

ENSDF analysis and utility codes Exercises BrIcc / BrIccMixing / Ruler/Gabs

T. Kibèdi (ANU)

Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University

ICTP-IAEA ENSDF workshop, Trieste, 2018

Installing & running the codes

- PATH (variable) PATH is an environment variable on Unix-like operating systems, DOS, OS/2, and Microsoft Windows, specifying a set of directories where executable programs are located.
- Copy executables into a single directory (<myDir>) and add this directory to the PATH:

Linux & MacOS add to the .bashsrc or .profile files:

export PATH=<myDir>:\$PATH

Windows: use Control Panel\Environment Variables to add manually

Check if PATH is correctly set. To list ALL environment variables Linux & MacOS: printenv

Windows: set

- BrIcc & BrIccMixing requires BrIccHome environment variable, the directory, where the ICC (BrIccFOV22.icc) data and index files (BrIccFOV22.idx) are
- Pass input/output file names on the command line bricc 99mTc.ens merge <cr>
- Default file names convenient, but files will be overwritten!

Consult with terminal dialogue and calculation report files to identify problems! *Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University ICTP-IAEA 2018*

Numerical and ascii values in ENSDF

- ENSDF: 80 character/line (record or card) ASCII (American Standard Code for Information Interchange) file (ENSD format manual)
- 17 record types: Identification, Normalization, Parent, Q-value, Level, Alpha, Beta, EC+beta+, Gamma, Reference, Cross reference, Delayed Particle, Product normalisation, Special record, History, Atomic Relaxation, End records
- □ Often values are given in continuation records: 174Tm2 G FL=123.45
- □ Fixed length fields.
- □ Value is given as ASCII string to preserve accuracy reported in the original paper
- Uncertainty: symmetric, asymmetric, limits, data came from systematics, etc
- Uncertainty propagation (see BrIcc manual)
- □ No ENSDF editor available yet for all platforms

Redit (Windows) Sergey Lisin (PNPI)

174TM		174ER B- D	EC	AY		19	991BE04.1	.989CH0)5	99NDS	19990		
174TM	н	TYP=UPD\$AU	т=	Tibor Kik	edi\$	CUT=1-S	Sep-20159		-				
174TM	Н	TYP=FUL\$AU	T=	E. BROWNE	E. HU	O JUNDE	ESCIT=NDS	87. 1	5 (1999) SCUT=1-No	v-1998		
174TM	с	Activity p	stivity produced by bombarding natural tungsten target with {+176}Yb										
174TM	2c	(E=1.5 GeV	=1.5 GeV) projectiles (1989Ch05) and {+186}W target with {+136}Xe										
174TM	3c	(E=1.577 G	=1.577 GeV) projectiles (1991Be04). Mass separated {+174}Er.										
174TM	4c	Measured	<pre>sasured b(+-), [g-ray energies and intensities, coincidences, Tm *x rays (1991Be04,1989Ch05). 174)Er decay scheme is based on 1991Be04. Direct b(+-) population</pre>										
174TM	5c	K-x rays (
174TM	с	{+174}Er d											
174TM	2c	to levels	b levels at 767 and 773 from {+174}Er (J p=0+) is inconsistent with										
174TM	3c	g-ray dec	ay	from the	ese l	evels t	to {+174}	Tm (J)	p=4-) c	g.s., which	1		
174TM	4c	suggests t	he	existend	ce of	a a ve	ery low-e	energy	level v	vith J <2			
174TM	5c	(1991Be04)		But 20060	ch10	exclude	e this co	onclusi	.on.				
174TM	С	Measured E	lb	~1.3 MeV	7 (19	89Ch05)							
174TM	сG	E,RI\$From	19	91Be04.									
174TM	сG	M\$From ado	pt	ed gammas	3								
174TM	cL	T\$From ado	pt	ed levels	s. Ot	her: 3.	.З М 2 (1	.989Ch0)5), 3.1	L M З (1991	.Be04)		
174TM	CL	J\$ From ad	<pre>\$ From adopted levels C\$FROM BrIcc v2.3b (16-Dec-2014) 2008Ki07, "Frozen Orbitals" appr.</pre>										
174TM	DG	CC\$FROM Br											
174TM	CG	MR\$IF NO V	AI	UE GIVEN	IT W	AS ASSU	JMED MR=1	00 FC	OR E2/M1	L,			
174TM	2CG	MR=1.00 FO	R	E3/M2 ANI) MR=	0.10 FC	OR THE OI	HER MU	LTIPOL	ARITIES			
174ER	P	0.0		0+	_	1	3.2 М	2		1.92E3	30		
174TM	N	0.114	7		1.	0							
174TM	cN	NRŞAssumin	g	no b{+-]	pop	ulation	n to leve	els at	58.5 ke	eV and belo	w, and		
174TM	2cN	using I g(71	.7 g + 10	00.4	g + 13(0.4 g + 7	08.6 9	r + 714.	.4 + 766.5	g		
174TM	3CN	+ 773.4 g)	=1	.00%.									
174TM	PN		_								3		
174TM	L	0.0		4-			5.4 M	1					
174TM	L	58.53	17	(2-)						-			
174TM	G	58.5	2	45	II (E	2)			25.6	6			
174TM	SG	LC=19.6 5	ŞM Q 4	C=4.81 11	L 0.0-		11006 60						
174TM	зG	NC=1.091	24	\$0C=0.124	± 35P	c=0.000	51396-22		0.0 01 05				
174TM	CG	Subserved	on	iy in a c	coinc	idence	experime	ent (19	89Ch05)	Not obse	rved		
174TM	ZCG	by 1991Be0	4	(1 g <45,	est	imated	IFOM K	x ray	intensi	ties).			
174TM	Г	100.40	20	3-			-		0.07				
			2	100	MI				3.07				
174TM	G	100.4	A	<u>a-0 000 0</u>		0.0007							
174TM 174TM	S G	KC=2.57 4	\$I	C=0.389	5\$MC=	0.0867	14						
174TM 174TM 174TM	s G s G	KC=2.57 4 NC=0.0203	\$1 3	c=0.389 (\$0c=0.002	5\$MC= 291 5	0.0867 \$PC=0.0	14 0001577 2	4	m=1 1		1.0		
174TM 174TM 174TM 174TM		RC=2.57 4 NC=0.0203 \$EKC=1.7 {	\$1 3 13	c=0.389 (\$oc=0.002 } (1991Be	5\$MC= 291 5 04)	0.0867 \$PC=0.0 suggest	14 0001577 2 ts M1+E2	4 with M	IR=1.1 {	[I+7-4}, wh	ich		
174TM 174TM 174TM 174TM 174TM	S G S G CG 2cG	KC=2.57 4 NC=0.0203 \$EKC=1.7 { disagrees	\$1 3 13 wi	c=0.389 (\$oc=0.002 } (1991Be th 2005ch	5\$MC= 291 5 04) 167 a	0.0867 \$PC=0.0 suggest nd 2000	14 0001577 2 ts M1+E2 6Ch10	4 with M	IR=1.1 {	[1+7-4}, wh	ich		

BrIcc - interactive use

• •	ENSDF_codes — bricc — 118×24										
					~/ENSE	F_codes — brice	c				
MacBoo elei	0k-Pro-2:EN BrIcc ment	SDF_codes v2.3b (16- (for elec usi	tibor\$ brid Dec-2014) tron conve and E0 eld ng cubic s	cc calculates rsion and ectronic f pline inte	convers pair pro actors rpolatio	sion coeffici oduction) on	ents		Versio	n & data t	able
Z= 70	Ytterbium		Transition	energy: 2	79.717	<pre>ceV Conversion (</pre>	oefficient		BrIcc v	2.3b (16-De	ec-2014) FO
Shell	E_e [keV]	E1	M1	E2	M2	E3	M3	E4	M4	E5	M5
Tot K L-tot M-tot N-tot 0-tot P-tot TranEr	218.38 er ChemSym	2.367E-02 1.989E-02 2.946E-03 6.561E-04 1.526E-04 2.109E-05 1.001E-06 b Z+Intege	2 1.901E-01 2 1.593E-01 3 2.393E-02 5.351E-03 4 1.257E-03 5 1.799E-04 5 9.639E-06 er SUBShell	9.151E-02 6.401E-02 2.115E-02 5.038E-03 1.161E-03 1.447E-04 3.226E-06 DATAtable	8.110E- 6.437E- 1.292E- 2.999E- 7.067E- 9.933E- 4.933E- 1? for h	-01 4.258E-01 -01 1.910E-01 -01 1.787E-01 -02 4.463E-02 -03 1.028E-02 -04 1.223E-03 -05 1.179E-05 nelp EXIT [27	3.015E+00 2.138E+00 6.694E-01 1.637E-01 3.862E-02 5.205E-03 2.169E-04 9.717] >	2.267E+00 5.694E-01 1.279E+00 3.323E-01 7.675E-02 8.903E-03 5.326E-05	1.179E+01 6.979E+00 3.622E+00 9.367E-01 2.212E-01 2.841E-02 9.480E-04	1.251E+01 1.741E+00 8.019E+00 2.182E+00 5.061E-01 5.697E-02 2.740E-04	4.967E+01 2.279E+01 1.995E+01 5.468E+00 1.294E+00 1.584E-01 4.167E-03
Inp	ut parame	ter can	be:								
\succ	Transitio	n Energy	[keV]: 1	23; 123	0, 1.2	3E2					
\succ	Chemical	Symbol	max 2 ch	ar]: Os							
\succ	Z+integei	• [5-110]]: Z76 se	elects Os	;						
\succ	SUBS: 1	oggles b	etween to	show/N	OT to s	show sub sh	nell ICCs				
> appr	DATA ta roximation	<mark>ble:</mark> tog 1s	gles betw	een "Fro	zen Orl	oitals" (BrI	ccFO) and	d "No Hol	e" (BrIcc	NH)	
	?: displa	ays inform	mation on	how to L	ise BrI	cc					

Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University

ICTP-IAEA 2018

BrIcc - interactive use

Energetics Gamma $E_{\gamma} = E_i - E_f + T_r$ CE $E_{CE,i} = E_i - E_f - E_{BE,i} + T_r$ PF $E^+ + E^- = E_i - E_f - 2m_oc^2 + T_r$

Transition probability $\lambda_{T} = \lambda_{\gamma} + \lambda_{K} + \lambda_{L} + \lambda_{M} + \lambda_{PF}$ Conversion coefficient $\alpha_{CE,PF} = \lambda_{CE,PF} / \lambda_{\gamma}$ $\lambda_{CE,PF} = \lambda_{\gamma} \times \alpha_{CE,PF}$ Q: How many ¹³⁷Cs decays will proceed with the emission of K conversion electrons?

Energetics Gamma $E_{\gamma} = E_i - E_f + T_r$ CE $E_{CE,i} = E_i - E_f - E_{BE,i} + T_r$ PF $E^+ + E^- = E_i - E_f - 2m_oc^2 + T_r$

Transition probability $\lambda_{T} = \lambda_{\gamma} + \lambda_{K} + \lambda_{L} + \lambda_{M} + \lambda_{PF}$ Conversion coefficient $\alpha_{CE,PF} = \lambda_{CE,PF} / \lambda_{\gamma}$ $\lambda_{CE,PF} = \lambda_{\gamma} \times \alpha_{CE,PF}$

Q: How many ¹³⁷Cs decays will proceed with the emission of K conversion electrons?

BrIcc - interactive use

BrIcc BrIcc Home

BrIcc Grapher

Data tables

Quick reference

Obtaining BrIcc

Version history

Authors

Center

Centre NSDD network

DDEP network

3

Skip Navigation | ANU Home | Search ANU | RSPhysSE | Nucl. Phys. Home

Research School of Physics and Engineering BrIcc v2.3S Conversion Coefficient Calculator Z (atomic number or symbol) Ba y-energy (in keV) Program manual 661.6 Uncertainty Enter (optional) uncertainty in energy as \mathbf{x} or +x-y Multipolarity M4 Uncertainty δ **Nuclear Structure Links** Enter (optional) uncertainty in δ as **x** or **+x-y** ANU Nuclear Physics National Nuclear Data Show Subshells Data Set BrIccFO IAEA Nuclear Data Calculate Reset

Department of Nuclear Physics

BrIccS v2	BrIccS v2.3 (9-Dec-2011)									
Z=56 (Ba	Z=56 (Ba, Barium)									
γ-energy	: 661.6 ke\	/								
Data Sets: BrIccFO										
Shell	E(ce)	M4								
Tot		0.1124	(16)							
К	624.16	0.0915	(13)							
L-tot	655.72	0.01649	(23)							
K/L		5.55	(11)							
M-tot	660.35	0.00352	(5)							
L/M		4.68	(10)							
N-tot	661.36	0.000759	(11)							
L/N		21.7	(5)							
O-tot	661.57	0.0001134	(16)							
L/O		145	(3)							
P-tot	661.59	7.22E-6	(11)							
L/P		2.28E3	(5)							

Q: How many ¹³⁷Cs decays will proceed with the emission of K conversion electrons?

BrIcc – use as evaluation tool Step 1: calculations

Input & Data Files: Input ENSDF file: 1974Re07.ens

Output Files:

Complete calculations report, (Def: BrIcc.lst): New G/SG records, (Def: Cards.new): G/SG (New/Old) comparison report, (Def: Compar.lst):

Execution control: List conversion coefficients for all subshells (Def. N): Calculate conversion coefficients for all transitions (Def. N): Lowest CC value to be put on G-card (Def. 1.00E-04): Assumed value MR for E2/M1 transitions (Def. 1.00):

Processing started. Please wait.

BrIcc – use as evaluation tool Step 1: calculation report

brie	cc myEns	df.ens«	CR>		bricc.	lst					
Recor NUCID Forma	d name = CARDE t=, Colo:	"GAMMA" Di r_Index=	" ERI =4, Alio	DRM gn=block	l, Conve	MR ert=no,	DMR Id=C	CC ARD	DC	TI	DTCCBQ
+ 172ҮВ	<mark>-</mark> -1 G <mark>90.6</mark> 0	-+2- 05 <mark> 2</mark> 3	+ 5 <mark>0.40</mark>	3+ <mark>3 </mark> M1+E	4 2	+ -1.64	-5 2	-+ 4.65	6	+7	+8
====== BrIcc	======================================	ec-2014)	======== Z= 70 Egan	nma= 90.605	25 keV M1+E2	Mult Mixin	ipolari g ratio	======== ty= M1+E = -1.64	2 2	14:24:21 2	 23-Aug-2016
Shell	M1	E2		M1+E2 Mis Icc	dIcc	dIccDMR	L dIc	cDMRH	Uncert	tainty on T	CC
K	3.745E+00	1.243E+00		1.921E+00	2.956E-02	2 -1.192E-	02 1.2	20E-02		certainty [DE
L-tot K/L	5.745E-01 6.520E+00	2.647E+00 4.695E-01		2.085E+00 9.213E-01	3.100E-02 1.971E-02	2 9.871E- 2	03 -1.0	10E-02	🗆 Un 🗆 Fla	certainty o t 1.4% fro	on MR m theory
M-tot L/M	1.287E-01 4.465E+00	6.531E-01 4.053E+00		5.109E-01 4.081E+00	7.624E-03 8.596E-02	3 2.498E- 2	03 -2.5	57E-03	<u>NOTE</u>		
N-tot L/N	3.021E-02 1.902E+01	1.489E-01 1.777E+01		1.167E-01 1.786E+01	1.740E-03 3.760E-03	3 5.654E- L	04 -5.7	88E-04	Un not	certainty of be symmetry to the symmetry of th	on MR may etric
0-tot L/O	4.316E-03 1.331E+02	1.704E-02 1.554E+02		1.359E-02 1.534E+02	2.008E-04 3.216E+00	4 6.060E-	05 -6.2	03E-05	ins if c	erted into x _T > 1.0E-4	CC field
P-tot L/P	2.295E-04 2.503E+03	5.415E-05 4.888E+04		1.017E-04 2.051E+04	1.662E-00 4.532E+02	6 -8.350E- 2	07 8.5	48E-07	<u>See Br</u> uncert	<u>icc Manua</u> ainties pro	<u>al how</u> opagated
Tot	4.483E+00	4.709E+00		4.648E+00	6.524E-02	2 1.073E-	03 -1.0	98E-03		•	

Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University

ICTP-IAEA 2018

BrIcc - use as evaluation tool Step 1: calculations

BrIcc verifies G, G-cont cards and generates error messages, if needed:

150GD G 650.33 0 .3 (E2)
<E> Invalid uncertainty on transition energy.
181RE G 148.4 2 0.8 3M1 0.13 LT 1.724 17
<E> Invalid mixing ratio.
Use FMTCHK before running BrIcc!

For some Elements and Atomic shells BrIcc energy range is limited: <W> ICC could not be calculated for EG+DEGH above 398.000 keV

Extra user information
146SM G 2644.43 5 0.108 3E1+(M2)
<I> Mixing ratio empty, assumed to be equal to 1.
246CM G 42.9 2 2 AP E2
<I> Uncertainties on ICC`s from transition energy uncertainty is greater than 1.0%.

Observe messages on terminal window!

BrIcc - use as evaluation tool Step 1: new ENSDF records

New ENSDF records: Cards.new

# Program: BrIcc v2.3b (16-Dec-2014) # # # DO NOT EDI	T THIS LINE # # #	
<pre># Input ENSDF file: 1974Re07.ens</pre>		
# Processed on: 14:48:21 23-Aug-2016		
<pre># Letters after record numbers indicate: R-replace, I-insert before,</pre>	D-delete	
#		
<u># DsId: 172YB 172TM B- DECAY (63.6 H) 1974RE07,19670T03,196</u>	8WI2295NDS 199	509
172YB DG CC\$FROM BrIcc v2.3b (16-Dec-2014) 2008Ki07, "Frozen Orbital	s" appr. 53	1 I
172YB CG MR\$IF NO VALUE GIVEN IT WAS ASSUMED MR=1.00 FOR E2/M1, C	omments 5	1 I
172YB2CG MR=1.00 FOR E3/M2 AND MR=0.10 FOR THE OTHER MULTIPOLARITIES	5:	1 I
172YB G 78.750 7 109 8 E2 8.25 New CC	C C 7:	1 R
<u>172YBS G KC=1.48 3\$LC=5.12 11\$MC=1.26 3\$NC+=0.321 6</u>	73	2 D
172YBS G KC=1.543 22\$LC=5.12 8\$MC=1.265 18	73	2 I
172YBS G NC=0.288 4\$0C=0.0328 5\$PC=7.37E-5 11	73	2 I
172YBS G NC=0.288 6\$0C=0.0328 7\$	73	3 D
172YB G 181.520 9 45.9 24E2 0.372	C 79	9 R
172YBS G KC=0.214 5\$LC=0.1188 24\$MC=0.0289 6\$NC+=0.00742 14\$	80	0 D
172YBS G KC=0.217 3\$LC=0.1189 17\$MC=0.0289 4	80	0 I
172YBS G NC=0.00662 10\$0C=0.000791 11\$PC=9.92E-6 14	80	0 I
172YBS G NC=0.00662 14\$0C=0.00079 2\$	83	1 D

BrIcc - use as evaluation tool Step 2: merge new and old cards

bricc myEnsdf.ens merge<CR>

[MacBook-Pro-2:Excersises tibor\$ bricc 1974Re07.ens merge BrIcc v2.3b (16-Dec-2014) calculates conversion coefficients (for electron conversion and pair production) and E0 electronic factors using cubic spline interpolation MERGE: inserting/replacing G_S record New G/SG cards, (Def: Cards.new): Output file of merged old and new cards, (Def: Cards.mrg): Merge operation completed!

Record name = "GAMMA" NUCIDCARDE DERI DRM MR DMR CC DCTI DTCCBQ Format=, Color Index=4, Align=block, Convert=no, Id=CARD

		1			- A		_ + C	 -7	6
+		-T				-3	-+0	 -,	2
172YB	G	90.605	250.40	3 M1+E2	-1.64	2	4.65	d	Į
172YB	S G	KC=1.92	3\$LC=2.09	4\$MC=0.511	8				
172YB	S G	NC=0.11	67 18\$OC=0.	.01359 20\$P	c=0.000101	7 17			

BrIccMixing

	Δπ=	+1	Δ π = -1			
πL	M1	M3	E1	E3		
π ΄ L'	E2	E4	M2	M4		

Mixing ratio (MR)
$$\delta(\pi'L'/\pi L) = \frac{\lambda_{\gamma}(\pi'L')}{\lambda_{\gamma}(\pi L)}$$

Mixing ratios can be determined from Gamma-ray angular distributions Gamma-gamma angular correlations Conversion coefficients

Conversion coefficient for CE and PF

$$\alpha(\pi'L'/\pi L) = \frac{\alpha(\pi L) + \delta^2 \alpha(\pi'L')}{1 + \delta^2}$$

Running BrIccMixing

- □ BrIcc and Gnuplot need to be installed
- □ Prepare ASCII input file
- □ Shell: K,L1,L2,... for ICC values: L1/L2, K/L... ICC ratio; MR mixing rato
- Symmetric uncertainties only (no limits, no asymmetric UNC)
- □ Use "#" for comments

125TE G 35 125TE 35.4 M1+E2 0.029	.4925 925 5 1.0	5 6.68	13M1+E2	2	0.	.032	+3–2	13.68	Header
<pre># NsrKey 1965Ge04 # 1965Ge04 # 1965Ge04 # 1966Ma49 # 1966Ma49 1969Ca01 1969Ca01 # 1969Ca01</pre>	Shell L1/L2 L2/L3 MR L1/L2 L2/L3 L1/L2 L2/L3 K/L	IccVal 11.236 3.708 0.035 10.7 5 9.39 2.62 12.3	Unc 505 351 20 180 50 25	Ty R A R R	/pe R#r Rno Rno R#r	nore unce unce	than 3 ertainty ertainty .y 2 sig	sigma av given given ma away	way + experimental value is highe
1982Ba16 1982Ba16 # 1952Bo16 # 1952Bo16 1952Bo16 1952Bo16 1952Bo16 1969Ka08	L1/L2 L2/L3 K/L L/M K L M K/L	10.482 4.166 7.27 5.5 11.7 1.6 0.3 7.27	224 1928 140 15 25 5 1 140	R A A A R	R R		<e> Er numbe Data- the "*</e>	ror wi er will Sets c NEW"	th explanation and line be given an be combined with command

	90Y	H TYP=FMT\$AUT=J. TULI\$DAT=22-JUL-1999\$COM=ADDED P RECORD\$
Ś)Y	H TYP=FUL\$AUT=E. BROWNE\$CIT=NDS 82, 379 (1997)\$CUT=1-May-1997\$
S).)Y	Р 682.04 6 7+ 3.19 Н 6
le la	90Y	c From {+87}Rb(a,n). Measured I g. Ge(Li) detector (1978Ra05).
<u>r</u>	90Y	c From {+89}Y(n, g), {+89}Y(d,p). Measured I g, g g coin, g g(t),
5°. 4	90Y	2c g g(q). Plastic scintillators, Ge(Li) and NaI detectors (1974K106).
and the	90Y	c Measured E g, I g. Ge(Li) and Si detectors (1973Ha18).
and the second sec	90Y	c See also: 1989Mu15, 1990Mu11, 1990Ne08
7^+ 6^{-} 8^{-} 9^{-} 682.04 $3.19 \text{ h} 6$	90Y	c Others: 1961He09, 1961Ha17, 1970Si21
g ^{9.}	90Y	cL J,T See adopted levels.
L L L	90Y	cG E From 1973Ha18, except as noted.
Le L	90Y	CG E(A) From 1974K106.
Ž.	90Y	N 0.9106 4 0.999979 2
ι S	90Y	PN 3
S ⁱ	90Y	ь 0 2- 64.10 н 8
3^{-} 202.53 250 ps 7	90Y	L 202.53 3 3- 250 PS 7
	90Y	<mark>2 ь</mark> g=-0.283 23
2-	90Y	cL G From IPAC (1974K106).
2 + 0 64.10 h 8	90Y	CL T From 1974Kl06, delayed coin. Other: 1970Si21
	90Y	G 202.53 3 106.8 4 M1(+E2) -0.04 4 0.0274 3
90 x z	90Y	S G KC=0.02409 23\$LC=0.00272 3
39 ¹ 51	90Y	cG RI Calculated by evaluators from intensity balance.
	90Y	cG MR From a(K)exp=0.0243 {I14} and 479.5 g-202.5 g correlation
	90Y	2cG with A{-2}=-0.178 {I5} and A{-4}=0.009 {I8} (1973Ha18).
	90Y	ь 682.04 6 7+ 3.19 н 6 М
	90Y	2 L %IT=99.9982 2 \$ %B-=0.0018 2
	90Y	cL T from adopted levels
	90Y	cL &B- See {+90}Y b{+-} decay (3.19 h).
	90Y	G 479.51 5 99.65 3 M4(+E5) 0.1 LT 0.0983
	90Y	S G KC= 0.0829 \$LC=0.0116
	90Y	cG RI Photon branching ratio.
	90Y	cG MR From B(E5) (W.u.)<300.
	90Y	cG CC a(exp)=0.101 {I4} from intensity balance, a(202)=0.0274
	90Y	2cG {I3}, and measured I g(202 g)/I g(479 g)=1.072 {I4} (1973Ha18).
	90Y	G 681.8 6 0.35 3 E5 0.023 A
	90Y	cG E From 1978Ra05.
	90Y	cG RI Photon branching ratio from I g(682 g)/I g(479 g)=0.0035 {I3
	90Y	2cG (1978Ra05). Other: 0.0040 {I8} (1974Kl06).

Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University

ICTP-IAEA 2018

250 PS

-0.04

Calculated by evaluators from intensity balance.

3.19 н

0.1

From |a(K)exp=0.0243 {I14} and 479.5|g-202.5|g correlation

T.T

1970si21

0.0983

0.0274

From 1974Kl06, delayed coin. Other:

-3

See {+90}Y |b{+-} decay (3.19 h)

3 M4 (+E5)

4 M1(+E2)

With RI and CC from ENSDF

99.65

5

3 3-

3 106.8

From IPAC (1974K106)

from adopted levels

23

CC(479) data 1961Ha17 0.10(2) 1961He09 0.11(2) 1973Ha18 0.1002(34) 1990Mu11 0.0990(56) ADOPTED 0.0999(29) KC(479) data 1973Ha18 0.0856(29)

IN: 202.53(3) keV M1(+E2), MR=-0.04(4) RI: 106.8+/-0.4 CC: 0.02740+/-0.00030 TI(202): 109.7+/-0.4 OUT: 479.51(5)(3) keV M4(+E5), MR=0.1 LT RI: 99.650+/-0.030 CC: 0.0983 0.0965(14) from Brlcc TI(479): 109.26+/-0.14

Aim: calculate empirical photon transition rates and compare with recommended upper limits

Some useful formulas from Kondev et al., ADNDT 103-104 (2015) 50 isomer $\Gamma \times \tau = \hbar = 0.6582 \times 10^{-15} eV s$ τ_{exp} $T_{1/2} = \ln 2 \times \tau$ Partial γ -ray mean-life: $\tau_{\gamma}^{j} = \tau^{exp} \times \frac{\sum_{k=1}^{N} I_{\gamma}^{k} \times (1 + \alpha_{T}^{k})}{I_{\gamma}^{j}}$ Mixed transitions: $\delta^2(\sigma'\lambda'/\sigma\lambda) = I_{\gamma}(\sigma'\lambda')/I_{\gamma}(\sigma\lambda)$ $\tau_{\gamma}(\sigma\lambda) = \tau_{\gamma}^{j} \times (1 + \delta^{2}) \qquad \Gamma_{\gamma}(\sigma\lambda) = \Gamma_{\gamma}^{j} \times \frac{1}{(1 + \delta^{2})}$ $\tau_{\gamma}(\sigma'\lambda') = \tau_{\gamma}^{j} \times \frac{(1+\delta^{2})}{\delta^{2}} \qquad \Gamma_{\gamma}(\sigma'\lambda') = \Gamma_{\gamma}^{j} \times \frac{\delta^{2}}{(1+\delta^{2})}$

Reduced $\gamma\text{-ray}$ transition probabilities

 $B_{sp}(\sigma\lambda) \downarrow [W.u.] = \frac{B_{\gamma}(\sigma\lambda)}{B_{sp}(\sigma\lambda)} \downarrow$

Electric

$$B_{sp}(E\lambda) \downarrow = \frac{1}{4\pi} \times \left(\frac{3}{3+\lambda}\right)^2 \times \left(1.2 \times A^{1/3}\right)^{2\lambda}$$

[e² fm²]

Magnetic

$$B_{sp}(M\lambda) \downarrow = \frac{10}{4\pi} \times \left(\frac{3}{3+\lambda}\right)^2 \times \left(1.2 \times A^{1/3}\right)^{2\lambda-2} \\ \left[\mu^2_{N} \operatorname{fm}^{2\lambda-2}\right]$$

Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University	

J .										
	Recommended Upper Limits RUL									
	$\Gamma_{\gamma}/\Gamma_{W}$ (Upper Limit)									
	Character*	$A=6-44^{a\$}$	<u>A=45-150^{b,c}</u>	<u>A>150d</u>						
	E1 (IV)	$0.3^{\#}$	0.01	0.01						
	$E2 (IS)^{e}$	100	300	1000						
	E3	100	100	100						
	E4	100	100^{\dagger}							
	M1 (IV)	10	3	2						
	M2 (IV)	3	1	1						
	M3 (IV)	10	10	10						
	M4		30	10						
2	* 'IV' and 'IS' stand for isovector and isoscalar									

ICTP-IAEA 2018

Terminal dialogue		Calculates reduced R(FL) and R(ML) and
MacBook-Pro-2:ruler_example tib	or\$ ruler	R - Compare to RULs	
RULER Version 3.2d [20-Jan-2009	9]	B - Compare to RULs and cr ENSDE file with B(FL)	eates new and B(ML) on
INPUT DATA FILE (DEF: rule OUTPUT REPORT FILE (DEF: ru	r.inp): uler.rpt):	new G records	
Mode of Operation (R-Compare to RULs,B-	Calculate BE	(LW, BMLW)? R Operating Mode	
Assumed DCC theory (Bricc-	1.4%, Hsicc-	3%, Other-?) -	1
CURRENT DATA SET: 228TH ADO	PTED LEVELS,	GAMMAS	
CURRENT DATA SET: 228TH 228/	AC B- DECAY		
CURRENT DATA SET: 228TH 228	PA EC DECAY		
CURRENT DATA SET: 228TH 232	U A DECAY		
CURRENT DATA SET: 228TH 226	RA(A,2NG)		
CURRENT DATA SET: 228TH 230	TH(P , T)		
NO GAMMAS I	EXPECTED		
CURRENT DATA SET: 228TH 230	TH(A,A'2NG)		
<pre>>>>> *** possible problems en >>>> Problems summarized in: >>>> Full details in: ruler.r</pre>	countered. pt		
Program completed successfully			
	_		

<===CALCULATED STRENGTH EXCEEDS RECOMMENDED UPPER LIMIT</pre>

<mark>+</mark> 1+2+3+4+5+6+7+8-													
127I		127TE B- DECAY (9.35 H)											
127I	N	NR		NT		BR		o.oNB	2	NP			

- NR multiplier to convert RI to # of photons/100 decays
- NT multiplier to convert TI to # of transitions/100 decays (if TI given)
- BR branching ratio multiplier for converting intensity/100 decays
- NB multiplier for converting relative b⁻ and EC intensities/100 decays
- NP multiplier for converting per hundred delayed-transition intensities to /100 decays of precursor

NR (
$$\gamma$$
-ray) Normalisation factor:

$$N_{1} = \frac{100}{I_{\gamma 1}(1 + \alpha_{1}) + I_{\gamma 3}(1 + \alpha_{3})}$$
Alternative normalisation factor, assuming no direct feeding to
g.s. and 1st excited state:

$$N_{2} = \frac{100}{I_{\gamma 2}(1 + \alpha_{2}) + I_{\gamma 3}(1 + \alpha_{3})}$$
NR (γ -ray) and BR (decay branch) Normalisation factor:

$$B_{\beta^{-}} = \frac{I_{\gamma 1}(1 + \alpha_{1}) + I_{\gamma 3}(1 + \alpha_{3})}{I_{\gamma 1}(1 + \alpha_{1}) + I_{\gamma 3}(1 + \alpha_{3}) + I_{\gamma 4}(1 + \alpha_{4})}$$

$$IR (\gamma$$
-ray) and BR (decay branch) Normalisation factor:

$$B_{\beta^{-}} = \frac{I_{\gamma 1}(1 + \alpha_{1}) + I_{\gamma 3}(1 + \alpha_{3})}{I_{\gamma 1}(1 + \alpha_{1}) + I_{\gamma 3}(1 + \alpha_{3}) + I_{\gamma 4}(1 + \alpha_{4})}$$

$$IR (\gamma$$
-ray) and BR (decay branch) Normalisation factor:

$$B_{\beta^{-}} = \frac{I_{\gamma 1}(1 + \alpha_{1}) + I_{\gamma 3}(1 + \alpha_{3})}{I_{\gamma 1}(1 + \alpha_{3}) + I_{\gamma 4}(1 + \alpha_{4})}$$

$$IR (\gamma$$
-ray) and BR (decay branch) Normalisation factor:

$$IR (\gamma$$
-ray) and BR (decay branch) Normalisation factor:

$$IR (\gamma$$
-ray) and BR (decay branch) Normalisation factor:

$$IR (\gamma$$
-ray) and BR (decay branch) Normalisation factor:

$$IR (\gamma$$
-ray) and BR (decay branch) Normalisation factor:

$$IR (\gamma$$
-ray) and BR (decay branch) Normalisation factor:

$$IR (\gamma$$
-ray) and BR (decay branch) Normalisation factor:

$$IR (\gamma$$
-ray) and BR (decay branch) Normalisation factor:

$$IR (\gamma$$
-ray) and BR (decay branch) Normalisation factor:

$$IR (\gamma$$
-ray) and BR (decay branch) Normalisation factor:

$$IR (\gamma$$
-ray) and BR (decay branch) Normalisation factor:

$$IR (\gamma$$
-ray) and BR (decay branch) Normalisation factor:

$$IR (\gamma$$
-ray) and BR (decay branch) Normalisation factor:

$$IR (\gamma$$
-ray) and BR (decay branch) Normalisation factor:

$$IR (\gamma$$
-ray) and BR (decay branch) Normalisation factor:

$$IR (\gamma$$
-ray) and BR (decay branch) Normalisation factor:

$$IR (\gamma$$
-ray) and BR (decay branch) Normalisation factor:

$$IR (\gamma$$
-ray) and BR (decay branch) Normalisation factor:

$$IR (\gamma$$
-ray) and BR (decay branch) Normalisation factor:

$$IR (\gamma$$
-ray) and BR (decay branch) Normalisation factor:

$$IR (\gamma$$
-ray) and BR (decay branch) Normalisation factor:

$$IR (\gamma$$
-ray) and BR (decay branch) Normalisation factor:

$$IR (\gamma$$
-ray

Prepare input ENSDF file by marking column 79 of transitions to the g.s. X. If DRI blank, DRI=20% assumed Y. Original DRI, including blank value is used

Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University

ICTP-IAEA 2018

- NR multiplier to convert RI to # of photons/100 decays
- NT multiplier to convert TI to # of transitions/100 decays (if TI given)
- BR branching ratio multiplier for converting intensity/100 decays
- NB multiplier for converting relative β^{-} and EC intensities/100 decays
- NP multiplier for converting per hundred delayed-transition intensities to /100 decays of precursor
- New ENSDF file

							γ(¹²⁷ I)			
	Eγ	Ιγ [†]	E _i (level)	$J_i\pi$	E_f	$J_f \pi$	Mult.	δ	α	Comments
	57.609 11	3.0 3	57.609	7/2+	0.0	5/2+	M1+E2	0.084 6	3.72	%Iγ=0.029 6, using the calculated normalization
	145.250 9	0.338 16	202.859	3/2+	57.609	7/2+	E2		0.471	%Iγ=0.0033 7, using the calculated
	172.131 8	≈0.035	374.990	1/2+	202.859	3/2+	M1+E2	0.084 7	0.1649 24	%Iγ=0.00034 19, using the calculated
	202.859 8	5.85 21	202.859	3/2+	0.0	5/2+	M1+E2	0.52 5	0.1143 22	$\%$ γ =0.057 <i>11</i> , using the calculated
	215.07 6	3.91 17	417.93	5/2+	202.859	3/2+	M1+E2	0.203 15	0.0911	%Iγ=0.038 8, using the calculated
	360.32 6	13.6 <i>3</i>	417.93	5/2+	57.609	7/2+	M1+E2	0.194 <i>15</i>	0.0233	$\%$ I γ =0.13 <i>3</i> , using the calculated
	374.989 9	≈0.023	374.990	1/2+	0.0	5/2+	E2		0.0199	%Iγ=0.00023 12, using the calculated
	417.93 6	100 10	417.93	5/2+	0.0	5/2+	M1+E2	0.08 3	0.01599	%Iγ=0.98 19, using the calculated
	618.4 <i>3</i>	0.013 2	618.4	(3/2)+	0.0	5/2+	M1+E2		0.0055 7	$\%$ I γ =0.00013 <i>3</i> , using the calculated normalization.
I _γ (abs)=NR * RI	[†] For abso	lute intensity p	per 100 deca	ıys, multij	ply by 0.0	098 <i>19</i> .]			