IAEA – NDS data retrieval tools

Marco Verpelli IAEA Nuclear Data Section

Trieste ICTP workshop on Nuclear Structure and Decay Data October 2018

	nds.ia tomic Energy Agency ear Data a组,原子爸机构 o • TENDL-2017 • JENDL	Services	IAEA.org NDS Mission About Search ews » Damage cross section database extended	Us Mirrors: India China Russia Go d by SS-316 and Eurofer
Iload Synload data, des, packages		NDL/AD-2017 JB Activat trieve]	uated Nuclear Data Library, 2017: [page] [list] [tion Cross Section File for Nuclear Decommission Nuclear Data Library, issued in 2018: [page] [li	ning 2017: [page] [list]
	Main All Reacti	on Data) Structure & Dec	cay) by Applications) Doc & Codes) Ind	ex Events Links News
ADS-Lib Atomic Mass Data Centre CINDA	EXFOR Experiment reaction da	al nuclear 📈 Liv	eChart of Nuclides active Chart of Nuclides	CINDA Nuclear reaction bibliography
Charged particle refe- rence cross section DROSG-2000 DXS Decay Data Library for Actinides	ENDF Evaluated r libraries		SDF lated nuclear structure and decay data (+XUNDL)	NSR Nuclear Science References *
EMPIRE-3.2 ENDF Archive ENDF Retrieval ENDF-6 Codes	NuDat-2 selected evaluated nuclear structure data **	RIPL reference parameters for nuclear model calculations	IBANDL Ion Beam Analysis Nuclear Data Library	Charged particle refe- rence cross section Beam monitor reactions
ENDF-6 Format ENDVER ENSDF	PGAA Prompt gamma rays from neutron capture	FENDL Fusion Evaluated Nuclear Data Library	Photonuclear - IAEA Photonuclear Data Library, 1999 - EPICS Electron & Photon Interaction Data, 2017	IRDFF International Reactor Dosimetry and Fusion File
ENSDF ASCII Files ENSDF programs EPICS Electron & pho- ton interaction data	NAA Neutron Activation Analysis Portal	Safeguards Data recommendations, August 2008	Medical Portal Data for Medical Applications	Standards - Neutron cross-sections, 2006 - Decay data, 2005
EXFOR	*Database at the IAE		SNNDC	
Fission Yields	IAEA-NDS Atomic	Meetings Workshops Newsletters Workshops	rch Data Center & Decay Data INDC Re	ports Nuclear Sciences

Links – quick reference

- Atomic Mass Data Centre + Nubase https://www-nds.iaea.org/amdc/
- ENSDF codes
 <u>https://www-nds.iaea.org/public/ensdf_pgm/</u>
- Nuclear Moments
 https://www-nds.iaea.org/nuclearmoments/
- Decay data portal https://www-nds.iaea.org/relnsd/vcharthtml/VChartHTML_libs.html
- Pocket Nuclear Database https://www-nds.iaea.org/relnsd/pndb/pndb.html
- Isotope Browser for mobile devices <u>Google Play or App Store</u>
- Livechart <u>https://www-nds.iaea.org/relnsd/vcharthtml/VChartHTML.html</u>

Query tool & Plot3D links are inside Livechart

			o pe Brows uclear Data See		^u ⊿ 13 3:03
/	CHART	1	ELEMENT		9C - C - 6
	GO	С	CLEAR	^	EXPERT
Ν	А	Jπ			Stable
L	s	~	<t½<< td=""><td></td><td>Y ~</td></t½<<>		Y ~

I	Decay and Main	Radiatio	ons	
Decay mode	~	0	< % <	100
Decay Rad.	~	0	<kev<< th=""><th>100</th></kev<<>	100

. . . .

Guide

Change language going to Preferences

Pick an Element (or enter a **Symbol**, e.g. xe, or an **Atomic Number**, e.g. 54, or a **Nuclide**, e.g. 135xe), the search starts automatically

Tap an item in the result list to get detailed information

The Database includes ground states and isomers having half-life > 0.1 s

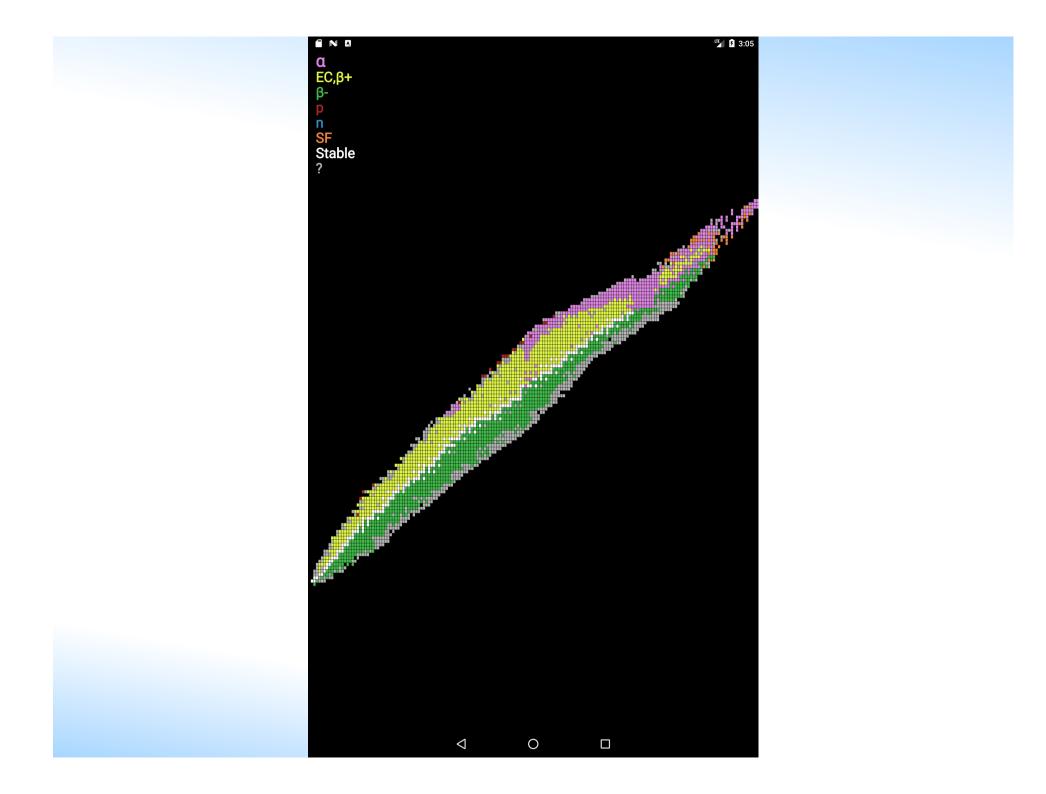
Chart

Shows the selected nuclides on the Nuclides Chart. All nuclides are shown when no query is active

The color represents the main decay mode

Zoom to get nuclide names, more to get summary data

Tap to go to the detail page


The Decay chain is shown by a **long press** on a nuclide. It includes all ground state decay modes having a branching ratio value, and all the possible parents. Use the Preferences to change this

Ο

Spontaneous fission and branching ratios marked as ? are not drawn

Long press on the same nuclide to reset the chart

 \triangleleft

																		116		
N	<u>A</u>																			
α																			Sg	Sç
EC,β	+																	256	257	25
β-																	Db	Db	Db	Dt
																253	254	255	256	25
р																Rf	Rf	Rf	Rf	R
n																252	253	254	255	25
SF																Lr	Lr	Lr	Lr	Lı
Stab	ole												248		250	251	252	253	254	25
?													No		No	No	No	No	No	N
											245	246	247	248	249	250	251	252	253	25
											Md	Md	Md	Md	Md	Md	Md	Md	Md	M
								241	242	243	244	245	246	247	248	249	250	251	252	25
								Fm	Fm	Fm	Fm	Fm	Fm	Fm	Fm	Fm	Fm	Fm	Fm	Fn
								240	241	242	243	244	245	246	247	248	249	250	251	25
								Es	Es	Es	Es	Es	Es	Es	Es	Es	Es	Es	Es	E
						237	238	239	240	241	242	243	244	245	246	247	248	249	250	25
						Cf	Cf	Cf	Cf	Cf	Cf	Cf	Cf	Cf	Cf	Cf	Cf	Cf	Cf	С
			233	234		236		238	239	240	241	242	243	244	245	246	247	248	249	25
			Bk	Bk		Bk		Bk	Bk	Bk	Bk	Bk	Bk	Bk	Bk	Bk	Bk	Bk	Bk	В
				233	234	235	236	237	238	239	240	241	242	243	244	245	246	247	248	24
				Cm	Cm	Cm	Cm	Cm	Cm	Cm	Cm	Cm	Cm	Cm	Cm	Cm	Cm	Cm	Cm	Cr
	229	230		232	233	234	235	236	237	238	239	240	241	242	243	244	245	246	247	24
	Am	Am		Am	Am	Am	Am	Am	Am	Am	Am	Am	Am	Am	Am	Am	Am	Am	Am	Ar
	228	229	230	231	232	233	234	235	236	237	238	239	240	241	242	243	244	245	246	24
	Pu	Pu	Pu	Pu	Pu	Pu	Pu	Pu	Pu	Pu	Pu	Pu	Pu	Pu	Pu	Pu	Pu	Pu	Pu	Ρ
225 226	227	228	229	230	231	232	233	234	235	236	237	238	239	240	241	242	243	244		
Np Np	Np	Np	Np	Np	Np	Np	Np	Np	Np	Np	Np	Np	Np	Np	Np	Np	Np	Np		
224 225	226	227	228	229	230	÷	232	233	234	235	236	237	238	239	240	241	242	243		
υυ	U	U	U	U	U	U	Ú.	U	<i>J</i> U	U	Ú	U	U	U	U	U	U	U		
223 224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239					
Pa Pa	Ра	Pa	Ра	Ра	Ра	Pa	Ра	Ра	Ра	Pa	Ра	Ра	Ра	Ра	Ра					
222 223	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238					
Th Th	Th	Th	Th	Th	Th	Th	Th	Th	Th	Th	Th	Th	Th	Th	Th					
221 222	223	224	225	226	227	228	229	230	231	232	233	234	235	236						
Ac Ac	Ac	Ac	Ac	Ac	Ac	Ac	Ac	Ac	Ac	Ac	Ac	Ac	Ac	Ac						
220 221		÷		225	226	227	<u> </u>	229	230	231	232	233	234							
Ra Ra	Ra	Ra	Ra	Ra	Ra	Ra	Ra	Ra	Ra	Ra	Ra	Ra	Ra							
219 220	+	222	223	224	225	226	227	228	229	230	231	232	<u> </u>							
Fr Fr	Fr	Fr	Fr	Fr	Fr	Fr	Fr	Fr	Fr	Fr	Fr	Fr	Fr							
218 219	-	221	222	223	224	225	226	227	228	229										
Rn Rn		Rn	Rn	Rn	Rn	Rn	Rn	Rn	Rn	Rn										
-	219	÷	221	222	<u>ا</u>	224	225	226	227	228	220									
At At	At	At	At	At	At	At	At	At	At	At	At									
216 217							<u> </u>													
Po Po																				
215 216	+	÷	-	<u>ــــــــــــــــــــــــــــــــــــ</u>	<u>ا</u>	<u> </u>		_												
215 216 Bi Bi		Bi	Bi	Bi	Bi	Bi	Bi	ZZ4 Bi												
214 215	+	÷	<u> </u>	<u>ــــــــــــــــــــــــــــــــــــ</u>	<u>ا</u>	Ы														
	Pb				220 Pb															
	+	÷	<u> </u>		70															
213 214	215	216	217																	
						\triangleleft			0	С										
						7														

" N A

- More about this nuclide on NDS web
- Uncertainty example: 12.3 (11) means 12.3 ±1.1
- Refer to the Guide for the meaning of the data

Z 93 **N** 143 **J**π (6-) **Half-life** 153 10³ (5) Y

Parents

240-Am α 1.9 10⁻⁴ %7

Decays see the decay chain

ec 86.3(8)% → **236-U** β- 13.5(8)% → **236-Pu** α 0.16(4)% → **232-Pa**

Qα 5010 (50) keV Qβ 480 (50) keV Qec 930 (50) keV Sn 5740 (50) keV Sp 4830 (50) keV

Binding energy/A

7579.21 (21) keV Mass

236.04657 (50) AMU Thermal neutron capture 142 barns

Decay radiations ordering

From β- decay γ En [keV] Int [%] 158.35 (2) 4.2 (3) 102.82 (2) 0.91 (7) 44.6 (1) 0.0182 (14) Х En [keV] Int [%] Transition 117.800 - 121.556 Kβ 0.186 (14) 104.279 Ka1 0.38 (3) 99.979 Κα2 0.237(17)12.169 - 22.841 L 13.4 (8) From ec decay Y En [keV] Int [%] 160.33 (2) 31.3 (17) 104.23 (2) 7.2 (4) \triangleleft 0

			o pe Browser uclear Data Sectio		"≱ 🛿 3:08
/	CHART	H	ELEMENT		9C - C - 6
4 9	GO	C	CLEAR	^	EXPERT
N	A	Jπ			Stable
	s	~	<t½<< td=""><td></td><td>Y ~</td></t½<<>		Y ~

Decay and Main Radiations												
Decay mode	~	0	< % <	100								
α	~	0	<kev<< th=""><th>100</th></kev<<>	100								

Guide

Change language going to Preferences

Pick an Element (or enter a **Symbol**, e.g. xe, or an **Atomic Number**, e.g. 54, or a **Nuclide**, e.g. 135xe), the search starts automatically

Tap an item in the result list to get detailed information

The Database includes ground states and isomers having half-life > 0.1 s

Chart

Shows the selected nuclides on the Nuclides Chart. All nuclides are shown when no query is active

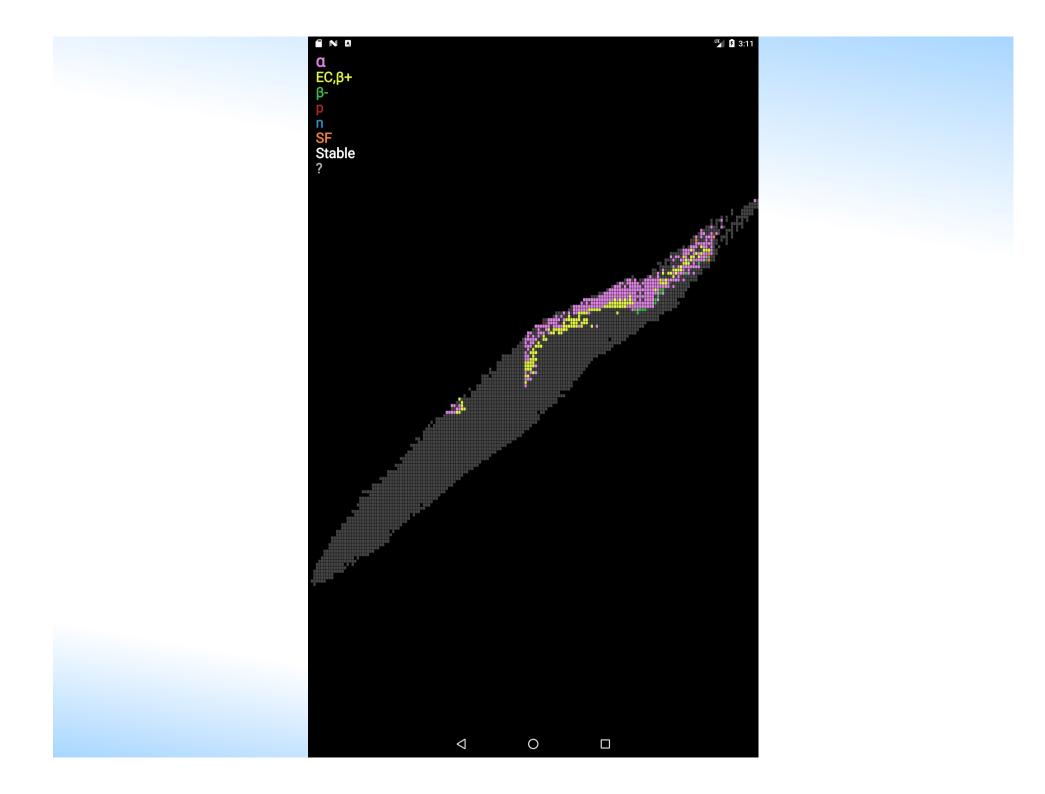
The color represents the main decay mode

Zoom to get nuclide names, more to get summary data

Tap to go to the detail page

The Decay chain is shown by a **long press** on a nuclide. It includes all ground state decay modes having a branching ratio value, and all the possible parents. Use the Preferences to change this

Ο


Spontaneous fission and branching ratios marked as ? are not drawn

Long press on the same nuclide to reset the chart

 \triangleleft

		idiations a ord	ler by Half-life ":	
/	CHART		 	
105 Te 52	0.62 (7) us	α 100%	4703 keV	
106 <u>Te</u> 52	70 (17) us	α 100%	4128 keV	
110 Xe 54	93 (3) ms	α 100%	3745 keV	
144 Nd 60	2.29 10 ¹⁵ (16) Y	α 100%	1905.2 keV	
146 Sm 62	6.8 10 ⁷ (7) Y	α 100%	2460 keV	
147 Sm 62	1.060 10 ¹¹ (11) Y	α 100%	2248 keV	
148 Gd 64	71.1 (12) Y	α 100%	3182.69 keV	
148 Sm 62	7 10 ¹⁵ (3) Y	α 100%	1932.3 keV	
150 Gd 64	1.79 10 ⁶ (8) Y	α 100%	2726 keV	
152 Gd 64	1.08 10 ¹⁴ (8) Y	α 100%	2146.9 keV	
154 Dy 66	3.0 10 ⁶ (15) Y	α 100%	2870 keV	
156 Hf 72	23 (1) ms	α 100%	5873 keV	
156m Hf 72	0.52 (1) ms	α 100%	7782 keV	
156m <u>Lu</u> 71	198 (2) ms	α 100%	5565 keV	
157m <u>Ta</u> 73	4.3 (1) ms	α 100%	6214 keV	
157m <u>Ta</u> 73	1.7 (1) ms	α 100%	7744 keV	
158 W 74	1.25 (21) ms	α 100%	6445 keV	
162 _{0s} 76	2.1 (1) ms	α 100%	6602 keV	

/	CHART			് %
214m <mark>Rn</mark> 86	6.5 (30) ns	8+	IT ≅90%	
219 _{Pa} 91	53 (10) ns	9/2-	α 100%	
217 _{Ac} 89	69 (4) ns	9/2-	a ≅100%	
216m Fr 87	71 (5) ns	(3-)	Uncertain	
215 Fr 87	86 (5) ns	9/2-	α 100%	
218 Th 90	117 (9) ns	0+	α 100%	
213 _{At} 85	125 (6) ns	9/2-	α 100%	
212 Po 84	0.299 (2) us	0+	α 100%	
214 At 85	558 (10) ns	1-	a 100%	
105 Te 52	0.62 (7) us	(5/2+)	α ≅100%	
216 Fr 87	0.70 (2) us	(1-)	α 100%	
217m <mark>Ac</mark> 89	740 (40) ns	(29/2)+	IT 95.7%	
214m At 85	760 (15) ns	9-	α ≤100%	
219 Th 90	1.05 (3) us	(9/2+)	α 100%	
218 Ac 89	1.08 (9) us	(1-)	α 100%	
217 _{Ra} 88	1.6 (2) us	(9/2+)	a ≅100%	
215 Rn 86	2.30 (10) us	9/2+	α 100%	
213 _{Po} 84	3.72 (2) us	9/2+	α 100%	
	\triangleleft	0		

11 3:13

🍪 Settings

Nuclides list ordering

 \bigcirc Z and N

 \bigcirc N and Z

Half-life

Decay Radiation ordering

 \bigcirc Intensity

Energy

Decay chain display

Show all parents

Languages

English

العربية 🔾

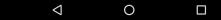
⊖ Español

○ Français

 \bigcirc Italiano

○日本語

○ Русский

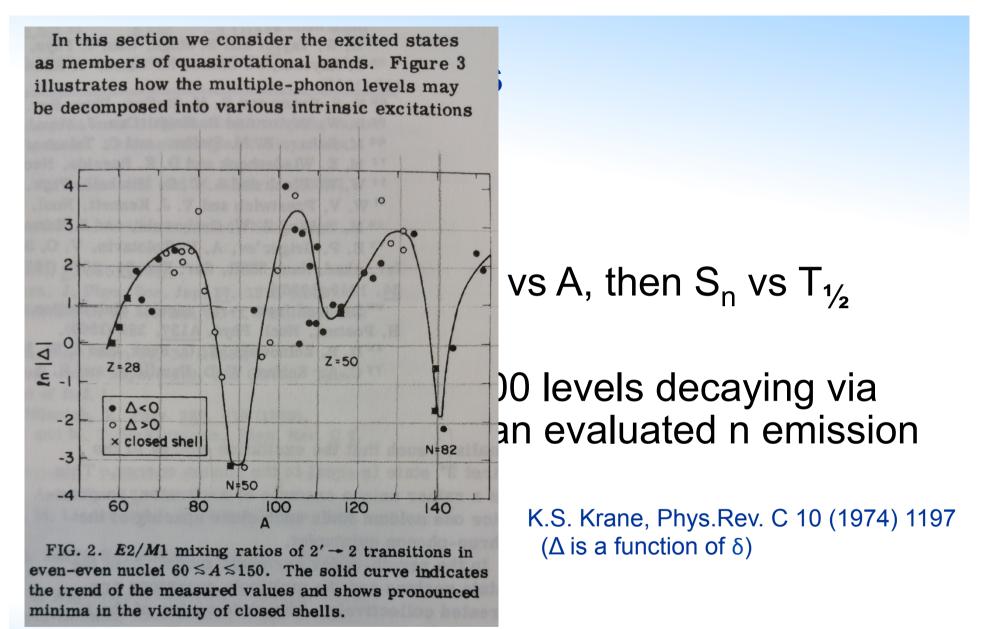

🔘 Slovenščina

○ 简体中文

○ 繁体中文

App Version Code 88 Version Name 4.2.42

Provided by the IAEA Nuclear Data Section



	—	_																				
			A.																			
	α																				Sg	Sg
	EC,	ß٠	+																255	256		
	β- ΄																		Db	Db	Db	Db
																		253	254	255	256	257
	p																	Rf	Rf	Rf	Rf	Rf
	n																	252	253	254	255	256
	SF																	Lr	Lr	Lr	Lr	Lr
	Sta	b	le												248		250	251	252		254	255
	?														No		No	No	No	No	No	No
													245	246	247	248		250	251	252	253	254
													Md	Md	Md	Md	Md	Md	Md	Md	Md	Md
										241	242	243	244		246	247	248	249	250	251	252	253
										Fm	Fm	Fm	Fm	Fm	Fm	Fm	Fm	Fm	Fm	Fm	Fm	Fm
										240	241	242	243	244	245	246	247	248	249	250	251	252
										Es	Es	Es	Es	Es	Es	Es	Es	Ës	Es	Es	Es	Es
								237	238	239	240	241	242	243	244	245	246	247	248	249	250	251
								Cf	Cf	Cf	Cf	Cf	Cf	Cf	Cf	Cf	Ćf	Cf	Cf	Cf	Cf	Cf
					233	234		236		238	239	240	241	242	243	244	245	246	247	248	249	250
					Bk	Bk		Bk		Bk	Bk	Bk	Bk	Bk	Bk	Bk	Bk	Bk	Bk	Bk	Bk	Bk
						233	234	235	236	237	238	239	240	241	247	243	244	245	246	247	248	249
						Cm	Cm	Cm	Cm	Cm	Cm	Cm	Cm	Cm	¢m	Cm						
			229	230		232	233	234	235	236	237	238	239	240	241	242	243	244	245	246	247	248
			Am	Am		Am	Am	Am	Am	Am	Am	Am	Am	Am	Am	Am	Am	Am	Am	Am	Am	Am
			228	229	230	231	232	233	234	235	236	237	238	239	240	241	242	243	244	245	246	247
			Pu	Pu	Pu	Pu	Pu	Pu	Pu	Pu	Pu	Pu	βu	Pu								
22	5 22	26	227	228	229	230	231	232	233	234	235	236	237	238	239	240	241	242	243	244		
N	p N	р	Np	Np	Np	Np	Np	Np	Np	Νр	Np	Ňp	Np	Np	Np	Np	Np	Np	Np	Np		
22	4 22	25	226	227	228	229	230	231	232	233	234	235	<mark>2</mark> 36	237	238	239	240	241	242	243		
L	וו	J	U	U	U	U	U	U	Ú	U	/U	U	U	U	U	U	U	U	U	U		
22	3 22	24	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239					
P	a P	a	Pa	Pa	Ра	Pa	Ра	Pa	Pa	Pa	Pa	Pa	Pa	Pa	Pa	Pa	Pa					
22	2 22	23	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238					
T	h T	h	Th	Th	Th	Th	Th	T h	Th	Th	Th	Th	Th	Th	Th	Th	Th					
22	1 22	22	223	224	225	226	227	2 28	229	230	231	232	233	234	235	236						
A	C A	с	Ac	Ac	Ac	AC	Ac	Ac	Ac	AC	Ac	Ac	Ac	Ac	Ac	Ac						
22	0 22	21	222	223	224	225	226	227	228	229	230	231	232	233	234							
R	a R	a	Ra	Ra	Ra	Ra	Ra	Ra	Ra	Ra	Ra	Ra	Ra	Ra	Ra							
21	9 22	20	221	227	223	224	225	226	227	228	229	230	231	232	233							
F	r F	r	Fr	Fr	Fr	Fr	Fr	Fr	Fr	Fr	Fr	Fr	Fr	Fr	Fr							
21	8 21	9	220	221	222	223	224	225	226	227	228	229										
R	n R	n	Rn	Rn	Rn	Rn	Rn	Rn	Rn	Rn	Rn	Rn										
21			219	220	221	222	223	224	225	226	227	228	229									
A	t 🎤	t	At	At	At	At	At	At	At	At	At	At	At									
21			218	219	220	221	222	223	224	225	226	227										
P	0 P	0	Ро	Ро	Ро	Ро	Ро	Po	Po	Po	Ро	Po										
21	5 21	6	217	218	219	220	221	222	223	224												
В	i E	Bi	Bi	Bi	Bi	Bi	Bi	Bi	Bi	Bi												
21	4 21	5	216	217	218	219	220															
P	b P	b	Pb	Pb	Pb	Pb	Pb															
21	3 21	4	215	216	217																	
				_	_																	
								\bigtriangledown			(C										

- β decay
 - List nuclides having an evaluated β- decay branching ratio and display on nuclear chart
 - 2. List nuclides that can theoretically β decay. Compare with results of 1.
 - 3. Plot Q_{β} against $Q_{\beta-n}$ for those nuclides with evaluated β and β n decay
 - 4. Find β decaying nuclides which have β transitions with 9 ≤ log ft ≤ 10. Check Δ J and Δ π values.

- α decay
 - 5. List nuclides with evaluated α decay and display on nuclear chart
 - 6. List nuclides that can theoretically α decay and compare with 5.
 - 7. Plot Q_{α} vs A. Plot the same for even-even, evenodd (odd-even), and odd-odd nuclei
 - 8. Find α decaying nuclides with Hindrance Factor HF=1. Plot Q_{α} vs A. Compare with plots from 7.

- Plot B(E₂) strengths of transitions from first excited 2'+ states to the ground state vs A, then Z (for e-e, e-o/o-e, o-o nuclides).
- 10.Plot dipole magnetic moments of e-e, e-o, o-o nuclei vs A and for Z = 19 isotopic chain vs A.
- Find nuclides which emit γ rays of energy 197 keV through internal transitions and induced reactions.

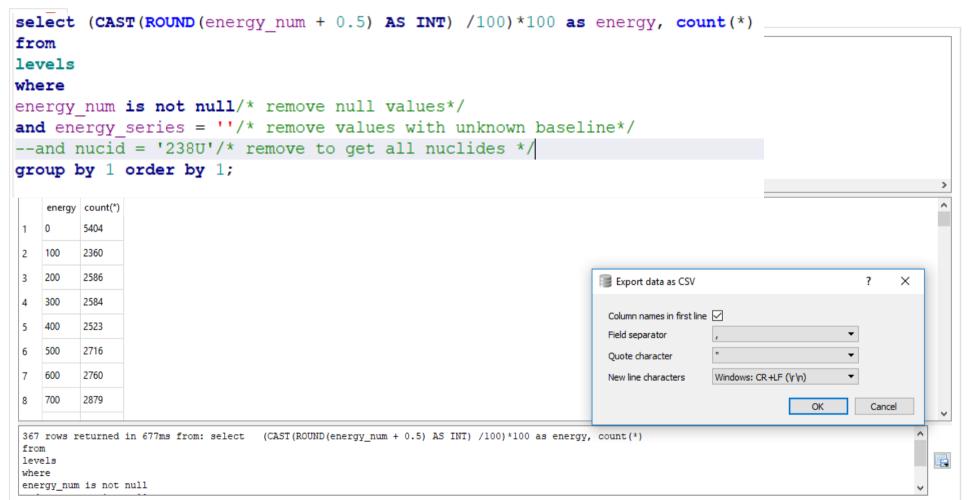
15. Plot A vs δ for E_2/M_1 transitions from J^π 2⁺ to 2⁺ for e-e nuclides having 60 ≤ A ≤ 150.

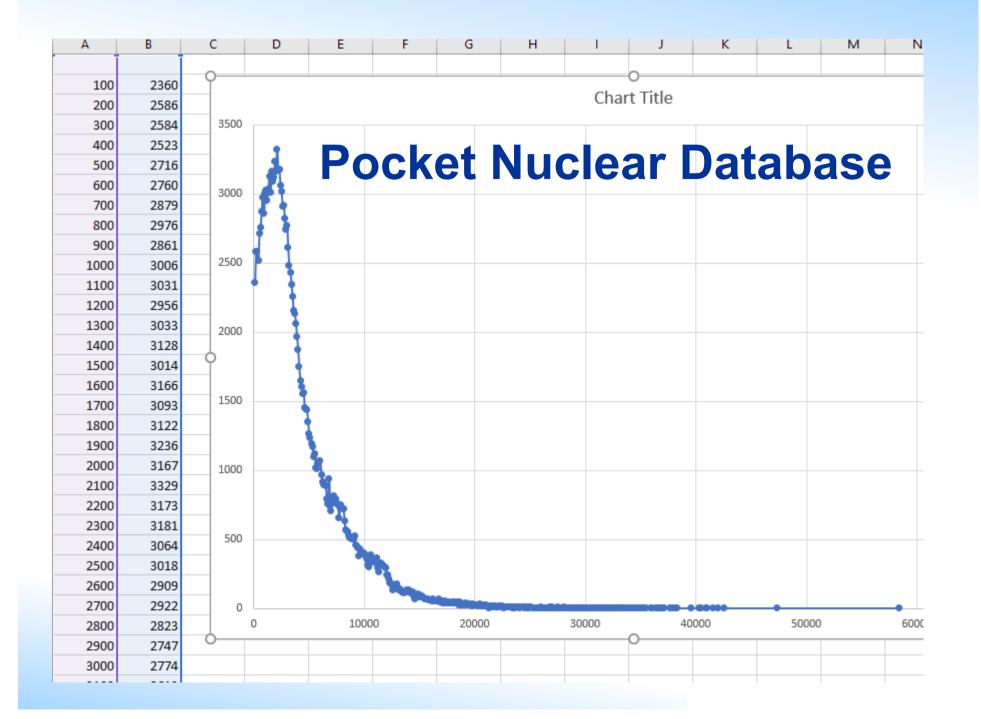
- 16 Plot Z vs Atomic Mass for A = 212
- 17 Plot Q_β versus Q_{EC} for the entire set

Pocket Nuclear Database

Open Database

File Edit View Help


🕞 New Database


Database Structure	Browse Data	Edit Pragmas	Execute SQL	
🕞 Create Table	Create Index	👿 Modify Table	e 🔲 Delete Table	
Name			Туре	Schema
 Tables (10) 				
> 📃 cum_fy				CREATE TABLE cum_fy (PARENT_NUCID varchar(5) NOT NULL, DAUGHTER_NUCID varchar(5) NOT null, L_SEQNO int(11) NOT
> decay_cod	des			CREATE TABLE decay_codes (ensdf_code varchar(10) DEFAULT NULL , decay_code int(10) NOT NULL , dataset_code varchar(10)
> decay_rad	liations			CREATE TABLE decay_radiations (parent_nucid varchar(10) NOT NULL, parent_Lseqno int(10) NOT NULL, z int(10) NOT NULL,
> 📃 descriptio	ns			CREATE TABLE descriptions (item varchar(10) NOT NULL , short_desc varchar(50) DEFAULT NULL , long_desc varchar(200) DEFA
> 📃 ensdf				CREATE TABLE ensdf (file varchar(10) NOT NULL ,idenfification varchar(60) DEFAULT NULL ,date_ensdf varchar(20) DEFAULT N
> 🔲 gammas				CREATE TABLE gammas (z int(10) NOT NULL ,n int(10) NOT NULL ,nucid varchar(10) NOT NULL ,g_seqno int(10) NOT NULL ,I_
> 🔲 ind_fy				CREATE TABLE ind_fy (PARENT_NUCID varchar(5) NOT NULL , DAUGHTER_NUCID varchar(5) NOT NULL , L_SEQNO int(11) NO
> 📃 l_decays				CREATE TABLE I_decays (z int(10) NOT NULL ,n int(10) NOT NULL ,nucid varchar(10) NOT NULL ,I_seqno int(10) NOT NULL ,de
 levels 				CREATE TABLE levels (z int(10) NOT NULL ,n int(10) NOT NULL ,nucid varchar(10) NOT NULL ,Lseqno int(10) NOT NULL ,energy
📄 z			int (10)	'z' int (10) NOT NULL
📄 n			int (10)	`n` int (10) NOT NULL
Di nucid			varchar (10)	`nucid` varchar (10) NOT NULL
🌛 I_seqn	0		int (10)	`I_seqno` int (10) NOT NULL
📄 energy	Ý		varchar (10)	`energy` varchar (10) DEFAULT NULL
📄 energy	y_unc		varchar (10)	`energy_unc` varchar (10) DEFAULT NULL
📄 energy	y_limit		varchar (10)	`energy_limit` varchar (10) DEFAULT NULL
📄 energy	y_num		double	`energy_num` double DEFAULT NULL
📄 energy	y_unc_num		double	`energy_unc_num` double DEFAULT NULL
📄 energ	y_series		varchar (10)	`energy_series` varchar (10) DEFAULT NULL
📄 half_li	fe		varchar (10)	`half_life` varchar (10) DEFAULT NULL
📄 half_li	fe_unc		varchar (10)	`half_life_unc` varchar (10) DEFAULT NULL
📄 half_li	fe_units		varchar (10)	`half_life_units` varchar (10) DEFAULT NULL
📄 half_li	fe_limit		varchar (10)	`half_life_limit` varchar (10) DEFAULT NULL
📄 half_li	fe_num		double	`half_life_num` double DEFAULT NULL
📄 half_li	fe_unc_num		double	`half_life_unc_num` double DEFAULT NULL
📄 half_li	fe_sec		double	`half_life_sec` double DEFAULT NULL
📄 half_li	fe_sec_unc		double	`half_life_sec_unc` double DEFAULT NULL
qi 📃			varchar (30)	<code>`jp` varchar (30) DEFAULT NULL</code>
📄 parity			int (10)	`parity` int (10) DEFAULT NULL
jp_ord			int (10)	`jp_order` int (10) DEFAULT NULL
📄 jp_we	ak		int (10)	<code>`jp_weak` int (10) DEFAULT NULL</code>
<	unole em		varchar (10.)	`quadrupole_em` varchar (10.) DFFΔIIIT NULL

Pocket Nuclear Database

Database Structure Browse Data Edit Pragmas Execute SQL

🤜 🖹 🖳 🕨 M


```
Execute SQL
Database Structure
            Browse Data
                    Edit Pragmas
SOL 1 🔀
     select distinct l.parent nucid, l.daughter nucid as daughter, l.daughter l seqno
 1
     as daughter level, l.start l en num as daughter level energy
 2
     from decay radiations 1 where daughter 1 seqno != -1
 3
     and l.daughter nucid = '210AT' /* remove this to get all nuclides*/
 4
    Eand not exists (
 5
    select * from levels ll where l.daughter nucid = ll.nucid
 6
    Land l.start l en num = ll.energy num )
 7
     order by 1, 2, 3;
 8
```

<

	parent_nucid	daughter	daughter_level	daughter_level_energy
1	214FR	210AT	1	72.77
2	214FR	210AT	1	70.0
3	214FR	210AT	2	498.0
4	214FR	210AT	3	507.38
5	214FR	210AT	3	597.0
6	214FR	210AT	5	1039.0
7	214FR	210AT	10	1228.0

210-At adopted dataset

214-Fr α 210-At decay dataset

Nuclide	E _x [keV]	J ⁿ order	B
²¹⁰ At 85 ¹²⁵	0.0	(5)+	
²¹⁰ At 85 ¹²⁵	72.65 <i>5</i>	(4)+	
²¹⁰ At 85 ¹²⁵	496.17 5	(4)+ 2	
²¹⁰ At 85 ¹²⁵	507.4 <i>1</i>	(6)+	
²¹⁰ At 85 ¹²⁵	530.88 6	(3)+	
²¹⁰ At 85 ¹²⁵	576.4 1	(7)+	
²¹⁰ At 85 ¹²⁵	594 ? 7		
210	603 5 5		

Alpha	⊥CSV	
E _a [keV]	I _a (abs) [%]	Daughter level [keV]
7406 <i>8</i>	0.3	1039 10
7605 <i>8</i>	1.0	837 10
7840	< 0.1	597
7937 <i>8</i>	1.0	498 <i>10</i>
8358 4	4.8 2	70 7
8427 4	93.0 <i>5</i>	0.0

