

Links between nuclear structure data and cross section measurements

Adina Olacel

Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), Magurele, Romania

<u>Introduction</u>

Experimental physics

Experimental physics

Nuclear reactions

Experimental physics

Nuclear reactions

Cross section measurements (n, n'γ) reactions

Experimental physics

Nuclear reactions

Cross section measurements $(n, n'\gamma)$ reactions

A. Olacel et al., PRC 96, 014621 (2017)

Experimental physics

Nuclear reactions

Cross section measurements $(n, n'\gamma)$ reactions

A. Olacel et al., PRC 96, 014621 (2017)

Experimental physics

Nuclear reactions

Cross section measurements $(n, n'\gamma)$ reactions

A. Olacel et al., PRC 96, 014621 (2017)

level cross section

total inelastic cross section

- calculated using the γ -production cross sections of the observed transitions and based on the feeding and the decay of each level of interest.

total inelastic cross section

- calculated using the γ -production cross sections of the observed transitions and based on the feeding and the decay of each level of interest.

Important to have a very good knowledge of the level scheme.

Compared with theoretical calculations:

- TALYS
- EMPIRE

Compared with theoretical calculations:

- TALYS
- EMPIRE

Optical model potential

Compared with theoretical calculations:

- TALYS
- EMPIRE

Optical model potential

Structure information

Compared with theoretical calculations:

- TALYS
- EMPIRE

Optical model potential

Structure information (branching ratios, spin, parity...)

ENSDF

T. W. Burrows, Nucl. Data Sheets 107, 1747 (2006)

ENSDF

T. W. Burrows, Nucl. Data Sheets 107, 1747 (2006)

Reaction codes **must** make a decision about such decays. In many codes a direct transition to the g.s. is assumed.

TALYS 1.9 default

T. W. Burrows, Nucl. Data Sheets 107, 1747 (2006)

Reaction codes **must** make a decision about such decays. In many codes a direct transition to the g.s. is assumed.

TALYS 1.9 default

T. W. Burrows, Nucl. Data Sheets 107, 1747 (2006)

The experimental spectra were investigated to see if:

- the TALYS-supposed γ rays were observed;
- other possible de-excitations from those levels were observed.

TALYS 1.9 default

T. W. Burrows, Nucl. Data Sheets 107, 1747 (2006)

no γ rays of suitable energies were observed; The experimental spectra were in

ue-excitations from those levels were observed.

Examples - Branching ratios ⁴⁸Ti - Impact

Examples - Branching ratios 48Ti - Impact

ENSDF

M. R. Bhat, Nucl. Data Sheets 85, 415 (1998)

TALYS

The experimental spectra were investigated to see if:

- the supposed γ rays were observed;
- other possible de-excitations from those levels were observed.

The experimental spectra were increased e if:

- the supposed e if:

no γ rays of suitable energies were observed.

no γ rays of suitable energies were observed.

Examples - Branching ratios ⁵⁷Fe - Impact

Examples - Branching ratios ⁵⁷Fe - Impact

TALYS describes better the transition de-exciting the 706.4-keV level despite the fact that the 433.5-keV γ ray was not observed.

Examples - Branching ratios ⁵⁷Fe - Impact

TALYS describes better the transition de-exciting the 706.4-keV level despite the fact that the 433.5-keV γ ray was not observed.

This suggests that there is a feeding of this level presently unknown.

Conclusions

- emphasize on the importance of nuclear structure data in the reaction calculations.
- present two experimental cases and the issues related to not knowing the structure of the nuclei of interest.

Thank you!