

High spin states Interpretation of ¹³⁵Ba, ¹³⁵La and ¹³⁵Ce Nuclei within Cranked Nilsson-Strutinsky Model

S. Kaim,^{1,} I. Azeri^{, 1}A. Aboudi,¹ R. Belgharbi,¹A. Laala ¹

¹Université des Frères Mentouri Constantine1, Algérie

Data Hatar Canad Generation

AEA

Joint ICTP-IAEA Workshop on Nuclear Structure op on Pand Decay Data: Theory, Experiment and Evaluation | (smr 3242)

- 2. Calculation code : CNS
- 3. Results and discussion

Increasing Angular Momentum and Excitation Energy is one of the most excellent ways to investigate nuclear structure

z	133Pr 6.5 M 8: 100.00%	134Pr ≃11 M ε: 100.00%⊳	135Pr 24 M 8: 100.00%	136Pr 13.1 M 8: 100.00%	137Pr 1.28 H ε: 100.00%	138Pr 1.45 M 8: 100.00%	139Pr 4.41 H ε: 100.00%	140Pr 3.39 Μ ε: 100.00%	141Fr STABLE 100%
58	132Ce 3.51 H 8: 100.00%	133Ce 97 Μ ε: 100.00%	134Ce 3.16 D 8: 100.00%	135Ce 17.7 H 8: 100.00%	136Ce >0.7E+14 Y 0.185% 28	137Ce 9.0 H ε: 100.00%	138⊂e ≥0.9E+14 Y 0.251%5 28: 100.00%5	139Ce 137.641 D 8: 100.00%	140Cc STABLE 88.450%
57	131La 59 M 8: 100.00%	132La 4.8 H ε: 100.00%	133La 3.912 H 8: 100.00%	134La 6.45 Μ ε: 100.00%	135La 19.5 Η ε: 100.00%	136La 9.87 M 8: 100.00%	137La 6E+4 Y 8: 100.00%	138La 1.02E+11 Y 0.08881% ε: 65.60% β-: 34.40%	139La STABLE 99.9119%
58	130Ba STABLE 0.106% 28	131Ba 11.50 D ε: 100.00%	132Ba >3.0E+21 Y 0.101% 28	133Ba 10.551 Y 8: 100.00%	134Ba STABLE 2.41795	135Ba STABLE 6.592%	136Ba STABLE 7.854%	137Ba STABLE 11.232%	138Ba STABLE 71.698%
55	129Cs 32.06 H 8: 100.00%	130Cs 29.21 Μ ε: 98.40% β-: 1.60%	131€s 9.689 D 8: 100.00%5	132Cs 6.480 D ε: 98.13% β-: 1.87%	133Cs STABLE 100%	134Cs 2.0652 Υ β-: 100.00% ε: 3.0E-4%	135€s 2.3E+6 Υ β-: 100.00%⊳	136€s 13.04 D β-: 100.00%⊳	137Cs 30.08 Υ β-: 100.00%
	74	75	76	77	78	79	80	81	N

ICTP-IAEA Workshop on Nuclear Structure and Decay Data 10 oct. 2018

S. Kaim

ICTP-IAEA Workshop on Nuclear Structure and Decay Data 10 oct. 2018

S. Kaim

ICTP-IAEA Workshop on Nuclear Structure and Decay Data 10 oct. 2018

S. Kaim

ICTP-IAEA Workshop on Nuclear Structure and Decay Data 10 oct. 2018

"Cranked Nilsson-Strutinsky" [Beng85, Afan99, Carls06].

CNS formalisme

"Cranked Nilsson-Strutinsky" [Beng85, Afan99, Carls06].

[Beng85] T. Bengtsson and I. Ragnarsson, Nucl. Phys. A 436, 14 (1985).

[Afan99] A. V. Afanasjev, D. B. Fossan, G. J. Lane, and I. Ragnarsson, Phys. Rep. 322, 1 (1999).

[CarlsO6] B. G. Carlsson and I. Ragnarsson, Phys. Rev. C 74, 011302(R) (2006)

"Cranked Nilsson-Strutinsky" [Beng85, Afan99, Carls06].

[Beng85] T. Bengtsson and I. Ragnarsson, Nucl. Phys. A 436, 14 (1985).

[Afan99] A. V. Afanasjev, D. B. Fossan, G. J. Lane, and I. Ragnarsson, Phys. Rep. 322, 1 (1999).

[Carls06] B. G. Carlsson and I. Ragnarsson, Phys. Rev. C 74, 011302(R) (2006)

"Cranked Nilsson-Strutinsky" [Beng85, Afan99, Carls06].

[Beng85] T. Bengtsson and I. Ragnarsson, Nucl. Phys. A 436, 14 (1985).

[Afan99] A. V. Afanasjev, D. B. Fossan, G. J. Lane, and I. Ragnarsson, Phys. Rep. 322, 1 (1999).

[Carls06] B. G. Carlsson and I. Ragnarsson, Phys. Rev. C 74, 011302(R) (2006)

My deep gratitude for the authors of CNS Codes, particularly Prof. I. Ragnarsson,

CNS formalisme

"Cranked Nilsson-Strutinsky" [Beng85, Afan99, Carls06].

[Beng85] T. Bengtsson and I. Ragnarsson, Nucl. Phys. A 436, 14 (1985).

[Afan99] A. V. Afanasjev, D. B. Fossan, G. J. Lane, and I. Ragnarsson, Phys. Rep. 322, 1 (1999).

[Carls06] B. G. Carlsson and I. Ragnarsson, Phys. Rev. C 74, 011302(R) (2006)

 $E_{tot} = E_{macro} + E_{micro}$

$$E_{\text{tot}}(I_0) = \sum e_i(\omega,\bar{\varepsilon}) \bigg|_{I=I_0} + E_{\text{LD}}(\bar{\varepsilon},I=0) - E_0 + \left\{ \frac{1}{2J_{\text{rig}}} - \frac{1}{2J_{\text{str}}} \right\} I_0^2 - bI_0^4$$

S. Kaim ICTP-IAEA Workshop on Nuclear Structure and Decay Data 10 oct. 2018

6, 7 and
$$8\pi \rightarrow \{1g_{7/2}, 2d_{5/2} \text{ and } 1h_{11/2}\}\$$

-5, -4 and $-3v \rightarrow \{2d_{3/2}, 3s_{1/2}, 2f_{7/2}, 1h_{9/2}, 1h_{11/2} \text{ and } 1i_{13/2}\}\$

6, 7 and
$$8\pi \rightarrow \{1g_{7/2}, 2d_{5/2} \text{ and } 1h_{11/2}\}\$$

-5, -4 and $-3v \rightarrow \{2d_{3/2}, 3s_{1/2}, 2f_{7/2}, 1h_{9/2}, 1h_{11/2} \text{ and } 1i_{13/2}\}\$

$\pi \left[(d_{5/2}g_{7/2})^{p_1}_{\alpha_1} (h_{11/2})^{p_2}_{\alpha_2} \right] \otimes \nu \left[(d_{3/2}s_{1/2})^{-n_1}_{\alpha_3} (h_{11/2})^{-n_2}_{\alpha_4} (h_{9/2}f_{7/2})^{n_3}_{\alpha_5} (i_{13/2})^{n_4}_{\alpha_6} \right]$

S. Kaim ICTP-IAEA Workshop on Nuclear Structure and Decay Data 10 oct. 2018

6, 7 and
$$8\pi \rightarrow \{1g_{7/2}, 2d_{5/2} \text{ and } 1h_{11/2}\}\$$

-5, -4 and -3v $\rightarrow \{2d_{3/2}, 3s_{1/2}, 2f_{7/2}, 1h_{9/2}, 1h_{11/2} \text{ and } 1i_{13/2}\}\$

$\pi \left[(d_{5/2}g_{7/2})^{p_1}_{\alpha_1} (h_{11/2})^{p_2}_{\alpha_2} \right] \otimes \nu \left[(d_{3/2}s_{1/2})^{-n_1}_{\alpha_3} (h_{11/2})^{-n_2}_{\alpha_4} (h_{9/2}f_{7/2})^{n_3}_{\alpha_5} (i_{13/2})^{n_4}_{\alpha_6} \right]$

$$[p_1p_2, n_1n_2(n_3n_4)]$$

S. K

18

S. K

S. K

S. K

3. Results and Discussion

S. Kaim

3. Results and Discussion

3 Doculte and Discussion

2 Deculte and Niceuccian

3 Doci	ulte and C	Dicruccion		
<u>Nuclei</u>	<u>Bands</u>	Configurations	<u>E</u> 2	γ°
135 D o	Band2	$\pi(dg)^4 h^2_{11/2} \otimes \nu(ds)^{-1} h^{-2}_{11/2}$	0.13	29,33
56 Da	Band4	$\pi(dg)^{5}h^{1}_{11/2} \otimes \nu(ds)^{-1}h^{-2}_{11/2}$	0.11	16,76
	Band1	$\pi(dg)^7 \otimes \nu(ds)^{-2} h^{-2}_{11/2}$	0.14	31,7
	Band2	$\pi(dg)^{5}h^{2}_{11/2} \otimes \nu(ds)^{-2}h^{-2}_{11/2}$	0. <mark>2</mark> 7	-35.06
	Band5	$\pi(dg)^7 \otimes \nu(ds)^{-1} h^{-3}_{11/2}$	0.13	-10.584
¹³⁵ 57La	Band6	$\pi(dg)^6 h^1_{11/2} \otimes \nu h^{-4}_{11/2}$	0.13	5,09
	Band7	$\pi(dg)^5 h^2_{11/2} \otimes \nu(ds)^{-1} h^{-3}_{11/2}$	0.14	5,26
	Band9	$\pi (dg)^7 \otimes \nu h^{-4}_{11/2}$	0.09	-14.55
	Band10	$\pi(dg)^6 h^1_{11/2} \otimes \nu(ds)^{-1} h^{-3}_{11/2}$	0.12	-23.99
	Band2	$\pi(dg)^7 h^{1}_{11/2} \otimes \nu(ds)^{-2} h^{-3}_{11/2}$	0.16	26,7
135	Band3	$\pi(dg)^6 h^2_{11/2} \otimes \nu(ds)^{-2} h^{-3}_{11/2}$	0.18	26.56
58 Ce	Band5	$\pi(dg)^6 h^2_{11/2} \otimes \nu(ds)^{-2} h^{-3}_{11/2}$	0.18	26.75
	Band6	$\pi(dg)^8 \otimes \nu(ds)^{-2} h^{-3}_{11/2}$	0.14	-39.48

2 Deculte and Discussion						
<u>Nuclei</u>	<u>Bands</u>	Configurations	<u>82</u>	γ°		
135 D o	Band2	$\pi(dg)^4 h^2_{11/2} \otimes \nu(ds)^{-1} h^{-2}_{11/2}$	0.13	29,33		
56 Da	Band4	$\pi(dg)^{5}h^{1}_{11/2} \otimes \nu(ds)^{-1}h^{-2}_{11/2}$	0.11	16,76		
	Band1	$\pi(dg)^7 \otimes \nu(ds)^{-2} h^{-2}_{11/2}$	0.14	31,7		
-	Band2	$\pi(dg)^{5}h^{2}_{11/2} \otimes \nu(ds)^{-2}h^{-2}_{11/2}$	0. <mark>2</mark> 7	-35.06		
	Band5	$\pi(dg)^7 \otimes \nu(ds)^{-1} h^{-3}_{11/2}$	0.13	-10.584		
¹³⁵ 57La	Band6	$\pi(dg)^6 h^1_{11/2} \otimes \nu h^{-4}_{11/2}$	0.13	5,09		
	Band7	$\pi(dg)^5 h^2_{11/2} \otimes \nu(ds)^{-1} h^{-3}_{11/2}$	0.14	5,26		
	Band9	$\pi(dg)^7 \otimes \nu h^{-4}_{11/2}$	0.09	-14.55		
	Band10	$\pi(dg)^6 h^1_{11/2} \otimes \nu(ds)^{-1} h^{-3}_{11/2}$	0.12	-23.99		
	Band2	$\pi(dg)^7 h^{1}_{11/2} \otimes \nu(ds)^{-2} h^{-3}_{11/2}$	0.16	26,7		
135 Co	Band3	$\pi(dg)^6 h^2_{11/2} \otimes \nu(ds)^{-2} h^{-3}_{11/2}$	0.18	26.56		
5800	Band5	$\pi(dg)^6 h^2_{11/2} \otimes \nu(ds)^{-2} h^{-3}_{11/2}$	0.18	26.75		
-	Band6	$\pi(dg)^8 \otimes \nu(ds)^{-2} h^{-3}_{11/2}$	0.14	-39.48		

2 Deculte and Discussion					
<u>Nuclei</u>	<u>Bands</u>	Configurations	<u>E2</u>	γ°	
135 D o	Band2	$\pi(dg)^4 h^2_{11/2} \otimes \nu(ds)^{-1} h^{-2}_{11/2}$	0.13	29,33	
56 Da -	Band4	$\pi(dg)^5 h^1_{11/2} \otimes \nu(ds)^{-1} h^{-2}_{11/2}$	0.11	16,76	
	Band1	$\pi(dg)^7 \otimes \nu(ds)^{-2} h^{-2}_{11/2}$	0.14	31,7	
_	Band2	$\pi(dg)^{5}h^{2}_{11/2} \otimes \nu(ds)^{-2}h^{-2}_{11/2}$	0.27	-35.06	
_	Band5	$\pi(dg)^7 \otimes \nu(ds)^{-1} h^{-3}_{11/2}$	0.13	-10.584	
¹³⁵ 57La	Band6	$\pi (dg)^6 h^1_{11/2} \otimes \nu h^{-4}_{11/2}$	0.13	5,09	
	Band7	$\pi(dg)^5 h^2_{11/2} \otimes \nu(ds)^{-1} h^{-3}_{11/2}$	0.14	5,26	
_	Band9	$\pi (dg)^7 \otimes \nu h^{-4}_{11/2}$	0.09	-14.55	
_	Band10	$\pi(dg)^6 h^1_{11/2} \otimes \nu(ds)^{-1} h^{-3}_{11/2}$	0.12	-23.99	
	Band2	$\pi(dg)^7 h^{1}_{11/2} \otimes \nu(ds)^{-2} h^{-3}_{11/2}$	0.16	26,7	
135 C o	Band3	$\pi(dg)^6 h^2_{11/2} \otimes \nu(ds)^{-2} h^{-3}_{11/2}$	0.18	26.56	
5800	Band5	$\pi(dg)^6 h^2_{11/2} \otimes \nu(ds)^{-2} h^{-3}_{11/2}$	0.18	26.75	
-	Band6	$\pi(dg)^8 \otimes \nu(ds)^{-2} h^{-3}_{11/2}$	0.14	-39.48	

2 Deculte and Discussion					
<u>Nuclei</u>	<u>Bands</u>	Configurations	<u>E2</u>	γ°	
135 D o	Band2	$\pi(dg)^4 h^2_{11/2} \otimes \nu(ds)^{-1} h^{-2}_{11/2}$	0.13	29,33	
56 Da	Band4	$\pi(dg)^{5}h^{1}_{11/2} \otimes \nu(ds)^{-1}h^{-2}_{11/2}$	0.11	16,76	
	Band1	$\pi(dg)^7 \otimes \nu(ds)^{-2} h^{-2}_{11/2}$	0.14	31,7	
	Band2	$\pi(dg)^{5}h^{2}_{11/2} \otimes \nu(ds)^{-2}h^{-2}_{11/2}$	0.27	-35.06	
	Band5	$\pi(dg)^7 \otimes \nu(ds)^{-1} h^{-3}_{11/2}$	0.13	-10.584	
¹³⁵ 57La	Band6	$\pi(dg)^6 h^1_{11/2} \otimes \nu h^{-4}_{11/2}$	0.13	5,09	
	Band7	$\pi(dg)^5 h^2_{11/2} \otimes \nu(ds)^{-1} h^{-3}_{11/2}$	0.14	5,26	
	Band9	$\pi (dg)^7 \otimes \nu h^{-4}_{11/2}$	0.09	-14.55	
	Band10	$\pi(dg)^6 h^1_{11/2} \otimes \nu(ds)^{-1} h^{-3}_{11/2}$	0.12	-23.99	
	Band2	$\pi(dg)^7 h^{1}_{11/2} \otimes \nu(ds)^{-2} h^{-3}_{11/2}$	0.16	26,7	
135	Band3	$\pi(dg)^6 h^2_{11/2} \otimes \nu(ds)^{-2} h^{-3}_{11/2}$	0.18	26.56	
58 C e	Band5	$\pi(dg)^6 h^2_{11/2} \otimes \nu(ds)^{-2} h^{-3}_{11/2}$	0.18	26.75	
	Band6	$\pi(dg)^8 \otimes \nu(ds)^{-2} h^{-3}_{11/2}$	0.14	-39.48	

2 Deculte and Niceweeien					
<u>Nuclei</u>	<u>Bands</u>	Configurations	<u>E2</u>	γ°	
135 D o	Band2	$\pi(dg)^4 h^2_{11/2} \otimes \nu(ds)^{-1} h^{-2}_{11/2}$	0.13	29,33	
56 Da	Band4	$\pi(dg)^{5}h^{1}_{11/2} \otimes \nu(ds)^{-1}h^{-2}_{11/2}$	0.11	16,76	
	Band1	$\pi(dg)^7 \otimes \nu(ds)^{-2} h^{-2}_{11/2}$	0.14	31,7	
	Band2	$\pi(dg)^{5}h^{2}_{11/2} \otimes \nu(ds)^{-2}h^{-2}_{11/2}$	0.27	-35.06	
	Band5	$\pi(dg)^7 \otimes \nu(ds)^{-1} h^{-3}_{11/2}$	0.13	-10.584	
¹³⁵ 57La	Band6	$\pi(dg)^6 h^1_{11/2} \otimes \nu h^{-4}_{11/2}$	0.13	5,09	
	Band7	$\pi(dg)^5 h^2_{11/2} \otimes \nu(ds)^{-1} h^{-3}_{11/2}$	0.14	5,26	
	Band9	$\pi (dg)^7 \otimes \nu h^{-4}_{11/2}$	0.09	-14.55	
	Band10	$\pi(dg)^6 h^1_{11/2} \otimes \nu(ds)^{-1} h^{-3}_{11/2}$	0.12	-23.99	
	Band2	$\pi(dg)^7 h^{1}_{11/2} \otimes \nu(ds)^{-2} h^{-3}_{11/2}$	0.16	26,7	
135	Band3	$\pi(dg)^6 h^2_{11/2} \otimes \nu(ds)^{-2} h^{-3}_{11/2}$	0.18	26.56	
58 C e	Band5	$\pi(dg)^6 h^2_{11/2} \otimes \nu(ds)^{-2} h^{-3}_{11/2}$	0.18	26.75	
	Band6	$\pi(dg)^8 \otimes \nu(ds)^{-2} h^{-3}_{11/2}$	0.14	-39.48	

2 Deculte and Nicenseian						
<u>Nuclei</u>	<u>Bands</u>	Configurations	<u>£2</u>	γ°		
135 D o	Band2	$\pi(dg)^4 h^2_{11/2} \otimes \nu(ds)^{-1} h^{-2}_{11/2}$	0.13	29,33		
56 Da -	Band4	$\pi(dg)^{5}h^{1}_{11/2} \otimes \nu(ds)^{-1}h^{-2}_{11/2}$	0.11	16,76		
	Band1	$\pi(dg)^7 \otimes \nu(ds)^{-2} h^{-2}_{11/2}$	0.14	31,7		
	Band2	$\pi^{(1-)512}$	0.27	-35.06		
	Band5	5 11/2	0.13	-10.584		
¹³⁵ 57La	Band6	0- 1/2	0.13	5,09		
	Band7	π_{-5}	0.14	5,26		
	Band9	5 0 -5	0.09	-14.55		
_	Band10	$\pi(dg)^6 h^1_{11/2} \otimes \nu(ds)^{-1} h^{-3}_{11/2}$	0.12	-23.99		
	Band2	$\pi(dg)^7 h^1_{11/2} \otimes \nu(ds)^{-2} h^{-3}_{11/2}$	0.16	26,7		
135 Co	Band3	$\pi(dg)^6 h^2_{11/2} \otimes \nu(ds)^{-2} h^{-3}_{11/2}$	0.18	26.56		
58CC -	Band5	$\pi(dg)^6 h^2_{11/2} \otimes \nu(ds)^{-2} h^{-3}_{11/2}$	0.18	26.75		
_	Band6	$\pi(dg)^8 \otimes \nu(ds)^{-2} h^{-3}_{11/2}$	0.14	-39.48		

2 Dee	ulte and	Nicouccian		
<u>Nuclei</u>	Bands	Configurations	<u>E</u> 2	γ°
135 D o	Band2	$\pi(dg)^4 h^2_{11/2} \otimes \nu(ds)^{-1} h^{-2}_{11/2}$	0.13	29,33
56 Da -	Band4	$\pi(dg)^{5}h^{1}_{11/2} \otimes \nu(ds)^{-1}h^{-2}_{11/2}$	0.11	16,76
	Band1	$\pi (dg)^7 \otimes \nu (ds)^{-2} h^{-2}_{11/2}$	0.14	31,7
_	Band2	$\pi(dg)^{5}h^{2}_{11/2}\otimes \nu(ds)^{-2}h^{-2}_{11/2}$	0.27	-35.06
_	Band5	$\pi (dg)^7 \otimes \nu (ds)^{-1} h^{-3}_{11/2}$	0.13	-10.584
¹³⁵ 57La	Band6	$\pi(dg)^6 h^1_{11/2} \otimes \nu h^{-4}_{11/2}$	0.13	5,09
	Band7	$\pi(dg)^5 h^2_{11/2} \otimes \nu(ds)^{-1} h^{-3}_{11/2}$	0.14	5,26
	Band9	$\pi(dg)^7 \otimes \nu h^{-4}_{11/2}$	0.09	-14.55
_	Band10	$\pi(dg)^6 h^1_{11/2} \otimes \nu(ds)^{-1} h^{-3}_{11/2}$	0.12	-23.99
	Band2	$\pi(dg)^7 h^1_{11/2} \otimes \nu(ds)^{-2} h^{-3}_{11/2}$	0.16	26,7
135 Co	Band3	$\pi(dg)^6 h^2_{11/2} \otimes \nu(ds)^{-2} h^{-3}_{11/2}$	0.18	26.56
58 C e -	Band5	$\pi(dg)^6 h^2_{11/2} \otimes \nu(ds)^{-2} h^{-3}_{11/2}$	0.18	26.75
_	Band6	$\pi(dg)^8 \otimes \nu(ds)^{-2} h^{-3}_{11/2}$	0.14	-39.48

2 Deculte and Niceuccian					
<u>Nuclei</u>	Bands	Configurations	<u>E2</u>	γ°	
135 D o	Band2	$\pi(dg)^4 h^2_{11/2} \otimes \nu(ds)^{-1} h^{-2}_{11/2}$	0.13	29,33	
56 Da -	Band4	$\pi(dg)^{5}h^{1}_{11/2} \otimes \nu(ds)^{-1}h^{-2}_{11/2}$	0.11	16,76	
	Band1	$\pi(dg)^7 \otimes \nu(ds)^{-2} h^{-2}_{11/2}$	0.14	31,7	
_	Band2	$\pi(dg)^{5}h^{2}_{11/2} \otimes \nu(ds)^{-2}h^{-2}_{11/2}$	0.27	-35.06	
_	Band5	$\pi(dg)^7 \otimes \nu(ds)^{-1} h^{-3}_{11/2}$	0.13	-10.584	
¹³⁵ 57La	Band6	$\pi(dg)^6 h^1_{11/2} \otimes \nu h^{-4}_{11/2}$	0.13	5,09	
	Band7	$\pi(dg)^5 h^2_{11/2} \otimes \nu(ds)^{-1} h^{-3}_{11/2}$	0.14	5,26	
_	Band9	$\pi (dg)^7 \otimes \nu h^{-4}_{11/2}$	0.09	-14.55	
_	Band10	$\pi(dg)^6 h^1_{11/2} \otimes \nu(ds)^{-1} h^{-3}_{11/2}$	0.12	-23.99	
	Band2	$\pi(c^{5})$	0.16	26,7	
135 Co	Band3	$\pi(c_{-2}^{2})$	0.18	26.56	
5800 -	Band5	$\pi(c)^{-4}$	0.18	26.75	
_	Band6	2 -5 5 /2	0.14	-39.48	

• High spin states of ¹³⁵Ba, ¹³⁵La and ¹³⁵Ce isobars are interpreted by CNS code. Calculation Results are represented by plots and curves : $E - E_{RID}(I)$, PES, $J^{(i)}(\omega)$, ...

- High spin states of ¹³⁵Ba, ¹³⁵La and ¹³⁵Ce isobars are interpreted by CNS code. Calculation Results are represented by plots and curves : $E - E_{BLD}(I)$, PES, $J^{(i)}(\omega)$, ...
- In general these isobars shows a pronounced triaxiality <u>but</u> also axial symetric shapes: prolate in bands 6 and 7 of ¹³⁵La, oblate in band 6 of ¹³⁵Ce.
 - → These nuclei shows shape co-existence phenomenon.

- High spin states of ¹³⁵Ba, ¹³⁵La and ¹³⁵Ce isobars are interpreted by CNS code. Calculation Results are represented by plots and curves : $E - E_{RID}(I)$, PES, $J^{(i)}(\omega)$, ...
- In general these isobars shows a pronounced triaxiality <u>but</u> also axial symetric shapes: prolate in bands 6 and 7 of ¹³⁵La, oblate in band 6 of ¹³⁵Ce.
 - → These nuclei shows shape co-existence phenomenon.
- •The quadrupole deformation in not very important for baryum and lanthane nuclei $\varepsilon_2 \sim 0.1 0.14$, except band2 of ¹³⁵La where $\varepsilon_2 \sim 0.27$. the 135Ce seems to be more deformed $\varepsilon_2 \sim 0.17$.

- High spin states of ¹³⁵Ba, ¹³⁵La and ¹³⁵Ce isobars are interpreted by CNS code. Calculation Results are represented by plots and curves : $E - E_{RID}(I)$, PES, $J^{(i)}(\omega)$, ...
- In general these isobars shows a pronounced triaxiality <u>but</u> also axial symetric shapes: prolate in bands 6 and 7 of ¹³⁵La, oblate in band 6 of ¹³⁵Ce.
 - → These nuclei shows shape co-existence phenomenon.
- •The quadrupole deformation in not very important for baryum and lanthane nuclei $\varepsilon_2 \sim 0.1 0.14$, except band2 of ¹³⁵La where $\varepsilon_2 \sim 0.27$. the 135Ce seems to be more deformed $\varepsilon_2 \sim 0.17$.
- High-spin states are explained basing on simple configurations formed by a combined contribution on 3-5 neutron holes in $h_{_{11/2}}$ orbitals and (ds) sub-shells and by 1-2 protons excitations to the $h_{_{11/2}}$ orbitals.

- High spin states of ¹³⁵Ba, ¹³⁵La and ¹³⁵Ce isobars are interpreted by CNS code. Calculation Results are represented by plots and curves : $E - E_{RLD}(I)$, PES, $J^{(i)}(\omega)$, ...
- In general these isobars shows a pronounced triaxiality <u>but</u> also axial symetric shapes: prolate in bands 6 and 7 of ¹³⁵La, oblate in band 6 of ¹³⁵Ce.
 - → These nuclei shows shape co-existence phenomenon.
- •The quadrupole deformation in not very important for baryum and lanthane nuclei $\varepsilon_2 \sim 0.1 0.14$, except band2 of ¹³⁵La where $\varepsilon_2 \sim 0.27$. the 135Ce seems to be more deformed $\varepsilon_2 \sim 0.17$.
- High-spin states are explained basing on simple configurations formed by a combined contribution on 3-5 neutron holes in $h_{_{11/2}}$ orbitals and (ds) sub-shells and by 1-2 protons excitations to the $h_{_{11/2}}$ orbitals.

- High spin states of ¹³⁵Ba, ¹³⁵La and ¹³⁵Ce isobars are interpreted by CNS code. Calculation Results are represented by plots and curves : $E - E_{RID}(I)$, PES, $J^{(i)}(\omega)$, ...
- In general these isobars shows a pronounced triaxiality <u>but</u> also axial symetric shapes: prolate in bands 6 and 7 of ¹³⁵La, oblate in band 6 of ¹³⁵Ce.
 These nuclei shows shape so existence phenomenon
 - → These nuclei shows shape co-existence phenomenon.
- •The quadrupole deformation in not very important for baryum and lanthane nuclei $\varepsilon_2 \sim 0.1 0.14$, except band2 of ¹³⁵La where $\varepsilon_2 \sim 0.27$. the 135Ce seems to be more deformed $\varepsilon_2 \sim 0.17$.
- High-spin states are explained basing on simple configurations formed by a combined contribution on 3-5 neutron holes in $h_{_{II/2}}$ orbitals and (ds) sub-shells and by 1-2 protons excitations to the $h_{_{II/2}}$ orbitals.
- The proposed structures are generally in a good agreement with the observed results for these nuclei.