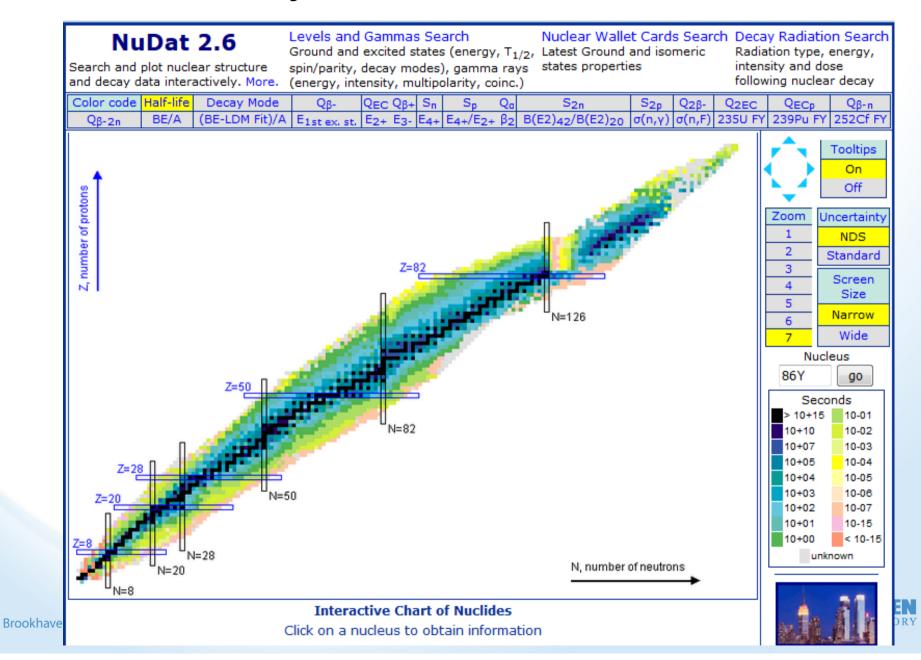
NuDat


Developed by Alejandro Sonzogni National Nuclear Data Center Brookhaven National Laboratory, NY USA

a passion for discovery

The friendly face of ENSDF

	or code <mark>Half</mark> 2 _{β-2n} BE		y Mode OM Fit)/A E _{1s}	Q _β - Q _ξ st ex, st, E ₂		S _p Q _α	S _{2n} B(E2) ₄₂ /B(E2		Q _{2β} - Q _{2EC} σ(n,F) 235U F		Q _{β-n} 252Cf FY
z	84Nb 9.8 S 8: 100.00% Ep	85Nb 20.5 S 8: 100.00%	86Nb 88 S 8: 100,00%	87Nb 3.75 M 8: 100.00%	88Nb 14.55 M 8: 100.00%	89Nb 2.03 H 8: 100.00%	90Nb 14.60 H 8: 100.00%	91Nb 6.8E+2 Y 8: 100.00%	92Nb 3.47E+7 Y ε: 100.00% β- < 0.05%	\diamondsuit	Tooltips On Off
40	83Zr 41.6 S 8: 100.00% 8p	84Zr 25.8 M 8: 100.00%	85Zr 7.86 M s: 100.00%	86Zr 16.5 H 8: 100.00%	872r 1.68 H 8: 100.00%	882r 83.4 D 8: 100.00%	892r 78.41 H s: 100.00%	90Zr STABLE 51.45%	912r STABLE 11.22%	1 2 3	NDS Standard
39	82Y 8.30 S 8: 100.00%	83Y 7.08 M 8: 100.00%	84Y 39.5 M 8: 100.00%	85Y 2.68 H a: 100.00%	86Y 14.74 H 8: 100.00%	87Y 79.8 H 8: 100.00%	88Y 106,626 D 8: 100,00%	89Y STABLE 100%	90Υ 64.053 H β-: 100.00%	4 5 6 7	Size Narrow Wide
38	81 Sr 22.3 M 8: 100.00%	82Sr 25.34 D 8: 100.00%	83Sr 32.41 H 8: 100.00%	84Sr STABLE 0.56%	85Sr 64.850 D 8: 100.00%	86Sr STABLE 9.86%	87Si STABLE 7.00%	88Sr STABLE 82.58%	89 Sr 50.53 D β-: 100.00%		go go gonds
37	80Rb 33.4 S 8: 100.00%	81Rb 4.572 H 8: 100.00%	82Rb 1.2575 M 8: 100.00%	83Rb 86.2 D 8: 100.00%	84Rb 32.82 D 8: 96.10% β-: 3.90%	85Rb STABLE 72.17%	86Rb 18.642 D β-: 99.99% ε: 5.2E-3%	87Rb 4.81E+10 Y 27.83% β-: 100.00%	88Rb 17.773 M β-: 100.00%	10+10 10+07 10+05 10+04 10+03	10-02 10-03 10-04 10-05 10-06
	43	44	45	48	47	48	49	50	N	10+02 10+01	10-07 10-15
			Ground	and isome	eric state info	rmation for	86 Y			10+00 un	< 10-15 known
			E(level) (Me	V) Jn	Δ(MeV)	T _{1/2} Dec	ay Modes				
			0.0	4	79.2832 14.	74 h 2 ε:	100.00 %			1	21
			0.2183	(8+)	79.0649 48		99.31 % 0.69 %				
		A list of I	evels, a level	l scheme a	nd decay rad	liation inform	nation are av	/ailable		ND 2	2013

ADOPTED LEVELS, GAMMAS for 86Y

Authors: Alexandru Negret, Balraj Singh Citation: Nucl. Data Sheets 124, 1 (2015) Cutoff date: 30-Nov-2014

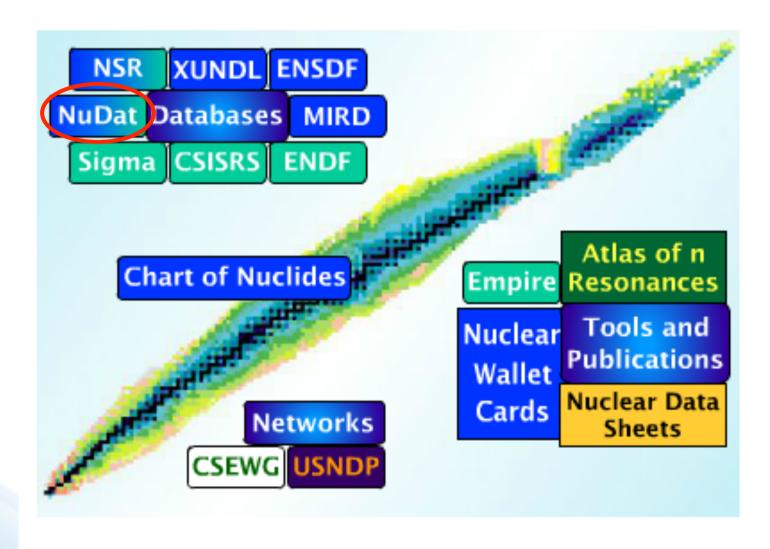
Full ENSDF file

 $Q(\beta -) = -1315 \text{ keV } 15 \qquad S(n) = 9512 \text{ keV } 24 \qquad S(p) = 5469 \text{ keV } 14 \qquad Q(\alpha) = -5520 \text{ keV } 14 \qquad \text{Reference: } 2012 \text{WA} 38 = -2520 \text{ keV } 14 = -2520$

References:

A 86Zr ε DECAY (16.5 H) B 86Y IT DECAY (47.4 M)

C 52Cr(37Cl,2pny) D 76Ge(14N,4ny),73Ge(16O,P2N)


E 76 Ge (14 N, 4 n γ), 86 Sr (4 C, 2 n γ) F 85 Rb (6 C, 3 n γ)

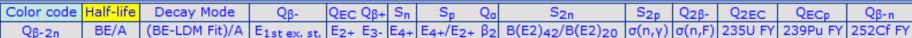
G 86Sr(3He,t)

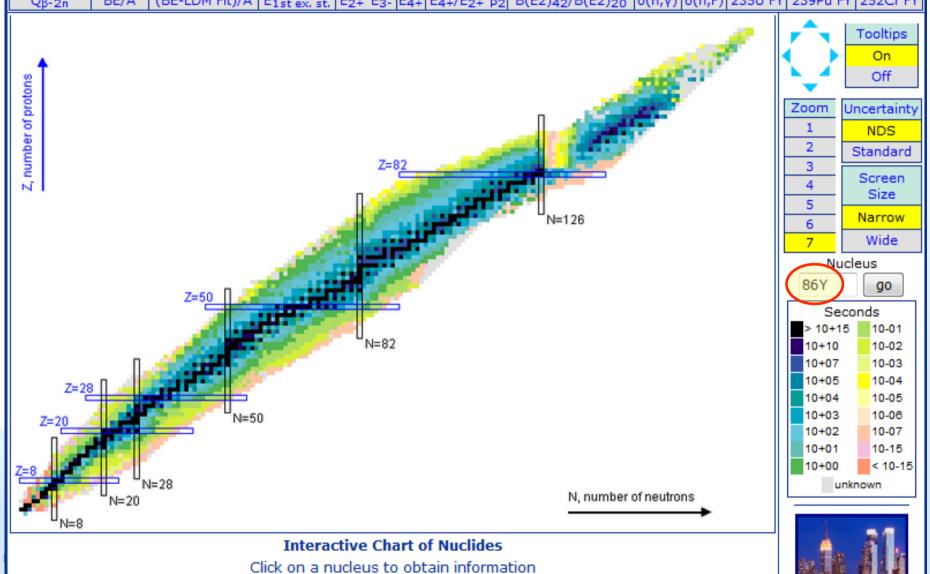
	E(level) (keV)	XREF	Jπ(level)	T _{1/2} (level)	Ε (γ) (keV)	I(Y)	М (ү)	Final le	evel
	0.0	ABCDEFG	4-	14.74 h 2 % ε = 100					
	208.04 7	BCDEFG	(5) -	70 ns 7	208.06 7	100	E2 (+M1)	0.0	4-
	218.21 9	ABCDE G	(8+)	47.4 m 4 % IT = 99.31 4 % ε = 0.69 4	10.22 8	100	(E3)	208.04	(5)-
	242.80 10	A D	2-	28.6 ns 21	242.80 10	100	E2	0.0	4-
	271.90 13	A G	1+	< 10 ns	29.1 1	100	E1	242.80	2-
	302.18 9	CDEFG	(6+)	127 ns 4	84.0 1 94.11 7	17 8 100 17	[E2] (E1)	218.21 208.04	(8+) (5)-
	303.13 11	CD	(7+)		85.00 7	100	D	218.21	(8+)
	353 20	G	(3+,4+)						
	465 20	G	(5+,6+)&(LE2)						
	469.44 21	D			261.4 2	100		208.04	(5)-
	475.98 <i>22</i>	D			173.8 2	100		302.18	(6+)
	536 20	G	(3+,4+)						
	620.68 22	D			318.5 2	100		302.18	(6+)
	643 20	G							
	662.11 11	CD			359.82 1 <i>6</i> 662.00 17	100 <i>25</i> 44 17		302.18 0.0	(6+) 4-
	671 20	G	(4-,5-)						
	741.98 22	D G	(4:7)		439.8 2	100		302.18	(6+)
	850.33 11	CD			642.30 9	100		208.04	(5)-
	883.90 13	A	1+		612.00 10 641.10 10	100		271.90 242.80	1+ 2-
	886.20 12	CDE G	(9+)		668.00 9	100	D	218.21	(8+)
	900.35 11	CD			238.20 7 597.9 <i>2</i> 692.20 14	100 16 40 22 78 16		662.11 303.13 208.04	(7+) (5)-
	978 20	G	(1+,2+)						
	1058 20	G	(1+,2+)						
L	4000 0 0	_						000 04	453

Decay Data Searches

NuDat 2.6

Search and plot nuclear structure and decay data interactively. More.


Levels and Gammas Search


Ground and excited states (energy, T_{1/2}, Latest Ground and isomeric spin/parity, decay modes), gamma rays (energy, intensity, multipolarity, coinc.)

Nuclear Wallet Cards Search Decay Radiation Search

states properties

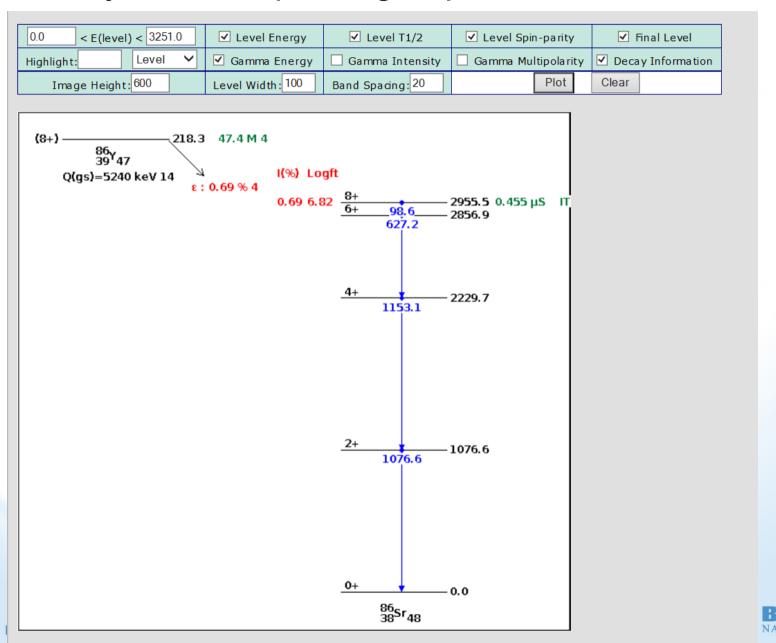
Radiation type, energy, intensity and dose following nuclear decay

			y Mode DM Fit)/A E _{1s}	Q _β - Q _{E0}		S _p Q _a ₁₊ /E ₂₊ β ₂ Β	S _{2n} S(E2) ₄₂ /B(E2		Q _{2β} - Q _{2EC} σ(n,F) 235U F	Q _{ECp} Y 239Pu F	Q _{β-n} Y 252Cf FY
z	84Nb 9.8 S 8: 100.00% 8p	85Nb 20.5 S 8: 100.00%	86Nb 88 S 8: 100.00%	87Nb 3.75 M 8: 100.00%	88Nb 14.55 M 8: 100.00%b	89Nb 2.03 H 8: 100.00%	90Nb 14.60 H 8: 100.00%	91Nb 6.8E+2 Y 8: 100.00%	92Nb 3.47E+7 Y 8: 100.00% β- < 0.05%	\diamondsuit	Tooltips On Off
40	83Zr 41.6 S 8: 100.00% 8p	84Zr 25.8 M 8: 100.00%	85Zr 7.86 M 8: 100.00%	86Zr 16.5 H s: 100.00%	87Zr 1.68 H s: 100.00%	88Zr 83.4 D a: 100.00%	892r 78.41 H 8: 100.00%	90Zr STABLE 51.45%	912r STABLE 11.22%	Zoom 1 2 3	NDS Standard Screen
39	82Y 8.30 S a: 100.00%	83Y 7.08 M a: 100.00%	84Y 39.5 M 8: 100.00%	85Y 2.68 H 8: 100.00%	86Y 14.74 H a: 100.00%	87Y 79.8 H a: 100.00%	88Y 106,626 D a: 100,00%	89Y STABLE 100%	90Υ 64.053 H β-: 100.00%	4 5 6 7	Size Narrow Wide
38	81 Sr 22.3 M 8: 100.00%	82Sr 25.34 D 8: 100.00%	83Sr 32.41 H 8: 100.00%	84Si STABLE 0.56%	85Sr 64.850 D 8: 100.00%	86Sr STABLE 9.86%	87SI STABLE 7.00%	88ST STABLE 82,58%	89 Sr 50.53 D β-: 100.00%		go go conds
37	80Rb 33.4 S 8: 100.00%	81Rb 4.572 H s: 100.00%	82Rb 1.2575 M 8: 100.00%	83Rb 86.2 D 8: 100.00%	84Rb 32.82 D ε: 96.10% β-: 3.90%	85Rb STABLE 72.17%	96Rb 18.642 D β-: 99.99% 8: 5.2E-3%	87Rb 4.81E+10 Y 27.83% β-: 100.00%	88Rb 17.773 M β-: 100.00%	10+10 10+07 10+05 10+04 10+03	10-02 10-03 10-04 10-05 10-08
,	43	44	45	46	47	48	49	50	N	10+02 10+01	10-07 10-15
			Ground	and isomer	ric state infor	mation for	86 Y 39			10+00	< 10-15 nknown
E(level) (MeV) Jπ Δ(MeV) T _{1/2} Decay Modes											
			0.0	47	9.2832 14.7	4 h 2 ε: 1	00.00 %			1	21
			0.2183	(8+) -7	9.0649 48		99.31 % 0.69 %				
		A list of l	evels, a level	scheme an	d decay radi	ation inform	ation are ava	ailable		ND	2013

Search results

Authors: Alexandru Negret, Balraj Singh Citation: Nuclear Data Sheets 124, 1 (2015)

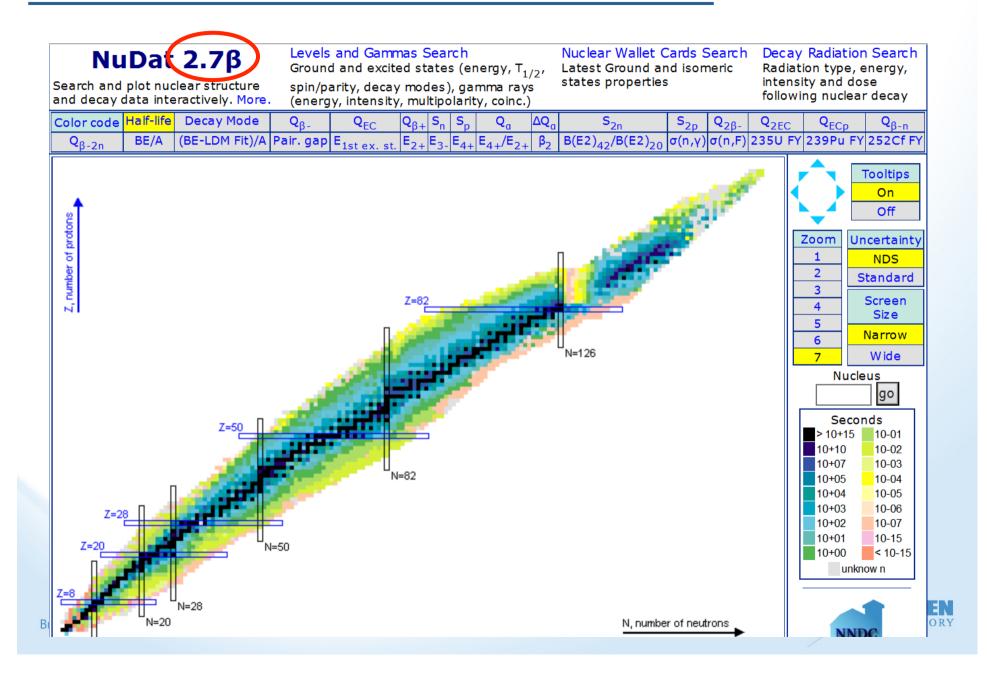
	Parent E(level)		Parent T _{1/2}	Decay Mode	GS-GS Q-value (keV)	Daughter Nucleus		WCDE.
86 39 ^Y	0.0	4-	14.74 h 2	ε: 100 %	5240 14	86 38	Scheme	file


Beta+:

Energy (keV)	End-point energy (keV)	Intensity (%)	Dose (MeV/Bq-s)
114.3 60	249 14	0.0038 % 10	4.3E-6 12
125.5 60	275 14	0.0029 % 7	3.6E-6 9
132.6 60	292 14	0.035 % 7	4.6E-5 10
155.8 60	346 14	0.0035 % 6	5.5E-6 10
173.0 60	387 14	0.22 % 4	3.8E-4 7
196.9 60	? 443 14	0.0110 % 20	2.2E-5 4
200.8 6			
234.6 6			
252.4 6		RNI	NC
374.7 6	WA		
394.1 6	200,200,00	THE PERSON NAMED IN	Company of the Compan
405.6 6			
452.2 6			
509.4 6	DDAC	CEN	MITL
535.4 6	PRUL	EED	VV I I 171
588.6 <i>6</i>			
628 0 E	CA	UTIC	NC
			- C. T. C. C.

Gamma and X-ray radiation:

	Energy (keV)	Intensity (%)	Dose (MeV/Bq-s)
XR 1	1.81	1.91 % 7	3.47E-5 12
XR kα2	14.098	12.2 % 5	0.00171 7
XR kα1	14.165	23.4 % 10	0.00332 15
XR kβ3	15.825	1.74 % 7	2.76E-4 12
XR kβ1	15.836	3.37 % 15	5.34E-4 <i>23</i>
XR kβ2	16.085	0.60 % 3	9.6E-5 5
	132.34 10	0.165 % 8	2.18E-4 11
	144.5 3	0.031 % 3	4.5E-5 5
	182.34 20 ?	0.11 % 3	2.0E-4 6
	187.87 13	1.26 % 4	0.00237 8
	190.80 13	1.01 % 3	0.00194 6
	209.80 23 ?	0.396 % 17	8.3E-4 3
	235.37 23	0.396 % 17	9.3E-4 4
	237.9 3	0.132 % 25	3.1E-4 6
	252.05 13	0.371 % 17	9.4E-4 4
	256.4 4 ?	0.074 % 25	1.9E-4 6
	264.53 13	0.536 % 25	0.00142 7
	307.00 10	3.47 % 8	0.0106 3
	331.08 23	0.83 % 3	0.00276 8
	355.07 26	0.099 % 25	3.5E-4 9
	370.28 17	0.83 % 4	0.00305 15
	380.4 3	0.45 % 3	0.00173 13
	382.86 <i>23</i>	3.63 % 12	0.0139 4
	425.97 23	0.305 % 17	0.00130 7

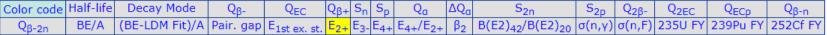

Decay scheme plotting capabilities

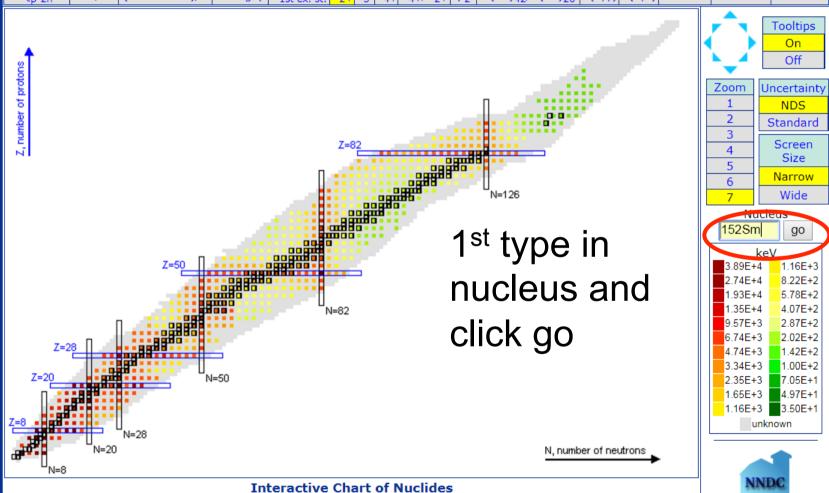
Recent Additions to NuDat

Enhanced features in NuDat

Search and plot nuclear structure and decay data interactively. More.

Levels and Gammas Search


Ground and excited states (energy, $T_{1/2}$, spin/parity, decay modes), gamma rays (energy, intensity, multipolarity, coinc.)


Nuclear Wallet Cards Search

Latest Ground and isomeric states properties

Decay Radiation Search

Radiation type, energy, intensity and dose following nuclear decay

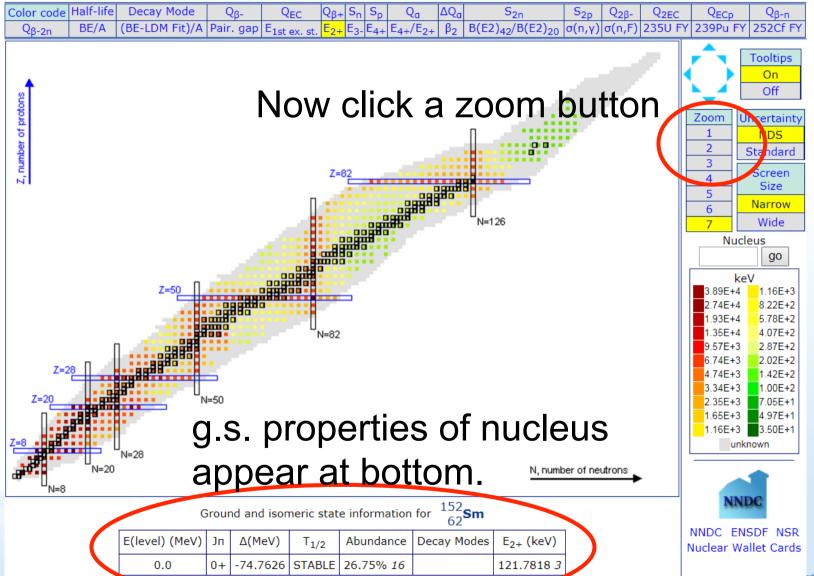
Click on a nucleus to obtain information

NNDC ENSDF NSR

Search and plot nuclear structure and decay data interactively. More.

Levels and Gammas Search

Ground and excited states (energy, $T_{1/2}$, spin/parity, decay modes), gamma rays (energy, intensity, multipolarity, coinc.)


Nuclear Wallet Cards Search

Latest Ground and isomeric states properties

Decay Radiation Search

Radiation type, energy, intensity and dose following nuclear decay

ABORATORY

A list of levels and a level scheme, a J vs E plot are available

Search and plot nuclear structure and decay data interactively. More.

Levels and Gammas Search

Ground and excited states (energy, T_{1/2}, spin/parity, decay modes), gamma rays (energy, intensity, multipolarity, coinc.)

Latest Ground and isomeric states properties

Nuclear Wallet Cards Search Decay Radiation Search

Radiation type, energy, intensity and dose following nuclear decay

Q_{ECD}

Zoom

1

2

3

4

5

6

239Pu FY 252Cf FY

Tooltips On Off

Uncertainty

NDS

Standard

Screen

Size

Narrow

Wide

go

Nucleus

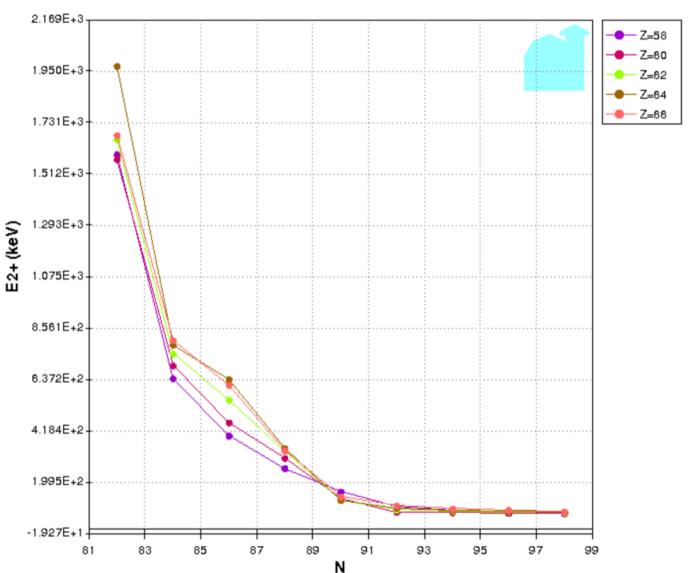
keV 4.00E+3 3.00E+3 2.00E+3 1.80E+3 1.40E+3 1.20E+3 1.00E+3 8.00E+2 6.00E+2 4.00E+2 3.00E+2 2.00E+2 1.50E+2 1.00E+2 7.50E+1 5.00E+1 2.50E+1 0.0 unknown

arra	and decay data interactively. More. (energy, intensity, multipolarity, coinc.)																
Col	or code	Half-li		ecay Mo		Q _β _	QE		β+ S _n			ΔQ _a	S _{2n}		S _{2p}	Q _{2β} -	Q _{2EC}
(Qβ-2n	BE/A	(BE	-LDM F	it)/A P	air. gap	E _{1st e}	x. st. E	2+ E ₃₋ E	4+ E ₄₊	./E ₂₊	$\beta_2 \mid B(E)$	2) ₄₂ /B	(E2) ₂₀	σ(n,γ)	σ(n,F)	235U F
z	148Dy	149Dy	150Dy	151Dy	152Dy	153Dy	154Dy	155Dy	156Dy	157Dy	158Dy	159Dy	160Dy	161Dy	162Dy	163Dy	164Dy
	147ТЬ	148Tb	149Tb	150ТЬ	151Tb	152ТЬ	153Tb	154ТЬ	155Tb	156ТЬ	157ТЬ	158Tb	159ТЬ	160Tb	16114	162Tb	163ТЬ
64	146Od	147Gd	148Gd	149Gd	150Gd	151Gd	152Gd	153Od	154Od	155Gd	156Od	157Od	158Gd	159Gd	160Gd	1610q	162Gd
	145Eu											156Eu					
62						149Sm											
						148Pm											
60						147Nd											
	141Pr		143Pr	144Pr	145Pr			148Pr		150Pr	151Pr	152Pr	153Pr	154Pr	155Pr		157Pr
58	140Ce	141Ce		143Ce		145C c		147Ce		149Ce		151Ce		153Ce		155Ce	
	82		84		86		88		90		92		94		96		N
											for 1	52 _{sm}					

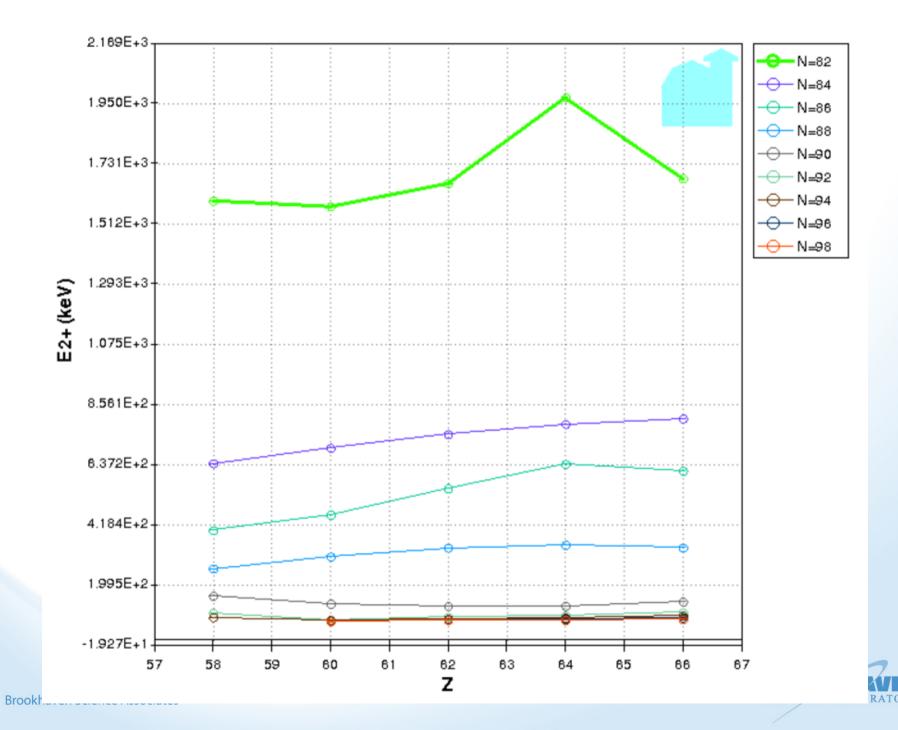
Scroll down to find more

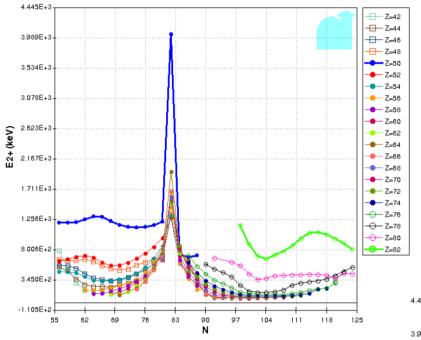
0+ -74.7626 STABLE 26.75% 16

62**Sm** Decay Modes E_{2+} (keV) 121.7818 3

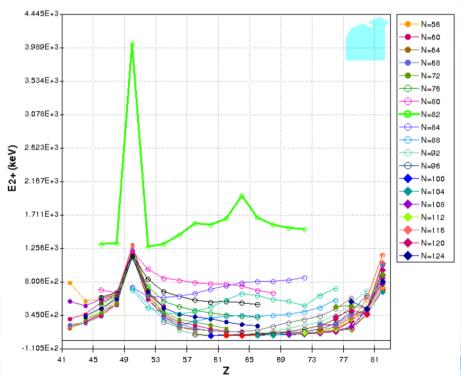

A list of levels and a level scheme, a J vs E* plot are available

The corresponding projections on the N and Z axis are found below. The data can be found here.




Scroll down even more to find even more

A list of levels and a level scheme, a J vs E* plot are available
The corresponding projections on the N and Z axis are found below. The data can be found here.



Adjusting the zoom will change the number of nuclei included in the plots

Search and plot nuclear structure and decay data interactively. More

Levels and Gammas Search

Ground and excited states (energy, $T_{1/2}$, spin/parity, decay modes), gamma rays (energy, intensity, multipolarity, coinc.)

200	decay	data in	toracti	volv M	ore	(anas-		-i+	المستطابي	i+	-in- \		0-1	02	1.3720223	7.000002 2
					-	(energy							62	82	1.66003E3	1.00000E-2
Col	or code	Half-li	ife De	ecay Mo	ode	$Q_{\beta-}$	QE	c Q	β+ S _n	$S_p \mid 0$	$Q_a \mid \Delta$	Q	60	82	1.57578E3	1.00000E-2
(Q _{β-2n}	BE/A	A (BE	-LDM F	it)/A P	air. gap	E _{1st e}	x. st. E	2+ E3- E	4+ E ₄₊	/E ₂₊ [32	58	82	1.59624E3	2.50000E-2
										1		Ē	66	84	8.03640E2	9.00000E-2
z	148Dy	149Dy	150Dy	151Dy	152Dy	153Dy	154Dy	155Dy	156Dy	157Dy	158Dy	15	64	84	7.84433E2	1.50000E-2
_													62	84	7.47174E2	1.10000E-2
	147Tb	148ТЬ	149ТЬ	150Tb	LEITE	152Tb	153Tb	LEATTL	LEETL	156ТЬ	157Tb	٠.	60	84	6.96561E2	1.00000E-2
	14715	14810	14910	15016	15110	15216	15316	15416	15510	10010	15/16	1	58	84	6.41282E2	9.00000E-3
													66	86	6.13830E2	5.00000E-2
	146Gd	147Gd	148Gd	149Gd	150Gd	151Gd	152Gd	153Gd	154Gd	155Gd	156Gd	15	64	86	6.38045E2	1.40000E-2
64													62	86	5.50255E2	8.00000E-3
													60	86	4.53840E2	3.00000E-2
	145Eu	146Eu	147Eu	148Eu	149Eu	150Eu	151Eu	152Eu	153Eu	154Eu	155Eu	1:	58	86	3.97441E2	9.00000E-3
													66	88	3.34340E2	3.00000E-2
													64	88	3.44279E2	1.20000E-3
62	1445m	145Sm	1465m	147Sm	1485m	149Sm	150Sm	151Sm	152Sm	153Sm	1548m	1:	62	88	3.33955E2	1.00000E-2
0.2													60	88	3.01705E2	1.60000E-2
	143Pm	144Pm	145Pm	146Pm	147Pm	149Pm	149Pm	LSOPm	151Pm	152Pm	153Pm	14	58	88	2.58450E2	4.00000E-2
	1431	1441	1431111	1401111	1411111	1401111	14/11	130111		100111	133111		66	90	1.37770E2	8.00000E-2
													64	90	1.23071E2	9.00000E-4
	142Nd	143Nd	144Nd	145Nd	146Nd	147Nd	148Nd	149Nd	150Nd	151 N d	152Nd	15	62	90	1.21782E2	3.00000E-4
60													60	90	1.30210E2	7.00000E-2
													58	90	1.58467E2	5.00000E-3
	141Pr	142Pr	143Pr	144Pr	145Pr	146Pr	147Pr	148Pr	149Pr	150Pr	151Pr	1	66	92	9.89180E1	1.00000E-3
													64	92	8.89700E1	1.00000E-3
	140Ce	141Ce	142Ce	143Ce	IAAC-	145Ce	1460-	1470-	1400-	1490-	150Ce	1.	62	92	8.19810E1	1.50000E-2
58	14006	14106	14200	14300	14406	14500	14000	14700	14000	14700	13000	1	60	92	7.24000E1	5.00000E-2
													58	92	9.70000E1	1.00000E-1
	82		84		86		88		90		92		66	94	8.67878E1	3.00000E-4
												F 6	64	94	7.95143E1	1.50000E-3
											for 1	DZ	Sm			unknov

Scroll down to find more


0.0 0+ -74.7626 STABLE 26.75% 16

for 62**Sm**Decay Modes E₂₊ (keV)

121.7818 3

A list of levels and a level scheme, a J vs E* plot are available

The corresponding projections on the N and Z axis are found below. The data can be found here.

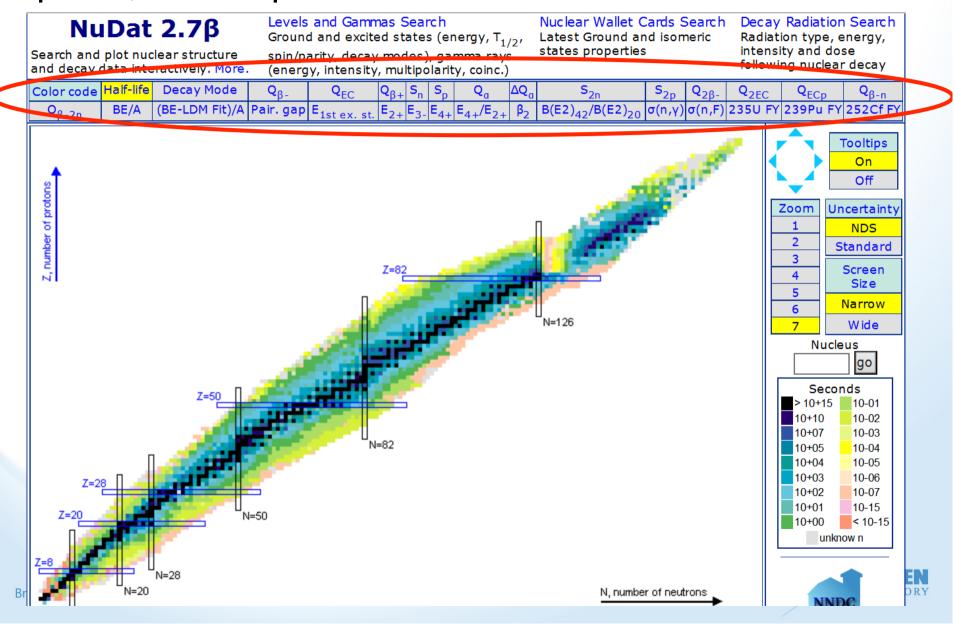
Value Uncertainty

0.00000E0

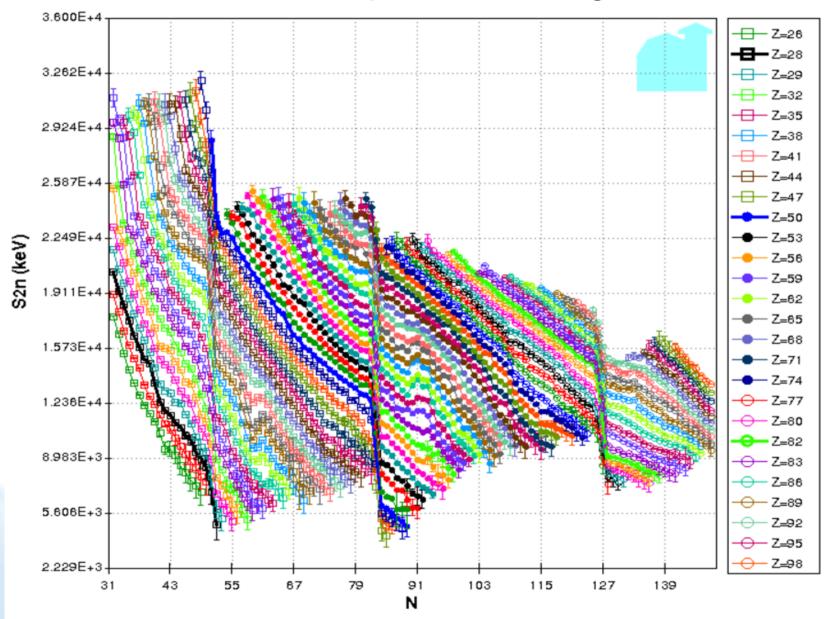
7.00000E-2

1.67730E3

1.97202E3


N

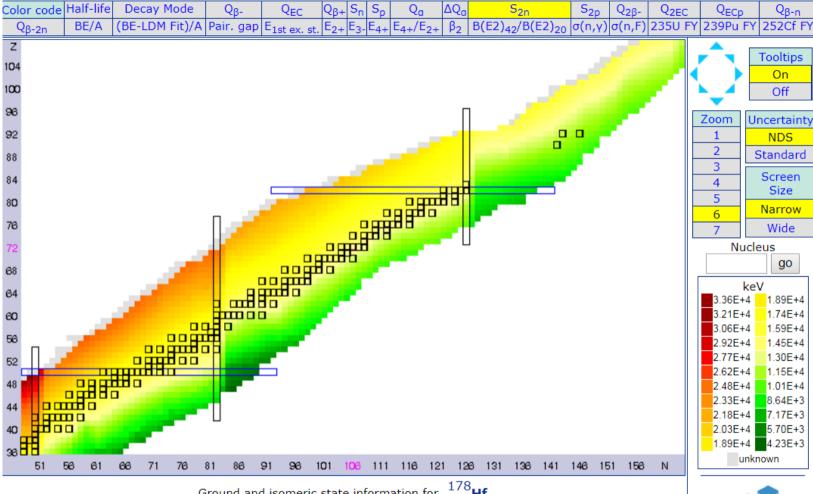
82


82

66

Any of the quantities offered on the main panel, can be plotted

Two neutron separation energies


NuDat 2.7β Search and plot nuclear structure

and decay data interactively. More.

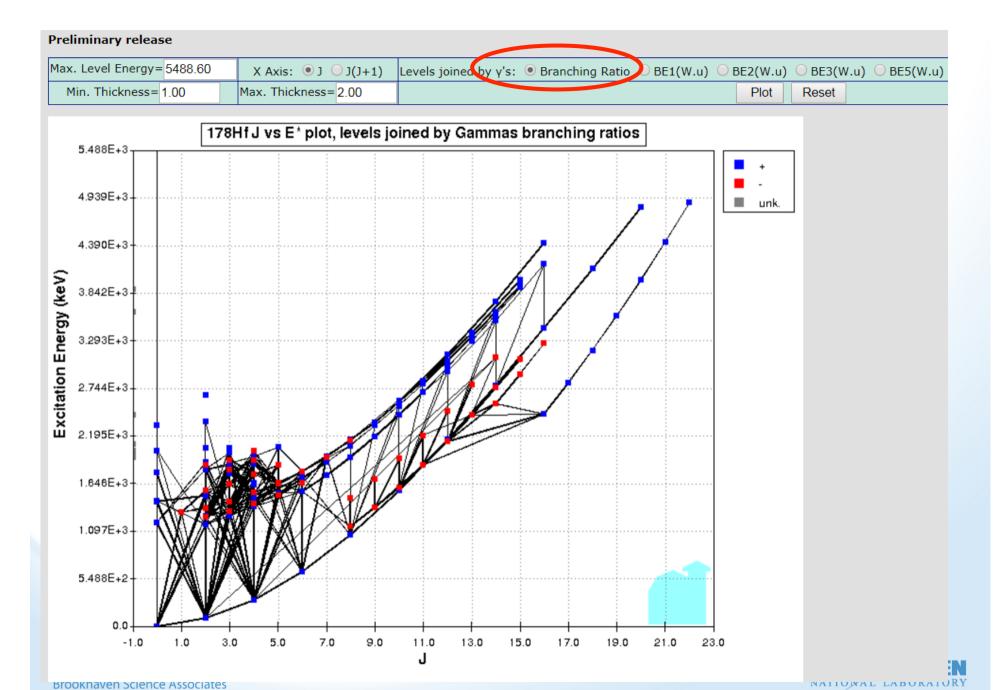
Levels and Gammas Search Ground and excited states (energy, T_{1/2}, spin/parity, decay modes), gamma rays (energy, intensity, multipolarity, coinc.)

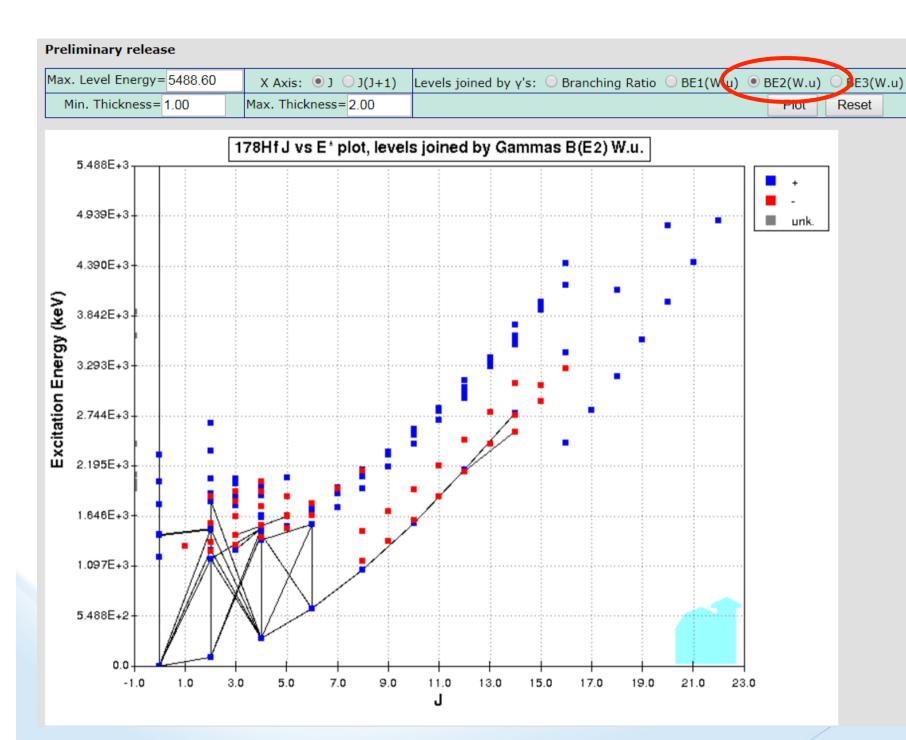
Nuclear Wallet Cards Search Latest Ground and isomeric states properties

Decay Radiation Search Radiation type, energy, intensity and dose following nuclear decay

Ground and isomeric state information for $\frac{178}{72}$ **Hf**

E(level) (MeV)	Jn	Δ(MeV)	T _{1/2}	Abundance	Decay Modes	S _{2n} (keV)
0.0	0+	-52.4352	STABLE	27.28% <i>7</i>		14001.5 <i>10</i>
1.1474	8-	-51.2878	4.0 s 2		IT: 100.00 %	
2.4461	16+	-49.9891	31 y <i>1</i>		IT: 100.00 %	


A list of levels and a level schem (a J vs E* plot are available


The corresponding projections on the N and Z axis are found below. The data can be found here.

NNDC ENSDF NSR Nuclear Wallet Cards

