll	capturing	
dynamics	of	interest.			
Hatch	et	al	PRL	’13	
Hatch	et	al	JPP	’14	
Hatch	et	al	NJP	‘16	
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∗
n,kφ̄k−k′ ĝn,k′ (62)
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−k2⊥/2ĝ∗2φ− π1/2
∑

n
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Simple	rela'ons	between	
moments	and	Hermites	

27	



2

scale length, vti is the ion thermal velocity, n denotes
the order of the Hermite polynomial, t(Ln/vti) is time,
ηi = Ln/LT is the ratio of the gradient scale lengths,
ky(ρ

−1
i ) is the Fourier wavenumber for the direction per-

pendicular to both the direction of the background gra-
dients [x → kx(ρ

−1
i )] and the coordinate aligned with

the magnetic field [z → kz(L−1
n )]. The perpendicular

wavenumber is k⊥ ≡ (k2x + k2y)
1/2, φ̄k(ρiTe0/Lne) is the

gyro-averaged electrostatic potential, Te0 is the back-
ground electron temperature, e is the elementary charge,
and ν(vti/Ln) is the collision frequency. We use the
Lenard-Bernstein collision operator [22] for the parallel
velocity, for which Hermite polynomials are eigenvectors:
ν∂v [(1/2)∂v + v] → νn. Eq. (1) has been integrated over
perpendicular velocity, replacing the gyroaverage opera-
tors with factors of e−k2

⊥
/2—an exact result if the per-

turbed distribution function is a Maxwellian in v⊥. The
electrostatic potential is determined by the field equation

φk = π1/4e−k2
⊥
/2f̂k,0/(τ + 1− Γ0(k

2
⊥)) , (2)

where τ is the ratio of the ion to electron tempera-
ture, and Γ0(x) ≡ e−xI0(x), with I0 the zeroth order
modified Bessel function. Note that here we do not re-
move the flux-surface-averaged potential, as this treat-
ment strongly suppresses the turbulence in slab simu-
lations [17]. This v⊥-integrated gyrokinetic system is
well-justified for k⊥ < 1 [23]. In the numerical results
described below, simulations are limited to these scales.
By doing this, we intentionally neglect nonlinear phase
mixing (which becomes important at k⊥ > 1), and model
dissipative processes at k⊥ > 1 using hyperdiffusion.
Free energy balance.– The k- and n-resolved evolution

equation for the free energy εk,n = ε(φ)
k

δn,0+ε(f)
k,n with the

electrostatic part ε(φ)
k

≡ 1
2 (τ + 1 − Γ0(k2⊥))

−1|φk|2 and

the entropy part ε(f)
k,n ≡ 1

2π
1/2|f̂k,n|2 is readily derived

with the help of Eqs. (1) and (2). One thus obtains

∂ε(f)
k,n

∂t
= ηiQkδn,2 − Ck,n − J (φ)

k
δn,1

+Jk,n−1/2 − Jk,n+1/2 +N (f)
k,n, (3)

where the energy injection rate ηiQk =

ηiℜ
[

−π1/4

21/2
iky f̂∗

k,2φ̄
]

is proportional to the radial

ion heat flux Qk and limited to n = 2, the collisional

dissipation rate is Ck,n = 2νnε(f)
k,n, J (φ)

k
is the en-

ergy transferred between the electrostatic component
at n = 0 and the entropy component (i.e., Landau

damping), Jk,n−1/2 ≡ ℜ
[

−π1/2ikz
√
nf̂∗

k,nf̂k,n−1

]

(Jk,n+1/2 ≡ ℜ
[

π1/2ikz
√
n+ 1f̂∗

k,nf̂k,n+1

]

), defines

energy transfer between n − 1 (n + 1) and n (i.e.,

phase mixing), and N (f)
k,n is the contribution from the

nonlinearity. The latter redistributes energy in k-space
in a conservative manner. Similarly, the phase mixing

terms represent conservative energy transfer in n-space,
as reflected in the Jk,n±1/2 notation. Thus, the k- and
n-summed energy equation reduces to a balance of the
net energy sources ηiQ and sinks C. The scales (in the
the full phase space) at which this balance is achieved
depend on the interplay between the dissipation and the
conservative energy transfer channels, which is the focus
of the remainder of this Letter.
Simulations.– A fully spectral code (called DNA) has

been developed to solve the system defined by Eqs. (1)
and (2). The simulations use a (normalized) box size of
125.7 (increased to 144.4 in some simulations) in the x

and y directions, and resolve up to k(max)
x,y = 1.55. Hy-

perdiffusion [15] of the form ν⊥(kx,y/k
(max)
x,y )8f̂k,n is em-

ployed in the perpendicular spatial directions in order
to cut off the spectrum at k⊥ ∼ 1.0. For the parallel
direction, the (normalized) box size is 62.8, and the sim-
ulations resolve up to kz = 4.7. In the literature, k = 0
modes are often artificially deleted [17, 25] for slab ITG
simulations. We opt to dynamically evolve all k = 0
modes and implement a Krook damping term for kz = 0

and kz = k(min)
z modes in order to avoid slowly grow-

ing low-kz modes that fail to saturate (this is only neces-
sary at very low collisionality and/or high gradient drive).
This Krook term is always a small fraction of the total
dissipation. In combination with the collision operator,
we use hyper-collisions [24] of the form νh(n/nmax)8f̂k,n
in order to cut off the Hermite spectra more sharply in
the dissipation range. nmax and νh are selected in combi-

nation with k(max)
z to satisfy two criteria: 1) dissipation

due to the hyper-collisions becomes important only for
n > nc, where nc characterizes the scale at which colli-
sionality begins to dominate the phase mixing cascade,

and 2) νh > k(max)
z

√
nmax + 1. The latter criterion, when

used in conjunction with the boundary condition [24]
f̂nmax+1 = ikz

√
nmax + 1f̂n/(νh)(nmax + 1/nmax)8 is suf-

ficient to ensure that the tails of the Hermite spectra are
completely smooth at the nmax boundary.
Critical balance and Hermite spectra.– First, we would

like to characterize the Hermite free energy spectra. The
steady-state n ≫ 1 version of the energy evolution equa-
tion, Eq. (3), can be approximated as |kz| ∂

∂n

√
nεk,n =

N (f)
k,n − νnεk,n [17, 18]. By summing over k-space, this

becomes ∂
∂n ⟨kz⟩n

√
nεn = −2νnεn, where εn ≡

∑

k
εk,n,

and the characteristic parallel wavenumber for the nth-
order Hermite polynomial is

⟨kz⟩n ≡
∑

k
|kz|ε(f)k,n

∑

k
ε(f)
k,n

. (4)

In cases with fixed kz, this equation can produce spectra
with n−1/2 power laws [18, 24]. In the model used in this
work, the characteristic parallel scale length is free to ad-
just to the turbulent dynamics, and the n-dependence of
⟨kz⟩n is necessary for determining the Hermite spectrum.

4

The entropy evolution equation is

�⌦(f)k,n

�t
= ⇤iQk⇥n,2 � ⌅n⌦(f)k,n � J (�)

k ⇥n,1 + Jk,n�1/2 � Jk,n+1/2 +N (f)
k . (25)

The energy drive term acts only on the second order Hermite polynomial and is proportional to the heat flux,

⇤iQ = ⌅
�
�⇧

1/4

⇧
2
⇤iikye

�k2
⇥/2f̂⇥

2�

⇥
, (26)

The second term on the RHS represents collisional dissipation, the phase mixing terms are defined as

Jk,n�1/2 ⇥ ⌅
⌥
�⇧ 1

2 ikz
⇧
nf̂⇥

k,nf̂k,n�1

�
, (27)

and

Jk,n+1/2 ⇥ ⌅
⌥
⇧

1
2 ikz

⇧
n+ 1f̂⇥

k,nf̂k,n+1

�
, (28)

and the nonlinear transfer term is,

N (f)
k,n ⇥ ⌅

⇤
⌃

k�
T (f)

k,k’,n

⌅
, (29)

where the nonlinear entropy transfer function is defined as

T (f)
k,k�,n = �⇧1/2(k⇤xky � kxk

⇤
y)f̂

⇥
k,n�̄k�k� f̂k�,n. (30)

Discuss conservation.

A. Second subsection

IV. LANDAU DAMPING IN THE PRESENCE OF NONLINEARITY

�L ⇥
J (�)

k � Jk,1/2

2⌦k,0
(31)

 nl ⇤ kzvTi (32)

 nl ⇤ kyvTi⌃i/Ln (33)

 nl⇧
�(t)⇥�(t+ ⌥)dt

�lin
�L,lin

�L,nl

kzvTi

−ν⊥(kx,y / kmax )
8
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−ν⊥(kx,y / kmax )
8
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with electrostatic component

ε
(φ)
k =

1

2
(τ + 1 − Γ0(k

2
⊥))−1|φk|2 (5)

and entropy component

ε
(f )
k,n =

1

2
π1/2|f̂k,n|2 (6)

is the ideal quadratic invariant in gyrokinetics, and plays a role analogous to kinetic
energy in neutral fluid turbulence (Navarro et al. 2011a; Plunk et al. 2012). The k-
and n-resolved free energy evolution equation is readily derived with the help of (2)
and (3). One thus obtains

∂ε
(φ)
k,n

∂t
= J (φ)

k δn,0 + N (φ)
k,n (7)

and

∂ε
(f )
k,n

∂t
= ηiQkδn,2 − Ck,n − J (φ)

k δn,1 + Jk,n−1/2 − Jk,n+1/2 + N
(f )
k,n . (8)

The terms on the RHS of (7) and (8) represent various energy injection, dissipation,
and transfer channels, and are schematically represented in Fig. 1. The energy
source ηiQk = ηiℜ[−π1/4

21/2 ikyf̂
∗
2 φ̄] is proportional to the radial ion heat flux Qk

and limited to n = 2 as represented by the red arrow in Fig. 1. The energy
sink – collisional dissipation Ck,n = 2νnε

(f )
k,n – is directly proportional to the

Hermite number n multiplied by the free energy, and is shown by the blue
arrows in Fig. 1. There are also two conservative energy transfer channels. The
nonlinear energy transfer N

(f )
k,n (yellow curved arrows) redistributes energy in k

space but does not transfer energy between different n. The linear phase mixing
terms Jk,n−1/2 = ℜ[−π1/2ikz

√
nf̂ ∗

k,nf̂k,n−1] and Jk,n+1/2 = ℜ[π1/2ikz

√
n + 1f̂ ∗

k,nf̂k,n+1]
represent energy transfer between n and n − 1, n + 1 respectively, as denoted by the
vertical yellow arrows in Fig. 1. The notation Jn±1/2 used for the phase mixing terms
reflects the conservative nature of the energy transfer: the energy transferred from n0

to n0 + 1 (−Jk,n0+1/2 = −ℜ[π1/2ikz

√
n0 + 1f̂ ∗

k,n0
f̂k,n0+1]) is equal to the energy received

by n0 + 1 from n0 (Jk,(n0+1)−1/2 = ℜ[−π1/2ikz

√
n0 + 1f̂ ∗

k,n0+1f̂k,n0
]). This elucidates the

role of these phase mixing terms as a linear and completely local transfer mechanism
in Hermite space. J (φ)

k = ℜ[−ikzφ
1/4φ̄∗f̂k,1] is the energy transferred between the

electrostatic component at n = 0 and the entropy component (i.e. Landau damping),
represented by the diagonal yellow arrow in Fig. 1. The k- and n-summed energy
equation reduces to a balance of the net energy sources ηiQ and sinks C. The scales
in the full phase space at which this balance is achieved depend on the interplay
between the dissipation and the conservative energy transfer channels, and will be
examined in detail below.

3. DNA code and simulations
A fully spectral code has been created to solve (2) and (3). The code is named the

DNA code due to several algorithmic and structural influences from the gyrokinetic
Gene code. The code uses a Fourier representation in the three spatial dimensions and
a Hermite basis in parallel velocity space. An explicit fourth-order Runge-Kutta (RK4)
time scheme is used, with an initial time step constrained to keep the most extreme

Gyrokine'c	energy	in	
Hermite	space:		

Energy	evolu'on	
equa'on:	
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which thus far entails only a reformulation of the phase mix-
ing terms in Eq. (A1) without any approximations (wave vec-
tor subscripts have been suppressed for clarity).

The approximations δn±1 → 0 (approached for n ≫ 1)
and σn±1 → 1 produce

PM ≈ 2|kz|(
√
n+ 1ε2n+1 −

√
nε2n) , (A7)

which is a discretized version of PM in Eq. (A14).

∂

∂n
⟨kz⟩k⊥,n

√
nεk⊥,n = N (f)

k⊥,n − νnεk⊥,n − Sk⊥>1
k,n (A8)

and

∑

k

Sk⊥>1
k,n ∝ εn (A9)

∂

∂n
⟨kz⟩n

√
nεn = −νnεn − Sk⊥>1

n (A10)

∂

∂n
⟨kz⟩n

√
nεn = 0 (A11)

where εn =
∑

k
εk,n, and

⟨kz⟩n =

∑
k
|kz|ε(f)k,n

∑
k
ε(f)
k,n

(A12)

|kz|
∂

∂n

√
nεk,n =

1

2
N (f)

k,n − νnεk,n − Sk⊥>1
k,n (A13)

Sk⊥>1
k,n ∝ εk,n (A14)

∂

∂n
⟨kz⟩n

√
nεn = −νnεn − αεn (A15)

ωn
NL ∝ k(φ)z +

√
n
(
k(φ)z − k0z

)
(A16)

∂

∂n
nεn = − n

nc
εn − αεn (A17)

ε = c0n
−1−αe−n/nc (A18)
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nc =
kz n

νn1/2

9

which thus far entails only a reformulation of the phase mix-
ing terms in Eq. (A1) without any approximations (wave vec-
tor subscripts have been suppressed for clarity).

The approximations δn±1 → 0 (approached for n ≫ 1)
and σn±1 → 1 produce

PM ≈ 2|kz|(
√
n+ 1ε2n+1 −

√
nε2n) , (A7)

which is a discretized version of PM in Eq. (A14).

∂

∂n
⟨kz⟩k⊥,n

√
nεk⊥,n = N (f)

k⊥,n − νnεk⊥,n − Sk⊥>1
k,n (A8)

and

∑

k

Sk⊥>1
k,n ∝ εn (A9)

∂

∂n
⟨kz⟩n

√
nεn = −νnεn − Sk⊥>1

n (A10)

∂

∂n
⟨kz⟩n

√
nεn = 0 (A11)

where εn =
∑

k
εk,n, and

⟨kz⟩n =

∑
k
|kz|ε(f)k,n

∑
k
ε(f)
k,n

(A12)

|kz|
∂

∂n

√
nεk,n =

1

2
N (f)

k,n − νnεk,n − Sk⊥>1
k,n (A13)

Sk⊥>1
k,n ∝ εk,n (A14)

∂

∂n
⟨kz⟩n

√
nεn = −νnεn − αεn (A15)
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