An Intranuclear Cascade Model for Cluster-Induced Reactions

Monira J Kobra* and Yusuke Uozumi** *Rajshahi University, Bangladesh **Kyushu University, Japan

Joint ICTP/IAEA workshop on nuclear structure and decay data 15-26 October, 2018

Background and motivation

- ✓ Model description
- Extension of model for cluster-induced reactions
- ✓ Conclusions

Particle transport codes

- Particle transport codes deal with transport and collision of various kinds of particles and heavy ions over wide energy ranges.
 - Nuclear physics, material sciences, space and geosciences, medical sciences.
- Nuclear reaction model is an essential part of transport code.
- ✓ The model I have been working with is to simulate the cascade stage of nuclear reactions. And it is incorporated in a particle transport code PHITS.

Accelerator Driven System (ADS)

- \diamond To optimize ADS, particle transport code is essential.
- ♦ The nuclear reaction models in the transport code need to simulate secondary particles like neutron, deuteron, alpha etc. initiated reactions besides proton induced reactions.

Application (2)

Heavy ion cancer therapy

Charged particle therapy (proton, ⁴He, ¹²C)

- Sharp increase of dose at well defined region
- RBE ratio is highest for Carbon therapy

Source: Durante, M. & Loeffler, J. S. *Nat. Rev. Clin. Oncol.* **7**, 37–43 (2010).

- Fragments (e.g. deuteron, alpha) produced in carbon therapy at large angle causes dose deposition in normal tissues.
- ✓ The model in transport code need to capable of handling the cluster-induced reactions for accurate dose estimation.

Nuclear reaction

High energy reactions are two stage process proposed by Serber*.

- First stage
 - Cascade stage, 10⁻²² sec.
 - Bertini, JAM, VEGAS, INCL, JQMD.

- Second stage
 - De-excitation of residual nucleus, 10⁻¹⁶ sec.
 - Evaporation/Fission model.

https://www-nds.iaea.org/spallations/

Nuclear Reactions at High Energies

R. Serber Phys. Rev. **72**, 1114 – Published 1 December 1947

INC model overview

- Interactions between high-energy incident particle and target nucleons are approximated as individual nucleon-nucleon (NN) collision.
- The scattered nucleon follows a straight-line trajectory and repeats the collision one after another.
- The two-body collision is approximated as Quasi-Free scattering (QFS) with two-body collision cross-section.
- The nucleons that acquire enough momentum will emit the nucleus.

Fig. Schematic diagram of INC model.

Problems of nuclear models

- For cluster incident reactions
- Bertini, JAM can not work
- INC and QMD show large discrepancies

Purpose

- The purpose of this work is to introduce into the INC framework an idea of virtual excited state of cluster projectile, whose wave function is expressed as a superposition of different cluster units.
- To widen the applicable range of INC model for clusterinduced reactions.

INC Model for proton-induced reactions

- 1 Position and momenta of nucleons in target

 - Density distⁿ: Woods-Saxon type
 Momentum distⁿ: Fermi-Dirac Distribution
- 2. Projectile sent to target with random impact parameter
- **3**. Two nucleon undergo collision when the distance is smaller than NN cross-section, σ_{NN}

INC model for cluster-induced reactions

Projectile ground state

Position of nucleons → Wood-Saxon distribution.

$$\rho_{ws} = \begin{cases} \frac{\rho_0}{1 + \exp\left(\frac{r - R_{inc}}{a}\right)} & (r \le R_{max}) \\ 0 & (R_{max} \le r) \end{cases}$$
$$R_{max} = R_{inc} + 5\alpha$$

projectile average radius, R_{inc}

• Nucleon momenta → Fermi-Dirac distribution.

Projectile potential depth

- Potential depth is chosen
- To fit the experimental data.
- V_d = 15 MeV, V_{α} = 40 MeV

Maximum impact parameter

• Maximum impact parameter

 $b_{max} = R_P + R_T + 5a$

Projectile

• To fit the experimental data.

Projectile breakup

- Incident cluster may break up due to nuclear potential while entering the target nucleus.
- The breakup reaction is assumed to occur at the initial-state interaction.

Projectile breakup (alpha, deuteron)

• The initial alpha is considered as superposition of the different states that consists of cluster units. The wave function is

$$|\alpha_{init}\rangle = c_{\alpha 0}|\alpha\rangle + c_{\alpha 1}|^{3}\operatorname{Hen}\rangle + c_{\alpha 2}|tp\rangle + c_{\alpha 3}|dd\rangle + c_{\alpha 3}|nnpp\rangle$$

with normalization of $\sum_{i=all} c_i^2 = 1$

• The deuteron wave function,

$$\left| d_{_{init}}
ight
angle = c_{_{d0}} \left| d
ight
angle + c_{_{d1}} \left| pn
ight
angle$$

Breakup fragment	С
S	
d	√70
p+n	√30

Cluster unit	Cα
α	√58
³ He+n	$\sqrt{5}$
t + p	√11
d + d	√16
2p + 2n	√10

Projectile break-up

The momentum of fragment,

$$\vec{\mathbf{P}}_{\mathrm{F}} = \sum_{\mathrm{N}_{\mathrm{i}}=1}^{A_{\mathrm{F}}} \vec{\mathbf{P}}_{\mathrm{N}_{\mathrm{i}}} + \frac{A_{\mathrm{F}}}{A_{\alpha}} \vec{\mathbf{P}}_{\alpha}$$

As example, the ³He momentum is

$$\vec{P}_{_{^{3}\text{He}}} = \sum_{N_{i}=1}^{3} \vec{P}_{N_{i}} + \frac{3}{4} \vec{P}_{\alpha}$$

 \vec{P}_{N_i} is the momentum of ith nucleon of ³He.

 $\vec{\mathbf{P}}_{\alpha}$ is the momentum of projectile alpha.

A_F fragment mass

 A_{α} is alpha particle mass

 $\vec{\mathbf{P}}_{F}$ is the fragment momentum. $\vec{\mathbf{P}}_{N_{i}}$ is the momentum of the i-th nucleon in the fragment.

Probability of deflection angle

• The trajectory of incoming and outgoing particle get deflected due to nuclear potential.

The probability of deflection angle,

$$\begin{split} W_{def,d}(\varepsilon,\theta,A) &= \exp\left[-0.001(1.3\varepsilon + \ln A + 6)\theta\right] \\ W_{def,t}(\varepsilon,\theta,A) &= \exp\left[-0.001(1.2\varepsilon + 6\ln A - 5)\theta\right] \\ W_{def,3He}(\varepsilon,\theta,A) &= \exp\left[-0.001(1.2\varepsilon + 6\ln A - 5)\theta\right] \\ W_{def,a}(\varepsilon,\theta,A) &= \exp\left[-0.001(1.2\varepsilon - 10\ln A + 40)\theta\right] \end{split}$$

 The angular distribution for elastic scattering experimental data were used to find these parameters for trajectory-deflection angular distribution.

Calculation results and discussions

DDX spectra: comparison of the model calculations with experimental data.

 $^{27}AI(d,d'x), E_{d} = 80 \text{ MeV}$ 10^{4} Expt-EXFOR 10^{3} Wu et al. 10^{2} INC 10^{1} 30 10^{0} 10^{-1} $45^{\circ}(\times 10^{-2})$ 10^{-2} DDX [mb/(sr MeV)] 10^{-3} $60^{\circ}(\times 10^{-4})$ 10⁻⁴ 10^{-5} 10^{-6} 90ĭ(x10™ 10^{-7} 10^{-8} 10^{-9} $120^{\circ}(\times 10^{-8})$ 10^{-10} 10^{-11} 10^{-12} 10^{-13} 10^{-14} 10^{-15} 10^{-16} 15 0 30 45 60 75 Deuteron Energy [MeV]

 90 Zr(d, d'x), E_a = 70 MeV

Calculation results and discussions

 27 Al(d,px), E_d = 80 MeV

⁵⁸Ni(d, px), E_d = 99.6 MeV

Calculations results and discussions

Comparison of INC results with experimental data.

Comparison of INC results with experimental data.

²⁷Al(α , ³Hex)

140 MeV

⁵⁸Ni(α, ³Hex)

Other model results: INCL and JQMD model

Other model results: INCL and JQMD model

Comparison of JQMD model with experimental data

²⁷AI

Incident energy: 140 MeV

Comparison of experimental data with INCL model.

²⁷AI

 27 Al(α , tx), E_{α} = 140 MeV

Comparison of JQMD model with experimental data

Incident energy: 140 MeV 20°, 45° and 75°

Comparison of experimental data with INCL model.

Incident energy: 140 MeV 20°, 45° and 75°

⁵⁸Ni(α , ³Hex), E_{α} = 140 MeV

Conclusions

- The INC model was investigated to widen its application range for cluster (deuteron and alpha) induced reactions.
- We introduced the idea of virtual excited states of incoming cluster in the INC framework where the projectile ground state is expressed as superposition of wave functions of its different states.
- As the angular distributions are sensitive to the deflection of fragments, trajectory deflection for both the cluster projectile and the outgoing particles were incorporated.
- The extended model was verified comparing with the experimental data for deuteron and alpha induced reactions at incident energies 22.3 160 MeV.
- The extended model shows high predictive power for deuteron induced (*d*, *d'x*), (d,px), (d,nx) reactions and all channels of alpha induced reactions.
- The inclusion of cluster induced reactions to the INC model will open the pathway to carbon–induced induced reactions for accurate dose calculations in cancer therapy.

Future Work

- Stripping Reactions
- Widen applicability for ¹²C-induced reactions

