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Part II:
ELECTRO-VORTICAL
FORMULATION

I Unified model for relativistic plasmas



Relativistic Plasma equations

I the rest-frame density of the fluid n.
I the energy density ε, pressure p, enthalpy density h = ε+ p, and

temperature T .
I relativistic velocities and the Lorentz factor γ = (1− v2)−1/2.
I coupled to Maxwell equations via the current density nγv.

Plasma fluid equation

mγ
(
∂

∂t
+ v · ∇

)
(fγv) = qγ (E + v× B)− 1

n
∇p

Continuity equation

∂(γn)

∂t
+∇ · (γnv) = 0

f ≡ h
mn

= f (T)

And an equation of state for pressure and density. For an ideal
relativistic gas f = K3(m/T)/K2(m/T).



Relativistic plasma fluids - covariant form

It is better to work with the covariant formalism. In this case,
equations are manifestly invariant under Lorentz transformations.
For flat–spacetimes with ηµν = (−1, 1, 1, 1), the plasma fluid
4-velocity Uµ = (γ, γv) satisfies UµUµ = ηµνUµUν = −1.
The equation for the plasma fluid is

Uν∂ν (mfUµ) = qFµνUν −
1
n
∂µp

Also we have the continuity equation

∂µ(nUµ) = 0

and Maxwell equations

∂νFµν = qnUµ



Magnetofluid Unification2

Instead of solving the previous equations, let us look the big picture.

qFµνUν −
1
n
∂µp = Uν∂ν (mfUµ)

= mUν [∂ν(fUµ)− ∂µ(fUν)] + mUν∂
µ(fUν)

= mUνSνµ − m∂µf

as Uν∂
µUν = 0 and

Sµν = ∂µ(fUν)− ∂ν(fUµ)

2Mahajan PRL 90, 035001 (2003); Mahajan & Yoshida, PoP 18, 055701 (2011).



Magnetofluid Unification

The covariant fluid equation can be cast in the form

qUνMµν = −T∂µσ

where the magnetofluid tensor is

Mµν = Fµν +
m
q

Sµν

and the entropy density follows

−∂µσ =
1

nT
(∂µp− mn∂µf )



Magnetofluid tensor (why is important)

Mµµ ≡ 0

M0i → ξ = E− m
q
∂t(fγv)− m

q
∇(fγ)

Mij → Ω = B +
m
q
∇× (fγv)

The magnetofluid tensor is the natural extension to the covariant form
of the plasma vorticity.
Equation qUνMµν = T∂µσ is the covariant vorticity equation for the
plasma.

(For µ = 0) =⇒ v · ξ = − T
qγ
∂σ

∂t

(For µ = i) =⇒ ξ + v× Ω =
T
qγ
∇σ



Defining the potential (generalized canonical momentum)

Pµ = Aµ +
m
q

fUµ = (P0,P)

then
Mµν = ∂µPν − ∂νPµ

In this way

ξ = −∂P
∂t
−∇P0 , Ω = ∇×P

=⇒ ∇× ξ = −∂Ω

∂t
⇐⇒ 1

2
εαβµν∂

βMµν = 0

(For µ = 0) =⇒ v · ξ = − T
qγ
∂σ

∂t

(For µ = i) =⇒ ∂P
∂t
− v× Ω = − T

qγ
∇σ −∇P0

This last equation is the potential equation for the vortical dynamics!



Relativistic Electro-Vortic (EV) field3

From qUνMµν = T∂µσ we have the conservation law

Uµ∂
µσ = 0

Now consider the new EV field

Mµν = ∂µΠν − ∂νΠµ

Πµ = Aµ +
mf
q

Uµ + χµ

requiring that
UνMµν = 0

UνMµν = UνMµν+Uν∂
µχν−Uν∂

νχµ = −T
q
∂µσ+Uν∂

µχν−Uν∂
νχµ

3S. M. Mahajan, Phys. Plasmas 23, 112104 (2016).
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Relativistic Electro-Vortic (EV) field

−T
q
∂µσ + Uν∂

µχν − Uν∂
νχµ = 0

The solution for the EV field comes from a field in the Clebsh form

χµ = σ∂µφ

In this case we get

−T
q
∂µσ + Uν∂

µσ∂νφ− Uν∂
νσ∂µφ = 0

(
−T

q
+ Uν∂

νφ

)
∂µσ = 0

The simplest solution is

Uν∂
νφ =

T
q



Relativistic Electro-Vortic (EV) field. A TOTAL UNIFIED
FIELD

Then, we find a general unified form for relativistic plasmas

Uν∂
νφ =

T
q

Πµ = qAµ +
mf
q

Uµ + σ∂µφ ; Mµν = ∂µΠν − ∂νΠµ ; UνMµν = 0

M0i ≡ Ξ = E− m
q
∂t(f̂γv)− m

q
∇(f̂γ)− ∂tσ∇φ−∇σ∂tφ

Mij ≡ Ψ = B +
m
q
∇× (f̂γv) +∇σ ×∇φ

v · Ξ = 0 ; Ξ + v×Ψ = 0

Ξ is the effective electric field and Ψ is the effective magnetic/vortical
field. They fulfill an “Ohm’s law”.



Steady-state system (except for φ)

−γ∂tφ+ γv · ∇φ =
T
q
→ ∂tφ = −γT

q
; ∇φ = −γTv

q

Ξ + v×Ψ = 0

Ξ = E− m
q
∇(f̂γ)

Ψ = B +
mγ
q
∇f̂ × v

f̂ = f − Tσ
m

We also need Maxwell equations

∇× B = 4πqnγv



“Superconducting” state

Generalization of the London equation. Expulsion of the vorticity

Ξ = 0 ; E = 0 ; ∇(f̂γ) = 0 ; Ψ = 0 = B +
mγ
q
∇f̂ × v

1
4πqn

∇× B = γv

0 =
4πq2n

m
B +∇f̂ × (∇× B)

In 1D, such that∇ = êxd/dx and êx · B = 0, we find the solution

B = B0 exp

[∫ x

0

dx′

λ2 d ln f̂
dx′

]

where λ = λ0

√
n0 f̂/n, with the ambient density n0 and the skin

depth λ0 =
√

4πn0q2/m.
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Super–Beltrami equilibrium

Ξ = 0 ; E = 0 ; ∇(f̂γ) = 0 ; Ψ = αnγv

with α constant such that∇ ·Ψ = 0

αnγv = B +
mγ
q
∇f̂ × v

qnα
m
∇× B =

4πq2n
m

B +∇f̂ × (∇× B)

The typical Beltrami state is∇× B = βB
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Super–Beltrami equilibrium. 1D solution

qnα
m
∇× B =

4πq2n
m

B +∇f̂ × (∇× B)

For ∇ = êxd/dx and êx · B = 0, we can find

B = B0

[
cos

(∫ x

0
kRdx′

)
êy + sin

(∫ x

0
kRdx′

)
êz

]
exp

(∫ x

0
kIdx′

)

kR =
αλ2

0

αλ2
0 +

(
λ2 d ln f̂

dx′

)2

kI =
λ2 d ln f̂

dx′

αλ2
0 +

(
λ2 d ln f̂

dx′

)2



A more general solution

E = 0 ; Ξ = −m
q
∇(f̂γ)

Ψ = αnγv− m
q

v×∇(f̂γ)

v · v
the new term must be divergenceless (this at least is achieved in 1D
case for êx · v = 0 and ∇ = êxdx)

This implies that

αnγv− m
q

v×∇(f̂γ)

v · v
= B +

m
q
∇f̂ × γv

∇× B = 4πqnγv
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A more general solution

From Maxwell equation

γv =
∇× B
4πqn

→ γ =

√
1 +
|∇ × B|2
16π2q2n2

Then we find

αqn
m
∇× B =

4πq2n
m

B +∇f̂ × (∇× B)

+
16π2q2n2

|∇ × B|2

√
1 +
|∇ × B|2
16π2q2n2 (∇× B)×∇

f̂

√
1 +
|∇ × B|2
16π2q2n2


In 1D, with êx · B = 0, and in the non–relativistic regime
4πqn� |dB/dx|, we have

qnα
m

êx ×
dB
dx

=
4πq2n

m
B−

(
1− 16π2q2n2

|dB/dx|2

)
df̂
dx

dB
dx
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m
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That’s all (for now).
Thanks!
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