ICTP-IAEA College on Plasma Physics, 2018

Vorticities in relativistic plasmas:
from waves to reconnection

Felipe A. Asenjo!
Universidad Adolfo Ibafiez, Chile

» Part I: Waves in relativistic plasmas
» Part II: Electro-Vortical formulation
» Part I11: Generalized Connetion and Reconnection

Ifelipe.asenjo@uai.cl; felipe.asenjo@ gmail.com



ICTP-IAEA College on Plasma Physics, 2018

Part I1:
ELECTRO-VORTICAL
FORMUILATION

» Unified model for relativistic plasmas



Relativistic Plasma equations

» the rest-frame density of the fluid n.

» the energy density e, pressure p, enthalpy density &2 = € + p, and
temperature 7.

> relativistic velocities and the Lorentz factor y = (1 — v?)~1/2,

» coupled to Maxwell equations via the current density nyv.

Plasma fluid equation
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And an equation of state for pressure and density. For an ideal
relativistic gas f = K3(m/T)/Ky(m/T).



Relativistic plasma fluids - covariant form

It is better to work with the covariant formalism. In this case,
equations are manifestly invariant under Lorentz transformations.
For flat-spacetimes with 7, = (=1, 1,1, 1), the plasma fluid
4-velocity U* = (v,~v) satisfies U, U" = 1, UFU" = —1.

The equation for the plasma fluid is

1
U"o, (mfU") = qgF*'U, — —0!p
n
Also we have the continuity equation
Ou(nU") =0
and Maxwell equations

O, F* = qnU"



Magnetofluid Unification?

Instead of solving the previous equations, let us look the big picture.

1
qF*’'U, — ;8“1) = U"0, (mfU")

= mU, [0"(fU") — 0" (fU")] + mU, 0" (fU")
= mU,S"" — mo*f

as U, 0*U" = 0 and

S = Or(fU) — O (U

*Mahajan PRL 90, 035001 (2003); Mahajan & Yoshida, PoP 18, 055701 (2011).



The covariant fluid equation can be cast in the form
qU MY = —To o
where the magnetofluid tensor is
MW = FW 4 M g
q
and the entropy density follows

1
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MM =0
MY = € =B = Z0(fv) = V()

M’j—>Q=B+§VX(f’yV)

The magnetofluid tensor is the natural extension to the covariant form
of the plasma vorticity.
Equation gU,M"" = T0"o is the covariant vorticity equation for the
plasma.

T Oo

(FOTMZO):V‘f:_EE

T
(For,u:i)=>§+v><Q=aVa



Defining the potential (generalized canonical momentum)

Pl = AN+ %fU“ = (P, P)

then
MM = ghpY — 9V pH
In this way
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This last equation is the potential equation for the vortical dynamics!



From qU, M*¥ = TO"o we have the conservation law

U,0'c =0

Now consider the new EV field
MM = OFITY — O¥TIH

HuzAu+m_fUu+Xu
q

requiring that
U, M*" =0

3S. M. Mahajan, Phys. Plasmas 23, 112104 (2016).



From qU, M*¥ = TO"o we have the conservation law

U,0'c =0

Now consider the new EV field
MM = OFITY — O¥TIH

HuzAu+m_fUu+Xu
q
requiring that
U, M*" =0

T
U, M = U,M" +U,0"x"~U, 0" x" = —=d"o+U,0"x" —U, 0" X"
q

3S. M. Mahajan, Phys. Plasmas 23, 112104 (2016).



T
——0to + U, 0"xY — U, 0"x* =0
q
The solution for the EV field comes from a field in the Clebsh form

X" =od'e
In this case we get
T
—58“0 + U, 000" — U,0"c0"¢p =0
T
(_E + Ul,a"(b) oto=0

The simplest solution is

U0 6= -
q



Then, we find a general unified form for relativistic plasmas

voro= T
q

m
Im* = gA" + —fU“ +oote; MM =MV —o'TIF; U, MM =0

q
MOi

_ m._ - m_ .

=E=E - gﬁt(ffyv) - EV(f’y) — 0,0V — Voo

MijE\I!:B+’Ean(ffyv)+VaxV¢
v-=2=0; =+vxU¥U =0

= is the effective electric field and ¥ is the effective magnetic/vortical
field. They fulfill an “Ohm’s law”.
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U=B+ 2Vixv
q
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We also need Maxwell equations

V x B = 4ngnyv



Generalization of the London equation. Expulsion of the vorticity

=0, E=0; V(iy)=0; m:o:BJr%vj‘xv

1
4mgn

VxB=n~v

0— 4rq’n

B+ Vf x (V x B)



“Superconducting” state
Generalization of the London equation. Expulsion of the vorticity
E=0; E=0; V() =0; v=0=B+ Ivixv
q

1
4mqn

V xXB=n~v

0— drng*n

B+ Vf x (V x B)
In 1D, such that V = ¢é,d/dx and ¢, - B = 0, we find the solution

X d/
B =Bgexp / ;1 -
o 2l

where A = A4/ 1o f /n, with the ambient density rg and the skin

depth \g = +/47noq?/m.




==0; E=0; V(f’y)zO; U = anyv

with a constant such that V- ¥ =0



==0; E=0; V(f’y)zO; U = anyv

with a constant such that V- ¥ =0
anvv:B+me><v
q
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B+ Vf x (V x B)

The typical Beltrami state is V x B = B
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%VXB:‘man—i—fo(VxB)
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For V = é,d/dx and ¢, - B = 0, we can find

B =5, [cos ( / dex') ey + sin ( / kRaix') éz] exp ( / kydx' )
0 0 0
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E=0; ==V

x V(f
qg V-V
the new term must be divergenceless (this at least is achieved in 1D
case fore, - v=0and V = ¢,dy)



E=0; ==V

x V(f
qg V-V
the new term must be divergenceless (this at least is achieved in 1D
case fore, - v=0and V = ¢,dy)
This implies that

V x B = 4ngnvyv



From Maxwell equation

V xB |V x B|?
ey —

= 4mgn T 1672g%n?



From Maxwell equation

V_V><B_> B 1+|VXB|2
= 4mqn T 1672g%n?
Then we find
agn drg’n -
WVxB: B+ Vf x (V xB)

m
1672¢*n? |V x B|? 5 |V x B|?

1 VxB)xV 1+ ——

i |V x B|? N 167r2q2n2( X B) x AT l6m2¢*n?

In 1D, with ¢, - B = 0, and in the non-relativistic regime
4mgn > |dB/dx|, we have
qnaé y dB 47rq2nB | 167%¢*n? df dB
m " dx  m |dB/dx|*> ) dx dx



That’s all (for now).
Thanks!
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