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What do we mean bv MHD?

= [t 1s a fluid-like theoretical description for the dynamics of matter
= Baryonic matter in the Universe is mostly hydrogen.

= At temperatures above 104 K it becomes a hydrogen plasma, i.e. a gas made of
protons and electrons

= The large scale behavior of this gas can be described through fluidistic equations
(Navier-Stokes).

= This fluid 1s made of electrically charged particles and therefore it suffers electric and
magnetic forces.

= Not only that, these charges are sources of self-consistent electric and magnetic fields.
Therefore, the fluid equations will couple to Maxwell’s equations.

= At small spatial scales (and fast timescales) non-fluid or kinetic effects become
non-negligible.



MHD equ&&ioms

= The MHD equations are:
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which describe the dynamics of the fluid as well as the evolution of the magnetic field.

= The induction equation is the result of Ohm’s law
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and Faraday’s equation.



MHD equ&&mms

= The magnetic force can be split into:
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Magnetic pressure
and magnetic tension

= |n the asymptotic limit of negligible resistivity: & : .
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Frozen-in condition



Aplications of MHD

= Within this level of description (which is adequate at large spatial scales) there
is a variety of important plasma processes that have traditionally been addressed:
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= |nstabilities, shocks and waves (Alfven and magnetosonic) Mcarotemd-adynmic Ve
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= Dynamo mechanisms to generate magnetic fields

= MHD turbulence ”
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Magnetic field of the Sun

= Number of sunspots vs. time

= |t clearly shows an 11 yr period ||
with irregularities in its maxima, ‘ A ‘
its periods and rise-fall times.

= Area covered by spots as a function iy .-L “ L. “ ! A... LA | ‘IL‘

of latitude and time.
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= At the beginning of each cycle, sunspots are born at latitudes of = 30" and migrate to the Equator.

= Magnetic polarities are reversed from one cycle to the next and are different at different
hemispheres (Hale's law)




Kinemakic dtjmamos

= |f we assume the magnetic field B to be very small, the MHD equations decouple. We can
first solve the equations of motion. For instance, in the incompressible limit
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= Now that we know #i(X,7), we can solve the induction equation to obtain E(x’,t)
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dt
= This particular and convenient approximation is known as the kinematic dynamo.
Note that the induction equation is linear in B(X, 7, for any given (x ¢). For
stationary flows, there will be a dynamo solution whenever ’

B(x,t)=B,(x)¢'" , y>0

What kind of permanent flows are ubiquitous in astrophysical objects ?



Robakion and cownvecktion

Rotation o Radial differential rotation

(macro) o . . .
o Latitudinal differential rotation

Omega effect

Meridional flow { o From equator to poles at 20 m/s
(macro)

" 0 Helicoidal convective turbulence ‘ol ;
Convection D
(micro) < 0 Giant cells (driven by Coriolis) \ ‘. -’o
-
O Regular and stochastic components Alpha effect




1D sinmulakions
= We integrate the induction equation numerically, assuming axi-symmetry.

= We use empirical profiles of differential rotation and meridional flow. (Mininni &
Gomez 2002, ApJ 573, 454).
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Non-stochastic butterfly diagrams
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Toroidal field vs. latitude and time.

Hale’s law can cleary be observed.
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= Magnetic energy vs. latitude and time.

= [t is a proxy of Wolf’s number.



Role of stochasticity

= We model OOl as a gaussian
stochastic process, with spatial and
temporal correlations corresponding
to typical giant cells.

t =30days , A _=2.10"km
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= Toroidal magnetic field obtained from solar
magnetograms, displaying the change of polarity
in the polar regions.

= QOur results correctly reproduce the general
behavior, although our butterflies arise at
higher latitudes



Maunder mininmum
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= Toroidal magnetic field
for a long time integration
(GOémez & Mininni 2006).

= A minimum of activity is
observed at the center. After
a few cycles, normal activity
is restablished.
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= Magnetic energy at mid-latitudes vs. time. Two Maunder-like events are observed.
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Mean—field theory

= |t provides a quantitative expresion for the coefficient alpha. The first assumption is that
there is a scale separation between the large scale magnetic field being generated and the
small scale convective motions, i.e

B—B+b , i—-U+ud , <b>=0=<i>

where <...> is an average over small scales. To compute the evolution of the mean field, we
average the induction equation

alj=7x(l7x§)+7x<ﬁxl;> , VeB=0

= The extra term can be interpreted as an electromotive force exerted by small scale motions
€ oy =<UXb >

= \We still need to obtain an expresion for the electromotive force, and that requires some
assumptions (Steenbeck, Krause & Radler 1966).



Mean—field theory

= |_et us substract the ayeraged equation from the general induction equation

b

[1] Can be removed with a Galilean transformation (Mininni, Gomez, Mahajan 2005).
[2] It's a departure from average of a second order quantity (FOSA).

= |_et us further assume that this system evolves in a typical correlation time of these small
scale convective motions.

=Therefore ¢ =T <idxVx(lAxB)>=aA*B-f*VxB
where we neglected the gradient of the large scale magnetic field.

= For an isotropic state of these small scale flows, these tensors become

T r —_— —_—
o, =—_<u*Vxi>J, B.=—<id*id>0,
7 3 Y Yy 2 y

= The Kinetic helicity of convective flows is important for dynamo activity.




Sinulakions

= We integrate the MHD equations numerically, using a
spectral scheme in all three spatial directions (Gomez,
Milano and Dmitruk 2000; also Dmitruk, Gomez &
Matthaeus 2003)

= We show results from 256x256x256 runs performed in
(CAPS), our linux cluster with 80 cores

= For the spatial derivatives, we use a pseudo-spectral
scheme with 2/3-dealiasing. Spectral codes are well suited
for turbulence studies, since they provide exponentially fast
convergence.

= Time integration is performed with a second order Runge-
Kutta scheme.The time step is chosen to satisfy the CFL
condition.




MHD-3D dvh&mos

= From mean field theory (Krause & Radler 1980), we know that the turbulent generation of
magnetic fields (the alpha effect) is proportional to the kinetic helicity of the flow. H=1<ﬁ . vxﬁ>
2

= To study this mechanism through direct simulations, we externally drive the flow with a helical
force at large scales (an ABC pattern), until a stationary turbulent state is reached (Mininni, Gomez
& Mahajan, 2003, ApJ, 587, 472; Mininni, Gobmez & Mahajan, 2005, ApJ, 619, 1019)

= At that point, a magnetic seed is implanted at small scales and the

3D MHD equations are evolved (Meneguzzi, Frisch & Pouquet 1981). ko4 S
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Energy power-spectra
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= The power spectrum of magnetic energy grows in time until it
reaches equipartition at each scale (Brandenburg et al. 2003).

= The Kolmogorov slope is also displayed for reference.

= The full line is the kinetic energy power spectrum and the
dotted line is the total energy.
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= The Kolmogorov slope is also displayed for reference.

= The power spectrum of magnetic energy grows in time until it
reaches equipartition at each scale (Brandenburg et al. 2003).

= The green line is the kinetic energy power spectrum and the

red line is the magnetic energy.
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Turbulenk djnamms

= The image on the right shows the spatial
distribution of magnetic energy.

= The image below shows an initial exponential

growth stage (kinematic dynamo) for the total

magnetic energy. At later times it saturates when
it reaches approximate equipartition with the total

kinetic energy of the turbulent flow.
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5 9 G 1% ) produces magnetic field at macroscopic scales

(large-scale dynamos).



Force—free equilibria

= \When forcing is applied at intermediate Frazoapy puwm sosuhe ol =00
scales, an accumulation of magnetic .
energy is observed at the largest scales. 3 A
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= This behavior is caused by the inverse L ’\

cascade of magnetic helicity. - ‘ \
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= The magnetic field at large scales is 2t 1
approximately force-free, i.e. ]

VxB/ B o ST

<30 ns (] a 0 2 n 5
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= Small scales, however, are consistent with a strongly
turbulent MHD regime.

= This configuration can be representative of active
regions of the solar corona, which are approximately force-
free at large scales and at the same time are being heated
by a strong MHD turbulence at smaller scales (Gomez &
F.Fontan 1988)




Conclusions

Today we presented the MHD equations as a valid description of the large-scale
behavior of astrophysical plasmas.

As a first application, we presented the Alpha-Omega dynamos to describe the
basic features of the solar dynamo.

Using empirical profiles of differential rotation and meridional flows, we manage to
reproduce various observed aspects of the solar cycle, such as its period, rise-fall
asymmetry and sunspot migration toward the Equator.

Moreover, considering a stochastic part for the Alpha effect, we not only reproduce
the irregularities observed in the cycle, but also the potential occurrence of
Maunder-like events where magnetic activity on the Sun switches off for several
decades.

Finally, we numerically show a turbulent dynamo in action. An initial magnetic
seed grows to equipartion with kinetic energy, provided that the flow is helical.



