

Decay Data in ENSDF

F.G. Kondev Physics Division, Argonne National Laboratory kondev@anl.gov

Joint ICTP-IAEA Workshop on Nuclear Structure and Decay Data: Theory, Experiment and Evaluation, Trieste IT 2018

decay data are very rich source of nuclear structure information & are of importance to many other areas of science & applications

- nuclear structure often offer the best quantities, because the complexity of spectra is reduced
- astrophysics especially on the "r-process" side neutronrich nuclei
- \checkmark atomic masses proton-rich (Q α & Qp); neutron-rich (Q β^-)

Experimental Decay Data

✓ experimental results obtained following α , β^- , β^+ , EC, IT, p, cluster, etc. decay processes

Evaluated Decay Data

 Recommended (best) values for nuclear levels and decay radiation properties, deduced by the evaluator using all available experimental data & theoretical calculations (e.g. conv. coefficients)

Myth: decay data evaluation deals only with decay data – many properties come from other decays and reactions (adopted level properties), e.g. $E\gamma$, $I\gamma$, MR, ICC (expt), ...

- controls the lifetime of the parent
- the window of daughter states available

every decay dataset MUST have a Parent record – P in column 8

206TL206HG B- DECAY1970AS05,1968WO0808NDS200805206TLH TYP=FUL\$AUT=F.G. KONDEV\$CIT=NDS 109, 1527 (2008)\$CUT=31-Jan-2008\$

206TL c 1968Wo08: {+206}Hg produced by {+208}Pb(p,3p) reaction and isotope 206TL2c separation. |b{+-} measured in proportional counter, ce in Si(Li) 206TL2c detectors, |g singles and |g|g coincidences in NaI and Ge detector, 206TL3c and |g|b{+-} coincidences with NaI and Si(Li) detectors.

206TL c 1970As05: {+206}Hg produced by {+208}Pb(p,3p) reaction with E(p)=600 206TL2c MeV. |g singles measured with Ge detector, lifetime measured with 206TL3c plastic scintillators. 206TL c Other: 1969Ha03: survey measurement of level lifetimes using 600 MeV 206TL2c proton beam on Pb target with isotope separation. Measured limit for 206TL3c T{-1/2}(305|g).

206HG CP T\$From 1111AAyy ...

- usually the experiments provide relative emission probabilities absolute measurements are difficult & rare
 - convert relative to absolute emission probabilities using the properties of the decay scheme – NORMALIZATION

Relative Intensity	Normalization factor	Absolute Intensity
Ιγ χ	NR x BR	= %Ιγ
Iγ (tot) x	NT x BR	= %Iγ (tot)
I β (or α or ϵ) x	NB x BR	= %I β (or α or ϵ)
lβn (or εp) x	NP x BR	= %lβn (or εp)

177HF cN NR\$Using absolute |g ray intensity for the 208.3662|g of 10.36% {I7} 177HF2cN from 2001Sc23

α–decay – cont.

$$|I_i - I_f| \le l_\alpha \le |I_i + I_f|$$
$$\pi_i \pi_f = (-1)^{l_\alpha}$$

even-even nuclei: $0+ \rightarrow 0+; l_{\alpha}=0$ odd-A: $1/2+ \rightarrow 1/2+; l_{\alpha}=0,1$ $1/2+ \rightarrow 3/2+; l_{\alpha}=1,2$ $1/2+ \rightarrow 9/2-; l_{\alpha}=4,5$

Strong dependence on I_{α}

✓ fastest decay for I_{α} =0

Δ

- **Configuration dependence**
- fastest for the same configurations

I. Ahmad et al., Phys. Rev. C68 (2003) 044306

Hindrance Factor in α-decay

$$Q\alpha \approx E\alpha \times \frac{m(A,Z)}{m(A-4,Z-2)} = E\alpha \times \left(1 + \frac{4}{A-4}\right)$$

205PO 209RN & DECAY 1971G035 205PO H TYPEFUL\$AUTER & KONDEV\$CITENDS 101 521 (2004)\$(04NDS 200404
205PO cA HF\$Using r{-0}({+205}Po)=1.462 {I8}, weighted ave 205PO2cA from values for neighboring even-even {+204}Po (1 205PO3cA {+206}Po (r{-0}=1.4571 {I33}) nuclei (1998Ak04).	erage value deduced c(-0)=1.476 (I6)) and
205PO cA E,IA\$From 1971Go35, unless otherwise specified.	
205PO cL E\$From the measured E a.	
205PO cL J,T\$From adopted levels, unless otherwise specif:	ied.
205PO cL E(A) \$Configuration=((p h{-9/2}){++2}{-0+}(n f{-	-5/2})(+-1))
205PO cL E(B)\$Configuration=((p h{-9/2}){++2}{-0+}(n p{-	-1/2})(+-1))
205PO cL E(C)\$Configuration=((p h{-9/2}){++2}{-0+}(n p{-	-3/2})(+-1})
209RN P 0.0 5/2- 28.8 M 9	6155.5 20
209RN cP \$1971Go35: Mass separated source was produced in	bombardment of a
209RN2cP metallic thorium target with 660 MeV proton beams	s. Detectors: magnetic
209RN3cP spectrograph with energy resolution of 4-6 keV; 1	Measured: E a, I a,
209RN4cP T(-1/2), and % a. Others: 1955Mo68, 1955Mo69 and	1971Jo19.
209RN cP \$T{-1/2}: Weighted average of 28.5 min {I10} (19	71Go35) and 30 min
<u>209RN2cP {I2} (1955Mo68); ; % a from 1971Go17. Other % a=</u> :	17 (1955Mo68);
205PO N 1.0 1.0 0.17 2	
205PO PN	1
205PO L 0.0 5/2- 1.74 H 8	A
205PO A 6039 3 99.617 20 1.17 15	
205PO cA E\$Other: 6037 keV {I3} (1955Mo69).	
205PO L 144 4 1/2- 310 NS 60	В
205PO L 144 4 1/2- 310 NS 60 205PO cL T\$From a g(t) (1971Jo19).	В
205PO L 144 4 1/2- 310 NS 60 205PO cL T\$From a g(t) (1971Jo19). 205PO A 5898 3 0.139 20 187 36	В
205PO L 144 4 1/2- 310 NS 60 205PO cL T\$From a g(t) (1971Jo19). 205PO A 5898 3 0.139 20 187 36 205PO L 155 4 3/2-	B C
205P0 L 144 4 1/2- 310 NS 60 205P0 cL T\$From a g(t) (1971Jo19). . . 205P0 A 5898 3 0.139 20 187 36 205P0 L 155 4 3/2- 205P0 A 5887 3 0.219 20 105 17	B C
205P0 L 144 4 1/2- 310 NS 60 205P0 cL T\$From a g(t) (1971Jo19). .	B C

²⁰⁹Rn α Decay 1971Go35

Parent ²⁰⁹Rn: E=0.0; $J\pi$ =5/2-; $T_{1/2}$ =28.8 min 9; Q(g.s.)=6155.5 20; % α decay=17 2.

²⁰⁹Rn: 1971Go35: Mass separated source was produced in bombardment of a metallic thorium target with 660 MeV proton beams. Detectors: magnetic spectrograph with energy resolution of 4-6 keV; Measured: Eα, Iα, T_{1/2}, and %α. Others: 1955Mo68, 1955Mo69 and 1971Jo19.

²⁰⁹Rn: T_{1/2}: Weighted average of 28.5 min 10 (1971Go35) and 30 min 2 (1955Mo68); ; %α from 1971Go17. Other %α=17 (1955Mo68).

				²⁰⁵ Po	Levels		alpha	d.rpt
$\mathrm{E}(\mathrm{level})^{\dagger}$	$J\pi^{\ddagger}$	T _{1/2} ‡		Z: 86. A:	209. ALPHAD Ve	ersion 1.6 [7-FEB	3-2001]	
0.0 [§] 144 [#] 4 155 [@] 4 3864	5 / 2 - 1 / 2 - 3 / 2 - (3 / 2 -)	1.74 h <i>8</i> 310 ns <i>60</i>	Τ _{1/2} : From αγ(t)	Q ALPHA 6.1555 20 TOTAL H. 28.8 M 9	E TOTAL 3 6.1884 20 0 ALF LIFE ALPH 9 0.17	ALPHA HALF LIFE D.118 D 15 HA BRANCH 70 20	RADIUS (1E-13 cm) 8.62 5	RZERO 1.4620 80
† From t ‡ From t § Config # Config @ Config	the measured adopted level uration=((π i uration=((π i uration=((π i	i Eα. is, unless otherwise $h_{9/2}^{+2}_{0+}(v f_{5/2}^{-1})$. $h_{9/2}^{+2}_{0+}(v p_{1/2}^{-1})$. $h_{9/2}^{+2}_{0+}(v p_{3/2}^{-1})$.	specified.	ENERGY LEVE K 0.000 144 4 155 4 386 4	L ALPHA ENERGY 6039 3 5898 3 5887 3 5660 3	Y ABUNDANCE 0.99617 20 0.00139 20 0.00219 20 0.00239 20	CALC. HALF LIFE 0.101 3 0.452 16 0.508 18 6.39 23	HINDRANCE FACTOR 1.17 15 187 36 106 17 77 12
					lettere.			

α radiations

$E\alpha^{\ddagger}$	E(level)	Iα ^{‡§}	HF^{\dagger}		Comments
5660 3 5887 3 5898 3	386 155 144	0.0239 <i>20</i> 0.219 <i>20</i> 0.139 <i>20</i>	77 12 105 17 187 36		
6039 <i>3</i>	0.0	99.617 <i>20</i>	1.17 15	Eα: Other: 6037 keV 3 (1955Mo69).	same J π and configuration

[†] Using $r_0(^{205}Po)=1.462~8$, weighted average value deduced from values for neighboring even-even $^{204}Po~(r_0=1.476~6)$ and $^{206}Po~(r_0=1.4571~33)$ nuclei (1998Ak04).

‡ From 1971Go35, unless otherwise specified.

 $\frac{8}{5}$ For α intensity per 100 decays, multiply by 0.17 2.

Experimental techniques

magnetic spectrometers
 ionization chambers
 semiconductor detectors
 ✓ Si(Au), PIPS, DSSD, ...

1.5 keV energy resolution

using radioactive sources (off-line)
 when lifetimes are sufficiently long

using nuclear reactions (on-line)
 implanting on a catcher foil

implanting directly on the DSSD

Energy Calibration

absolute determinations of α energies using the BIPM magnetic spectrometer with a semi-circle focusing of alpha-particles. These measurements were performed in the 70's - 80's for the most intense alpha-transitions

ATOMIC DATA AND NUCLEAR DATA TABLES 47, 205–239 (1991) RECOMMENDED ENERGY AND INTENSITY VALUES OF ALPHA PARTICLES FROM RADIOACTIVE DECAY

A. RYTZ*

Bureau International des Poids et Mesures F-92312 Sèvres Cedex, France

Long-lived radioactive sources

- <u>semiconductor detectors</u>: Passivated Implanted Planar Silicon (PIPS)
- ✓ energy resolution (FWHM) of 9-12 keV
- ✓ small geometrical efficiency (Ω) in order to minimize α–ecoincidence summing effects

sophisticated data analysis

✓ thin and isotopically pure sources

Harada et al. J. Nucl. Sci. and Techn. 43 (2006) 1289

²⁵¹Cf α–decay

PHYSICAL REVIEW C 68, 044306 (2003)

Energy levels of ²⁴⁷Cm populated in the α decay of ²⁵¹C

²⁵¹Cf α -decay – cont.

Energy (keV)	Intensity (%)	$\begin{array}{c} Transitions\\ Initial {\rightarrow} Final \end{array}$
$38.48 {\pm} 0.05$	$0.038 {\pm} 0.006$	$265.86 \! ightarrow \! 227.38$
52.45 ± 0.05	0.048 ± 0.005	$318.31 \rightarrow 265.86$
58.03 ± 0.05	0.024 ± 0.005	$285.41 \rightarrow 227.38$
60.5 ± 0.1	0.010 ± 0.003	$345.9 \rightarrow 285.41$
61.67 ± 0.05	0.40 ± 0.03	$61.67 \rightarrow 0$
$73.00 {\pm} 0.08$	0.040 ± 0.005	$134.65 \! ightarrow \! 61.67$
$84.35 {\pm} 0.08$	0.040 ± 0.005	$219.0 \rightarrow 134.65$
104.57 ± 0.02	12.6 ± 0.7	$Cm K\alpha_2$
109.26 ± 0.02	19.8 ± 1.0	$Cm K\alpha_1$
113.7 ± 0.1	0.024 ± 0.005	$518.58 \rightarrow 404.90$
$122.31 \pm 0.02 +$		Cm <i>K</i> β ₃
123.40 ± 0.02	7.7 ± 0.5	$Cm K\beta_1$
$127.01 \pm 0.04 +$		$\operatorname{Cm} K\beta_2 + K\beta_4$
128.00 ± 0.05	2.6 ± 0.2	Cm KO _{2,3}
134.65 ± 0.08	0.014 ± 0.003	$134.65 \rightarrow 0$
157.35 ± 0.08	0.020 ± 0.004	$219.0 \rightarrow 61.67$
$165.70 {\pm} 0.05$	0.12 ± 0.01	$227.38 \! ightarrow \! 61.67$
177.52 ± 0.02	17.3 ± 0.9	$404.90 \rightarrow 227.38$
$227.38 {\pm} 0.02$	6.8 ± 0.3	$227.38 \rightarrow 0$
256.65 ± 0.08	0.13 ± 0.01	$318.31 \rightarrow 61.67$
$265.86{\pm}0.08$	0.43 ± 0.03	$265.86 \rightarrow 0$
284.2 ± 0.1	0.12 ± 0.01	$345.9 \rightarrow 61.67$
285.41 ± 0.08	1.13 ± 0.09	$285.41 \rightarrow 0$
289.3 ± 0.1	0.070 ± 0.007	$516.7 \rightarrow 227.38$
291.20 ± 0.08	0.30 ± 0.03	$518.58 \rightarrow 227.38$
315.8 ± 0.1	0.024 ± 0.003	$581.7 \rightarrow 265.86$
318.3 ± 0.1	0.050 ± 0.005	$318.31 \rightarrow 0$
345.9 ± 0.1	0.043 ± 0.004	$345.9 \rightarrow 0$
354.3 ± 0.1	$0.013 \!\pm\! 0.002$	$581.7\!\rightarrow\!227.38$

I. Ahmad et al., Phys. Rev. C68 (2003) 044306

No direct detector implantation

Windmill System (WM) at ISOLDE

A. Andreyev et al., PRL 105, 252502 (2010)

Direct implantation on the detector

studies of heavy and super-heavy nuclei

X-array one "Super-Clover" & four 70 X 70 mm Clovers

Direct implantation on the detector

Implantation - Decay within a single pixel

$$Q\alpha = E\alpha \times \left(1 + \frac{4}{A-4}\right) = E\alpha + E\alpha \frac{4}{A-4}$$

Important: how calibration was made?

- ✓ external source, e.g. ²⁵²Cf needs correction
- ✓ internally, but when A(cal) is very different need to be corrected

EPJ Web of Conferences 146, 10007 (2017) ND2016 DOI: 10.1051/epjconf/201714610007

Corrections of alpha- and proton-decay energies in implantation experiments

W.J. Huanga and G. Audi

$\alpha 1 - \alpha 2$ (parent-daughter) correlations

F.G. Kondev et al. Phys. Lett. B528 (2002) 221

$$HF_{i} = \frac{T_{1/2}^{Exp}(\alpha_{i})}{T_{1/2}^{Theory}} = \frac{T_{1/2}^{Exp} / BR_{i}}{T_{1/2}^{Theory}}$$

Δ

¹⁷⁹Tl: α-decay properties ⁸⁹Y + ⁹²Mo@¹⁸¹Tl@375 MeV

Δ

Guidelines for evaluators

□ Start with a collection of all references – NSR is very useful!

Complete the ID record – provide information about the key references

✓ how the parent nuclide was produced, which techniques and equipment were used; what was the energy resolution of the spectrometer and what was actually measured

✓ mention other relevant references only by the NSR key number (for the benefit of the reader)

Complete the Parent record

✓ Ex, J^{π} and T1/2 from "Adopted Levels" of the parent nuclide, BUT check for new data and reevaluate, if needed

✓ Qα from AME16 (2017Wa10)

Deduce r0 (if not an even-even nuclide) and include it in the HF record – the new alphad program also provides it

Guidelines for evaluators – cont.

NO GAMMA RAYS WERE MEASURED

\Box Include measured E α and I α with the corresponding level

- ✓ if there is more than one reference you may use averages, BUT be careful need to compare oranges with oranges, e.g. magnetic spectrometer ($\Delta E \sim 4 \text{ keV}$) vs Si ($\Delta E \sim 20 \text{ keV}$)
- \checkmark most measurements are relative to E α from a standard radionuclide. If available, include this information in a comment.
- v use Ritz's (At. Data and Nucl. Data Tables 47, 205 (1991)) evaluated Eα and Iα
 when no new values are available.
- ✓ renormalize I α , so that SUM I α _i = 100 % have a simple spreadsheet handy

 \checkmark provide comments on Ea and Ia , where appropriate

Complete the Normalization record – BR

✓ BR from Adopted levels of the parent, BUT check for new data are reevaluate, if needed

Guidelines for evaluators – cont.

GAMMA RAYS WERE MEASURED

 \Box Include measured E α and I α (as in the earlier slide)

□ Include measured Eγ and Iγ

✓ if there is more than one reference you may use averages, BUT be careful – need to compare oranges with oranges

 \checkmark include Mult. & MR – use "Adopted gammas" or J^{π} differences if not available

✓ include measured ICC and/or sub-shell ratios to support Mult. assignment or to deduce MR as a comment record to a corresponding G record

 \checkmark include T1/2 available for a particular level – usually $\alpha\gamma(t)$ coincidence data

Run BrICC to deduce conversion electron coefficients

Run GTOL – determine level energies and intensity balances

Complete the Normalization record – NR and BR

NR - need to convert to %Iγ

✓ BR from Adopted levels of the parent, BUT check for new data are reevaluate, if needed

Guideline for evaluators-cont.

- **Run FMTCHK check that everything is OK**
- Run ALPHAD calculate HF
- **Run RADLIST check the decay scheme for consistency**

$$Qeff = \sum_{i=1}^{allBF} Q_i BF_i; Qcalc = \sum_{j=1}^{all\gamma} E_{\gamma} P_{\gamma} + \sum_{k=1}^{all\beta} E_{\beta k} P_{\beta k} + \sum_{l=1}^{all\alpha} E_{\alpha l} P_{\alpha l} + etc. \quad Consistency = \left[\frac{Qeff - Qcalc}{Qeff}\right] \times 100\%$$

Beta decay - Introduction

Beta Decay: universal term for all weak-interaction transitions between two neighboring isobars

Takes place is 3 different forms β^- , β^+ & EC (capture of an atomic electron)

a nucleon inside the nucleus is transformed into another

Beta decay - Introduction: cont.

transition probability

S_{if} - strength function

$$\frac{\left|\langle \psi_{f} | \tau_{k}^{\pm} \text{ or } \sigma \tau^{\pm} | \psi_{i} \rangle\right|^{2}}{2J_{i}+1} = Const \frac{I_{\beta_{if}}}{f(Z,Q_{\beta}-E_{f})\times T_{1/2}} = Const \frac{1}{ft}$$

Classification of β decay transitions

Type of transition	Order of forbiddenness	ΔI	$\pi_{ m i}\pi_{ m f}$
Allowed		0,+1	+1
	1	∓ 2	-1
Forbidden unique	2	∓ 3	+1
	3	∓ 4	-1
	4	∓ 5	+1
	•	•	
	1	0, ∓1	-1
Forbidden	2	∓2	+1
	3	Ŧ 3	-1
	4	∓ 4	+1
	•	•	

β decay Hindrance Factor

$$HF_{\beta}^{n} = \frac{T_{1/2}^{\beta_{i}}}{T_{1/2}^{n}} = \left(\frac{g^{2}\eta^{2}}{2\pi^{3}\ln 2}\right)f_{n}t$$

$$f_n = \int_1^W p_e W_e (W_0 - W_e)^2 F(Z, W_e) (C_n / \eta^2) dW_e$$

statistical rate function (phase-space factor): the energy & nuclear structure dependences of the decay transition

 η^2 contains the nuclear matrix elements

Log *ft* values

 $\log ft = \log f + \log t$

coming from calculations

coming from experiment

Decay Mode	Туре	$\Delta I (\pi_i \pi_f)$	$\log f$
β– EC + β+	allowed	0, +1 (+)	$\log f_0^- \\ \log(f_0^{EC} + f_0^+)$
β– EC + β+	1 st -forb unique	∓ 2 (-)	$\log f_0^- + \log(f_1^- / f_0^-)$ $\log[(f_1^{EC} + f_1^+) / (f_0^{EC} + f_0^+)]$

N.B. Gove and M. Martin, Nuclear Data Tables 10 (1971) 205

Log t

$$t = T_{1/2}^{\beta_i} = \frac{T_{1/2}^{\exp}}{P_{\beta_i}} = \eta [I^{tot}(out) - I^{tot}(in)] \qquad I^{tot}(in)] \qquad I^{tot}(out/in) = \sum_{i} I_{\gamma_i}(1 + \alpha_{T_i}) \\ \alpha_T(M1 + E2) = \frac{\alpha_T(M1) + \delta^2 \alpha_T(E2)}{1 + \delta^2}$$

 $\eta = 0.0022 \rightarrow t = 2.056 \times 10^{6} [s] \rightarrow \log t = 6.31 \rightarrow \log f = 2.386 \rightarrow \log ft = 8.7$

Rules for Spin/Parity Assignments

PHYSICAL REVIEW C

VOLUME 7, NUMBER 5

MAY 1973

Rules for Spin and Parity Assignments Based on Logft Values*

S. Raman and N. B. Gove Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830 (Received 25 October 1972)

There are only a few cases where unambiguous assignment can be made

□ "pandemonium effect" – neutron rich nuclei – log *ft* is a just lower limit!

needs to know the decay scheme and its properties accurately!

Log *ft* values – latest review

Nuclear Data Sheets 84, 487 (1998) Article No. DS980015

> ~3900 cases -> gives centroids and widths

Review Of Log*ft* Values In β Decay^{*}

B. Singh, J.L. Rodriguez, S.S.M. Wong & J.K. Tuli

Beta decay of odd-odd nuclei

Experimental Approaches

Discrete β-γ-γ Coincidence Spectroscopy

- need a complete knowledge of the decay scheme & detailed nuclear structure information -> intensity balances to determine I_β
- complications when far from stability & when g.s to g.s decay information is needed
- state-of-the-art detector equipment

most studies in the past involved a single HpGe detector - lack of γ-γ coincidences - incomplete decay schemes - www.nndc.bnl.gov/ENSDF

 $I_{\beta_i} = \sum I_{\gamma_i}^{ne}(out) - \sum I_{\gamma_i}^{ne}(in)$

Experimental Approaches - cont.

Total Gamma-ray Absorption Spectroscopy

- large γ-ray efficiency (GOOD!), but low energy resolution & resolving power
- must know the details of the decay scheme often not the case and relies on simulations complications when isomers are presented
- complicated unfolding procedure often nonunique solutions - unreliable uncertainties

Beta Decay (β⁻, β⁺ and EC)

<u>Energy (keV)</u>

- Give $E_{\beta}(max)$ only if experimental value is so accurate that it could be used as input to mass adjustment
- ✓ Do not give $E_{\beta}(avg.)$, program LOGFT calculates its value
- <u>Absolute intensity</u> (%I_{β}, per 100 decays of the parent nucleus)
- Give experimental value, if used for normalizing the decay scheme
- Give absolute value deduced from g-ray transition intensity balance (Program GTOL)
- <u>Log ft</u>
- Usually authors assign spins and parities. Nevertheless, verify that the relevant log *ft* values are consistent with their assignments
- ✓ Give $(I_{ec}+I_{\beta+})$ feedings deduced from γ -ray transition intensity balances. Program LOGFT calculates (from theory) ec and β^+ probabilities as well sub-shell ($P_{K'}$, $P_{L'}$, $P_{M'}$, ...) probabilities
- Give (in comments) x-ray intensities. These are useful for normalizing or testing the decay scheme

Guidelines for evaluators

□ Start with a collection of all references – NSR is very useful!

Complete the ID record – provide information about the key references

✓ how the parent nuclide was produced, which techniques and equipment were used; what was the energy resolution of the spectrometer and what was actually measured

✓ mention other relevant references only by the NSR key number (for the benefit of the reader)

Complete the Parent record

 \checkmark Ex, J^{π} and T1/2 from "Adopted Levels" of the parent nuclide, BUT check for new data and reevaluate, if needed

V Qβ from AME16 mass evaluation (2017Wa10)

Guidelines for evaluators – cont.

Include measured Εγ and Ιγ

✓ if there is more than one reference you may use averages (avetools program), BUT be careful – need to compare oranges with oranges

✓ include Mult. & MR – use "Adopted gammas" – if Mult. is not known, but initial and final J^{π} are – use [], e.g. [E2], so ICC can be calculate

✓ include measured ICC and/or sub-shell ratios to support Mult. assignment or to deduce MR – use BrIccMixing program

v include T1/2 available for a particular level – usually $\beta\gamma(t)$ coincidence data

Run BrICC to deduce conversion electron coefficients

be careful when dealing with transitions containing E0 admixtures (mostly J to J) or those with anomalous ICC (penetration) – use experimental ICC

205TL L 0.0 1/2+ 96.8 15 205TL B 1.46 NS 8 L 203.6519 3/2+ 205TL 205TL CL T\$ From 1971Sh35. 205TL G 203.70 20 100 M1+E2 20 0.46 4 +1.18205TL CG CC\$ From adopted gammas. 205TL3 G EKC=0.29 4 \$ ELC=0.132 6 \$ EMC+=0.040 3 205TLS G KC=0.50 8\$LC=0.167\$MC=0.0415 5\$NC+=0.0133 2 205TL L 619.3 3 5/2+ 3 0.59 8 M1+E2 0.168 205TL G 415.6 $-0.069\ 10$ 205TLS G KC=0.138\$LC=0.0232\$MC=0.00541\$NC+=0.00174 G 618.6 7 0.090 20 E2 205TL 0.0173 205TLS G KC=0.0130 4\$LC=0.00328 10 205TL 1140.6 3 3/2+ T. G 521.30 5 0.033 3 M1+E2 2.2 205TL GE 0.031 6 205TL CG RI\$ From adopted gammas. 205TLS G KC=0.023 5\$LC=0.0060 7 205TL G 937.2 6 0.093 20 M1+E2 GE - 4 205TLS G CC=0.0077 4\$KC=0.0061 4\$LC=0.00118 5 205TL G 1141.1 15 0.045 20 M1(+E2) -0.25 25 0.012011 205TLS G KC=0.0098 9\$LC=0.00160 14

Guidelines for evaluators – cont.

Complete the Normalization record – NR and BR

 \checkmark NR - need to convert to %Iy

✓ BR from Adopted levels of the parent, BUT check for new data are reevaluate, if needed

Run GTOL – determine level energies and intensity balances

²⁰⁵Hg β– decay as an example

Δ

	P 0.0	1/	2-	5.	14 M	9	15	33	4
205TL	N 0.022	10		1	1.0				
205TL C	N NR\$ ba:	sed on IB	-=3.2% 1	5 to the	203.7 1	evel.			
205TL2C	N The tot	tal energ	v realize	ed in B-	decay o	of 205HG i	s calculate	ed	
205TL3c	N usina I	RADLST as		5 a 111 D	accur	2 200110 2	b ourourdo	0.0	
2051130	N 1532 KI	TV 22 Th	is value	icina	very do	od agree	ent with		
2051140	M = 1002 Ki	21 VEV /	to varue	a na ctina	that th	ou agreen	achomo		
2051150	N QP -IJ.	oloto	unus su	ggesting	ullat ti	le decay s	cheme		
2051160		piele.	<u>.</u>						
205TL	г о.о	1/	2+						
205TL	В	96	.8 15						
205TL	L 203	3.6519 3/	2+	1.	46 NS	8			
205TL C	L T\$ Fron	n 1971Sh3	5 .						
205TL	G 203.70	<mark>20 10</mark>	0 0	M1+E2	+1.18	20	0.46 4		
1/2- 0.0 5	.14 min	Intensities: I(γ+ce) per 100 p	arent					
205 Hg			decays						
80	- 100								
70, 0 - 1522 4	5-=100								
U-=1535*		6				prog	gram GTOL		
Q==1535 *		000 233	a			pro	gram GTOL		
Q==1535 *		0005 0.0005 0.0005	000			pro	gram GTOL		
Q-=1333 ·		2000 2000 2000 2000 2000 2000 2000 200	00000000000000000000000000000000000000			pro	gram GTOL		
Q-=1535.	RI	RI	RI	TI	TI	pro§	gram GTOL		
LEVEL	RI (OUT)	RI (IN)	RI (NET)	TI (OUT)	TI (IN)	pro§ ^{ti} (NET)	RAM GTOL	(INPUT	;
Q-=1333 - LEVEL 0.0	RI (OUT) 0.000	RI (IN) 100.63 8	RI (NET) -100.63 8	TI (OUT) 0.000	TI (IN) 147 4	prog TI (NET) -147 4	gram GTOL NET FEEDING (GALC) 96.8 15	(INFUT 96.8	15
LEVEL 0.0 203.65 19	RI (OUT) 0.000 100.0	RI (IN) 100.63 8 0.95 10	RI (NET) -100.63 8 99.05 10	TI (OUT) 0.000 146 4	TI (IN) 147 4 1.05 11	prog TI (NET) -147 4 145 4	gram GTOL NET FEEDING (GALG) 96.8 15 3.2 15	(INPUT 96.8 3.2	15 15
U-=1535 LEVEL 0.0 203.65 19 Upp	RI (OUT) 0.000 100.0 er limit (90%	RI (IN) 100.63 8 0.95 10 C.L.) estimate	RI (NET) -100.63 8 99.05 10	TI (OUT) 0.000 146 4	TI (IN) 147 4 1.05 11	prog TI (NET) -147 4 145 4	gram GTOL NET FEEDING (CALC) 96.8 15 3.2 15	(INPUT 96.8 3.2	, 15 15
U-=1535 LEVEL 0.0 203.65 19 Upp M	RI (OUT) 0.000 100.0 er limit (90% ethod 1: 5 ethod 2: 5	RI (IN) 100.63 8 0.95 10 C.L.) estimate 5.07 5.05	RI (NET) -100.63 8 99.05 10	TI (OUT) 0.000 146 4	TI (IN) 147 4 1.05 11	prog TI (NET) -147 4 145 4	gram GTOL NET FEEDING (GALC) 96.8 15 3.2 15	(INPUT 96.8 3.2	15 15
U-=1533 LEVEL 0.0 203.65 19 Upp M 619.3 3	RI (OUT) 0.000 100.0 er limit (90% ethod 1: 5 ethod 2: 5 0.68 9	RI (IN) 100.63 8 0.95 10 C.L.) estimate 5.07 5.05 0.084 16	RI (NET) -100.63 8 99.05 10 es: 0.60 9	TI (OUT) 0.000 146 4 0.78 10	TI (IN) 147 4 1.05 11 0.086 16	prog TI (NET) -147 4 145 4 0.69 10	gram GTOL NET FEEDING (GALC) 96.8 15 3.2 15 0.015 8	(INPUT 96.8 3.2 0.015) 15 15 7
LEVEL 0.0 203.65 19 Upp M 619.3 3 1140.6 3	RI (OUT) 0.000 100.0 er limit (90% ethod 1: 5 ethod 2: 5 0.68 9 0.17 3	RI (IN) 100.63 8 0.95 10 C.L.) estimate 5.07 5.05 0.084 16 0.000 0.000	RI (NET) -100.63 8 99.05 10 es: 0.60 9 0.17 3 0.21 5	TI (OUT) 0.000 146 4 0.78 10 0.17 3	TI (IN) 147 4 1.05 11 0.086 16 0.000	prog TI (NET) -147 4 145 4 0.69 10 0.17 3	gram GTOL NET FEEDING (CALC) 96.8 15 3.2 15 0.015 8 0.0038 19 0.007 4	(INPUT 96.8 3.2 0.015 0.0038	15 15 7 19
LEVEL 0.0 203.65 19 Upp M 619.3 3 1140.6 3 1218.6 4 1340.3 5	RI (OUT) 0.000 100.0 er limit (90% ethod 1: 5 ethod 2: 5 0.68 9 0.17 3 0.31 5 0.28 6	RI (IN) 100.63 8 0.95 10 C.L.) estimate 5.07 5.05 0.084 16 0.000 0.000 0.000	RI (NET) -100.63 8 99.05 10 es: 0.60 9 0.17 3 0.31 5 0.28 6	TI (OUT) 0.000 146 4 0.78 10 0.17 3 0.31 6 0.28 6	TI (IN) 147 4 1.05 11 0.086 16 0.000 0.000 0.000	prog TI (NET) -147 4 145 4 0.69 10 0.17 3 0.31 6 0.28 6	gram GTOL NET FEEDING (GALG) 96.8 15 3.2 15 0.015 8 0.0038 19 0.007 4 0.006 3	(INPUT 96.8 3.2 0.015 0.0038 0.007 0.006) 15 15 7 19 4 3
LEVEL 0.0 203.65 19 Upp M 619.3 3 1140.6 3 1218.6 4 1340.3 5 1434.0 5	RI (OUT) 0.000 100.0 er limit (90% ethod 1: 5 0.68 9 0.17 3 0.31 5 0.28 6 0.22 5	RI (IN) 100.63 8 0.95 10 C.L.) estimate 5.07 5.05 0.084 16 0.000 0.000 0.000 0.000 0.000	RI (NET) -100.63 8 99.05 10 es: 0.60 9 0.17 3 0.31 5 0.28 6 0.22 5	TI (OUT) 0.000 146 4 0.78 10 0.17 3 0.31 6 0.28 6 0.22 6	TI (IN) 147 4 1.05 11 0.086 16 0.000 0.000 0.000 0.000	prog TI (NET) -147 4 145 4 0.69 10 0.17 3 0.31 6 0.28 6 0.22 6	gram GTOL NET FEEDING (CALC) 96.8 15 3.2 15 0.015 8 0.0038 19 0.007 4 0.006 3 0.0049 25	(INPUT 96.8 3.2 0.015 0.0038 0.007 0.006 0.0049) 15 15 7 19 4 3 25

Before running the LOGFT program

205HG P 205TL N	0.0 0.022	10	1	5.14 M 1.0	I 9		1533	4
205TL CN 205TL2CN 205TL3cN	NR\$ base The tota	d on IB-=3 1 energy r DLST as	ealized i	the 203. n B- deca	/ level. y of 2058	HG is calc	ulated	
205TL3CN 205TL5CN 205TL6CN 205TL6CN	1532 KEV QP =1531 is compl	$^{22.}_{\text{KEV}}$ $^{1}_{4}$ $^{1}_{6}$	alue is s sugges	in a very ting that	good agn the deca	reement wi ay scheme	th	
205TL B 205TL L	203.	6519 3/2+	15	1.46 N	IS 8			
205TL CL	T\$ From	1971Sh35.						
205TL B		3.2	15					
205TL CB	IB\$ 3.7%	15 from 1	971Hi01 b	ased on C	C(203.7G)	=0.62; bu	t IB=3.2%	15 if
205TL2CB	CC(203.7	G)=0.46.						
205TL G	203.70	20 100	M1+E	2 +1.1	8 20	0.46	4	
	RI	RI	RI	TI	TI	TI	NET FEEDIN	G
LEVEL	(OUT)	(IN)	(NET)	(OUT)	(IN)	(NET)	(CALC)	(INPUT)
0.0	0.000	100.63 8	-100.63 8	0.000	147 4	-147 4	96.8 15	96.8 15
203.65 19	100.0	0.95 10	99.05 10	146 4	1.05 11	145 4	3.2 15	3.2 15
Uppe	er limit (90%	C.L.) estimate	s:					
Me	ethod 1:	5.07						
61933		0.05 0.084.16	0 60 9	0 78 10	0 086 16	0 69 10	0 015 8	0 015 7
1140.6 3	0.17 3	0.000	0.17 3	0.17 3	0.000	0.17 3	0.0038 19	0.0038 19
1218.6 4	0.31 5	0.000	0.31 5	0.31 6	0.000	0.31 6	0.007 4	0.007 4
1340.3 5	0.28 6	0.000	0.28 6	0.28 6	0.000	0.28 6	0.006 3	0.006 3
1434.0 5	0.22 5	0.000	0.22 5	0.22 6	0.000	0.22 6	0.0049 25	0.0049 25
NET FEEDING TO) G.S. IS 96.	77+-1.47						

205TL L 0.0 1/2+ **Run LOGFT** 5.257 11 205TL B 96.8 15 205TLS B EAV=539.6 17 205TL L 203.6519 3/2+ 1.46 NS 8 205TL CL T\$ From 1971Sh35. 6.51 21 205TL B 3.2 15 205TLS B EAV=457.2 16 205TL CB IB\$ 3.7% 15 from 1971Hi01 based on CC(203.7G)=0.62; but IB=3.2% 15 if 205TL2CB CC(203.7G)=0.46. 205TL G 203.70 20 100 M1+E2 +1.18 20 0.46 4 205TL CG CC\$ From adopted gammas. 205TL3 G EKC=0.29 4 \$ ELC=0.132 6 \$ EMC+=0.040 3 205TLS G KC=0.50 8\$LC=0.167\$MC=0.0415 5\$NC+=0.0133 2 205TL L 619.3 3 5/2+ 8.70 21 205ть в 0.015 7 1U 205TLS B EAV=296.5 15 TRANSITION(KEV) = 1533 4, T1/2(SEC) = 308 6, BRANCHING(%) = 96.8 15, PARTIAL T1/2(SEC) = 0 319 8 LOG PARTIAL T1/2 = 2.503 11 E= 1533.00 LOG FO= 2.754+- 0.004 LOG FOT = 5.257+- 0.011 FOT= 0.18078E+06 AVERAGE BETA(+-) ENERGY= 540.39+- 1.634 EBAR/E = 0.3525 + 205TL L 203.6519 3/2+ 1.46 NS 8 0 0 TRANSITION(KEV) = 1329 4, T1/2(SEC) = 308 6, BRANCHING(%) = 3.2 15, PARTIAL T1/2(SEC) = 1.0E4 5 LOG PARTIAL T1/2 = 3.98 21 E= 1329.35 LOG F0= 2.525+- 0.005 LOG FOT = 6.509+- 0.204 FOT= 0.32315E+07 AVERAGE BETA(+-) ENERGY= 458.00+- 1.604 EBAR/E = 0.3445 + 205TL L 619.3 3 5/2+ Π. 0 TRANSITION(KEV) = 914 4, T1/2(SEC) = 308 6, BRANCHING(%) = 0.015 7, PARTIAL T1/2(SEC) = 2.1E6 10 LOG PARTIAL T1/2 = 6.3121 FIRST-FORBIDDEN-UNIQUE LOG(F1/F0) = 0.445 FOR BETAS, + OR -E= 913.70 LOG F1= 2.386+- 0.010 LOG F1T = 8.699+- 0.203 F1T= 0.50018E+09 AVERAGE BETA(+-) ENERGY= 297.18+- 1.416 EBAR/E = 0.3253

Guideline for evaluators-cont.

Check the decay scheme for consistency (using RADLST)

$$\begin{aligned} & Qeff = \sum_{i=1}^{dlBF} Q_i BF_i; Qcalc = \sum_{j=1}^{all\gamma} E_{\gamma} P_{\gamma} + \sum_{k=1}^{dl\beta} E_{\beta k} P_{\beta k} + \sum_{l=1}^{all\alpha} E_{\alpha l} P_{\alpha l} + etc. \ Consistency = \left[\frac{Qeff - Qcalc}{Qeff} \right] \times 100\% \end{aligned}$$

γ(²⁰⁵T1)

Iγ normalization: based on Iβ⁻=3.2% 15 to the 203.7 level. The total energy realized in β⁻ decay of ²⁰⁵Hg is calculated using RADLST as 1532 keV 22. This value is in a very good agreement with Q(g.s.)=1531 keV 4, thus suggesting that the decay scheme is complete.

β⁻ radiations

Eβ-		E(level)	IB-†	Log ft	Comments
(99	4)	1434.0	0.0049 25	5.62 23	av Eβ=25.2 11.
(193	4)	1340.3	0.006 3	6.43 22	av Eβ=51.4 <i>12</i> .
(314	4)	1218.6	0.007 4	7.03 25	av Eβ=87.8 13.
(392	4)	1140.6	0.0038 19	7.61 22	av Eβ=112.4 13.
(914	4)	619.3	0.015 7	8.70 ¹ u <i>21</i>	av Eβ=296.5 15.
(1329	4)	203.65	3.2 15	6.51 21	av Eβ=457.2 <i>16.</i> Iβ ⁻ : 3.7% <i>15</i> from 1971Hi01 based on α(203.7γ)=0.62; but Iβ=3.2% <i>15</i> if α(203.7γ)=0.46.
(1533	4)	0.0	96.8 15	5.257 11	av Eβ=539.6 17.

[†] Absolute intensity per 100 decays.

γ(²⁰⁵T1)

I γ normalization: based on I β =3.2% 15 to the 203.7 level. The total energy realized in β - decay of ²⁰⁵Hg is calculated using RADLST as 1532 keV 22. This value is in a very good agreement with Q(g.s.)=1531 keV 4, thus suggesting that the decay scheme is complete.

$E\gamma^{\dagger}$	E(level)	Iㆧ	Mult.‡	δ‡	α	Comments
203.70 20	203.65	100	M1+E2	+1.18 20	0.46 4	 α: From adopted gammas. α(K)exp=0.29 4; α(L)exp=0.132 6; α(M+)exp=0.040 3. α(K)=0.50 8; α(L)=0.167; α(M)=0.0415 5;

Decay Data – What is evaluated?

- Q values AME2016 surprises driven by new measurements don't use end-point energies!
 - **Level Properties:** E (Δ E), J^{π}, T_{1/2} (Δ T_{1/2}), BR(Decay mode(s))
 - ✓ E (Δ E) least-squares fit procedure to ALL available data (not only decay high-precision reaction data) -> should be used to determine signature radiations, e.g. E_γ, E_β, E_α, ...
 - ✓ J^π important when dealing with large decay data schemes -> defines transition multipolarities and ICC
 - ✓ $T_{1/2} (\Delta T_{1/2})$
 - BR in many cases only one mode measured, but the second inferred from 100-%BR1; lack of separating EC from β+:
 %EC+%B=100 -> what is measured and what is deduced?

Decay Data – What is evaluated-cont.?

Gamma Radiation Properties: $E_{\gamma} (\Delta E_{\gamma})$, $I_{\gamma} (\Delta I_{\gamma})$, Mult., $\delta (\Delta \delta)$

- E_γ (ΔE_γ) need to be evaluated in a relation to a particular nuclear level (not only decay high-precision reaction data, e.g. bent-curve spectrometers); the recommended ones determined from lsq-fit level energies
- ✓ I_{γ} (ΔI_{γ}) MUST be evaluated. One must consider BR from reactions for weakly populated levels in β/α decay
- Mult. sometime inferred from the decay scheme and from reactions data – important to deduce ICC
- ✓ $\delta(\Delta\delta)$ Must be evaluated. Frequently reactions data must be consulted
- careful when dealing with E0 or mixed E0+M1+E2 transitions: simplified approaches use experimental ICC and Iγ(tot); or penetration effect for ICC (mostly for heavy nuclei)

Decay Data – What is evaluated-cont.?

Beta Radiation Properties: $E_{\beta} (\Delta E_{\beta})$, $I_{\beta} (\Delta I_{\beta})$

- ✓ E_{β} (ΔE_{β}) it is not discrete, usually maximum and mean energies are deduced from the known decay scheme and decay Q value
- ✓ $I_{\beta}(\Delta I_{\beta})$ deduced from intensity balances > need to look carefully if $I_{\beta+}$ has been measured, usually deduced from the (calculated) $I_{\beta+}$ /EC ratio
- **Alpha Radiation Properties:** $E_{\alpha} (\Delta E_{\alpha})$, $I_{\alpha} (\Delta I_{\alpha})$
 - ✓ $E_{\alpha} (\Delta E_{\alpha})$ from level energy differences & Q α values; directly measured ones are usually with low uncertainties
 - ✓ I_{α} (ΔI_{α}) both directly and indirectly (from Iγ)

Atomic Radiation:

 CE, X-rays, Auger and Coster-Kronig are derived quantities, except ICC for mixed E0+M1+E2 transitions and those affected by penetration

Some personal notes ...

□ Be critical to the experimental data you are dealing with!

✓ as all nuclei are different, so are the experiments

□ A good evaluation is not just simply averaging numbers!

✓ sometime the most accurate value quoted in the literature is not the best one!

□ Enjoy what you are doing!