Excited State Lifetime Studies in the N=100 Isotone ¹⁶⁶Dy using NUBALL

Rhiann Canavan (r.canavan@surrey.ac.uk) Supervisors: Prof. P. Regan, Dr. M. Rudigier

Overview

- Motivation behind the experiment
- Facility at IPN Orsay and the NuBALL spectrometer
- Performing the ¹⁶⁶Dy experiment
- Reaction channel selection
- Half-life measurements
- Future plans

Motivation to measure 166 Dy T_{1/2}(2⁺)

- ¹⁷⁰Dy is the valence maximum nucleus below ²⁰⁸Pb
- Energy systematics suggest maximum quadrupole deformation at ¹⁶⁴Dy

Evaluated B(E2)↑ vs. N in the Z=66 Region

• ¹⁶⁴Dy is the most neutron-rich isotope with an established $B(E2: 2^+ \rightarrow 0^+) = B(E2)\uparrow$

$$\begin{aligned} \tau &= 40.81 \times 10^{13} E_{\gamma}^{-5} |\mathsf{B}(\mathsf{E2})^{\uparrow}/e^2 b^2|^{-1} (1+\alpha)^{-1} \\ \beta_2 &\approx \beta_{eff} = (4\pi/3 Z R_0^2) [\mathsf{B}(\mathsf{E2})^{\uparrow}/e^2]^{1/2} \end{aligned}$$

Data from: B. Singh and B. Chen Nucl. Data Sheets 147, 1 (2018); C.M. Baglin Nucl. Data Sheets 109, 1103 (2008); H. Watanabe et. al. Phys. Lett. B 760, 641 (2016); B. Pritychenko et. al. Nucl. Phys. A 962, 73 (2017).

IAEA-ICTP Workshop on Nuclear Structure and Decay Data

IPN Orsay and NuBALL

- 14.8 MV tandem accelerator
- Stable heavy-ion beams: pulsed or continuous
- Hybrid spectrometer: HPGe and LaBr detectors

IPN Orsay and NuBALL

- 4 detector rings, 184 channels
- 20 LaBr detectors with 1.5x2 inch crystals, no passive shielding, at $d_{centre} \ge 15.2$ cm
- 24 HPGe clover detectors, surrounded by BGO shielding, at d_{centre} = 20.9 cm
- 10 HPGe coaxial detectors, surrounded by BGO shielding, at d_{centre} = 18.0 cm
- Hybrid geometry for good energy and time resolution
- FASTER DAQ (fully digitized):
 - 125 MHz, 14 bit ADCs with trapezoid filter for HPGes and BGOs
 - o 500 MHz, 12 bit QDCs with internal pulse-shaping algorithm for LaBrs
- Data collected with a trigger or in triggerless mode

Experimental Method

- Pulsed ¹⁸O beam: 2 ns pulses, 400 ns period, ~35 enA, charge state 6⁺
- ¹⁶⁴Dy target: 95% purity, 6.3 mg/cm²
- Desired reaction: two-neutron transfer ¹⁶⁴Dy(¹⁸O,¹⁶O)¹⁶⁶Dy
- 1 week beam time, 3 beam energies: 71 MeV (2 days), 76 MeV (2 days), 80 MeV (3 days)

IAEA-ICTP Workshop on Nuclear Structure and Decay Data

- Contaminants: ¹⁶⁴Dy from Coulomb excitation of the target, ¹⁷⁸W from 4n fusion evaporation
- ¹⁶⁶Dy not visible in total projection spectrum, HPGe gates needed

Total Projections at Different Beam Energies

Reaction Channel Selection

- Multiplicity distribution for different event types, HPGe gate on 4⁺ → 2⁺ transitions in ¹⁶⁴Dy, ¹⁶⁶Dy and ¹⁷⁸W
- nTot = 2 dominated by Coulomb excitation, 2n transfer peaks at nTot = 2 and 3
- Look at nBGO vs. LaBr E to set a multiplicity condition for 2n transfer selection

Reaction Channel Selection

Event selection conditions: nGe = 1, nLaBr = 2, nBGO < 2 HPGe gate on 273 keV

LaBr Projection after HPGe gate on 273 keV

Time difference measurements:

- $4^+ \rightarrow 2^+$ and $2^+ \rightarrow 0^+$ gamma rays at 177 and 77 keV
- $4^+ \rightarrow 2^+$ gamma ray and internal conversion x-ray at 177 and 46 keV

Lifetime Measurements in ¹⁶⁶Dy

Summary

- NuBALL hybrid detector array used for gammaray spectroscopy
- Aim to study quadrupole deformation near the mid-shell ¹⁷⁰Dy isotope
- 2n transfer reaction 164 Dy(18 O, 16 O) 166 Dy
- Lifetime of 2⁺ and 4⁺ excited states in ¹⁶⁴Dy successfully re-measured
- Event energy and multiplicity used to select reaction channel
- Half-life of 2^+ in ¹⁶⁶Dy measured as $T_{1/2} = 2.4(4)$ ns
- $B(E2)\uparrow = 5.0(10) e^2 b^2$, to extract more from the value the 20% uncertainty must be reduced

Evaluated B(E2) \uparrow vs. N in the Z=66 Region

Acknowledgements

- UK Science and Technologies Facility Council (STFC)
- UK Nuclear Data Network
- Marion Redfearn Scholarship Trust
- UK Dept. for Business, Energy and Industrial Strategy (BEIS)
- ENSAR2 transnational accessfunding from the European Commission
- Collaborators at IPN Orsay (Dr. M. Lebois, Prof. J. Wilson, Dr. N. Jovancevic)
- IKP, University of Cologne (for the supply of the ¹⁶⁴Dy target)

Additional slides

P/T Ratio: Add-Back and Compton Veto

- All HPGe are Compton ٠ suppressed
- Add-back used in clover detectors
- Coincidences between ۲ nearest neighbours are excluded for LaBr

Spectrum Type	Peak/Total at Energy:			
(76 MeV data)	107 keV	237 keV	351 keV	447 keV
Raw	0.0054	0.014	0.0098	0.0075
Prompt Gated	0.0039	0.017	0.015	0.013
with Add Back	0.0043	0.019	0.018	0.016
Compton Suppressed	0.0043	0.020	0.019	0.017

Coincidence Measurements

LaBr Projections in ¹⁶⁶Dy

Justification of Results using ¹⁶⁴Dy

[1] B. Singh and B. Chen Nucl. Data Sheets 147, 1 (2018)