# IAEA-NDS Nuclear Reaction Databases and Services

### **Viktor Zerkin**

International Atomic Energy Agency, Nuclear Data Section

Joint ICTP-IAEA Workshop on Nuclear Structure and Decay Data: Experiment, Theory and Evaluation Trieste, Italy, 15 October – 26 October 2018

### **Topics:**

- Nuclear reaction databases and software system.
   Overview
- 2. Introduction to EXFOR-ENDF Web database retrieval system
- 3. Flexible ENDF database explorer
- 4. IBANDL Web system
- 5. EXFOR data re-normalization system
- 6. Inverse reactions and inverse kinematics in EXFOR and IBANDL
- 7. Uploading your experimental data
- 8. Plotting on Web with Web-ZVView
- 9. Not covered topics

# Nuclear Reaction Database and Software Systems Overview

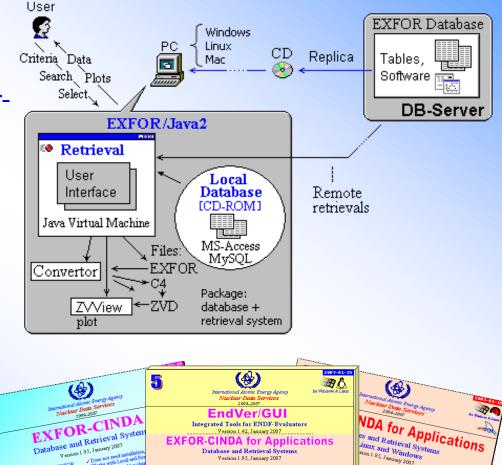


# Our Internet Address http://www-nds.iaea.org

#### **Our Postal Address:**

Nuclear Data Section, International Atomic Energy Agency Vienna International Centre, P.O. Box 100, A-1400 Vienna, Austria

### **Nuclear Reaction Databases**


| Database | Contents                         | Size (2003)         | Size (2018)         |
|----------|----------------------------------|---------------------|---------------------|
| EXFOR    | contains experimental nuclear    | 13,500 Entries      | 22,294 Entries      |
|          | reaction data for incident       | 97,000 Data sets    | 169,989 Data sets   |
|          | neutrons, charged particles and  | 400 Mb ASCII-text   | 752 Mb ASCII-text   |
|          | photons                          |                     |                     |
| ENDF     | collection of evaluated data     | ~300 Mb ASCII       | >250 Gb ASCII       |
|          | libraries containing cross       | 5 basic libraries   | 58 libraries        |
|          | sections, spectra, angular       |                     |                     |
|          | distributions, fission product   |                     |                     |
|          | yields, photo-atomic and thermal |                     |                     |
|          | scattering law data              |                     |                     |
| CINDA    | contains bibliographical         | 266,000 Lines       | 577,219 Lines       |
|          | references to experimental and   | 40,500 publications | 94,100 publications |
|          | evaluated nuclear reaction data, | 32,500 Blocks       | 294,302 Blocks      |
|          | and to calculations, reviews,    | 37 Mb ASCII-text    | 112 Mb ASCII-text   |
|          | compilations of nuclear data.    |                     |                     |
| IBANDL   | Ion Beam Analysis Nuclear Data   | 615 Datasets        | 3,690 Datasets      |
|          | Library of experimental          | 1.9 Mb              | 16 Mb ASCII-text    |
|          | differential cross-sections      |                     |                     |
|          |                                  |                     |                     |

### Basic principals of the IAEA-NDS nuclear databases and software systems

- Maximum of platform independency
  - operating systems: Linux, Windows, Mac
  - relational databases (MySQL, Access, SyBase, etc.)
  - programming languages: Java, SQL, Javascript, C, Fortran
- Free of charge system components
  - Linux, Apache, Tomcat, MariaDB
- Full integration of components
  - no installation (CD-ROM, Web, individual programs)
  - automatic configuration of Web-Servlets and scripts
  - encapsulated graphics

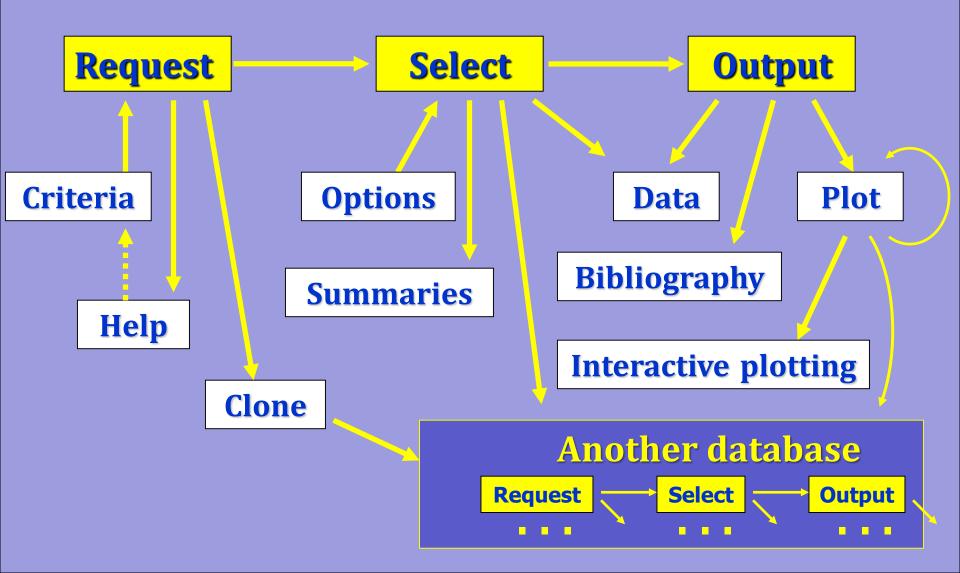
## NDS CD-ROM Database Retrieval Systems /since 2003/

- Full database on your PC
- For Windows, Linux and Mac
- Does not need installation
- Can run from CD-ROM (database server and Java JVM running from CD)
- Can work with remote databases
- Integrated EXFOR and CINDA
- Help with Dictionaries
- Advanced search (+users' SQL)
- Interactive plotting with ZVView
- EndVer/GUI with integrated PrePro and EXFOR
- Includes non-interactive retrievals to build new user's applications
- Used by Applications: Empire, EndVer, GANDR, expandable...
- Nowadays updated once per year



Version 1.95, January 2007 Does not need installation a

Advanced interactive search


es, 55,823 publications, 185,435 bi

Help based on Dicti Wester with Logal & R.

Integrated EndVenEXFOR-CINDA

ostScript graphics with PlotO4

### Retrieval system: main stream of users' interactions



# Web interface

### 1. Intuitive

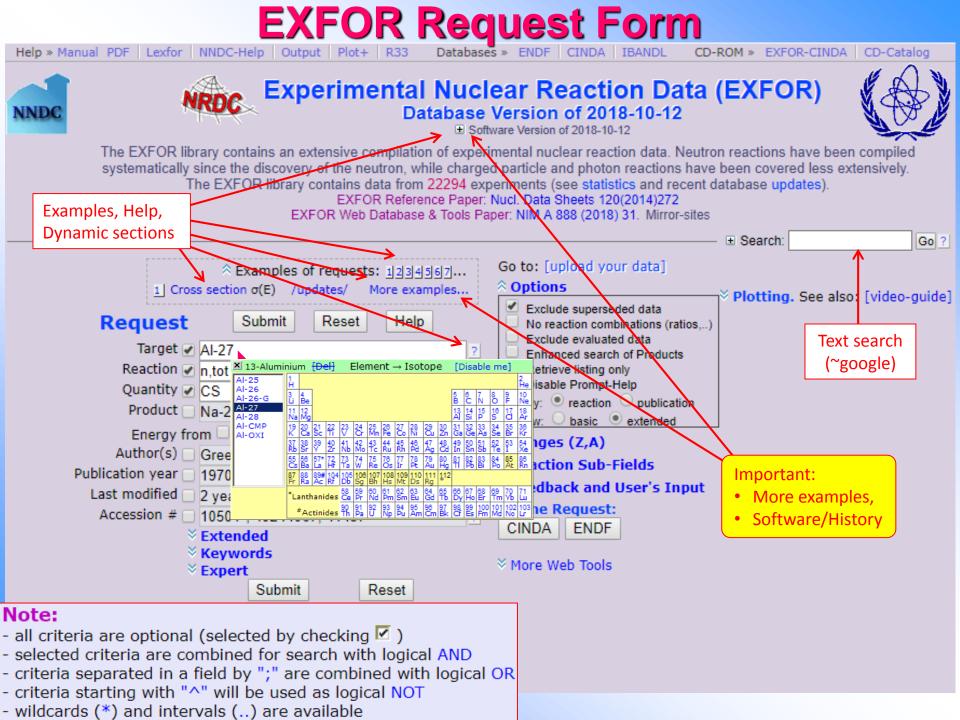
- 2. Suitable for beginners and ND professionals
- 3. Alternative interfaces
- 4. Non-trivial operations are described in:
  - a) Documentation
  - b) Examples
  - c) News, software history, how-to, FAQ pages
  - d) Video-Guides

# Introduction to EXFOR-ENDF Web database retrieval system

### **EXFOR: library, database, retrieval systems**

### Experimental data in <u>exchange</u> format

- •1970 agreed format and established exchange between USA, NEA, IAEA, USSR
- contains data from ~22,300 experiments
- •NRDC: 13 nuclear data centres compile ~500 new Entries every year
- since 2005: global library with central maintenance in the IAEA (NDS)
- Master File (750Mb), 52 Dictionaries, 2 Manuals (400 pages)
- Distribution to users: EXFOR, X4+, C4, XML, Html, plots
- •Assess via: Web, CD/DVD ROM, FTP
- Databases DBMS: MySQL, MS-Access, SyBase
- •Software: C, Java (GUI-Applications, Web-Servlets), Fortran
- Connection to other databases ENDF, CINDA, NSR, IBANDL: importexport data, common plotting, links, cross-search


| ENTRY            | 41323          | 20050902         | ENTRY            | 41323 20    | 050902                     | EXFOR Logic             |
|------------------|----------------|------------------|------------------|-------------|----------------------------|-------------------------|
| SUBENT           | 41323001       | 20050902         | SUBENT           | 41323001    | 20050902                   |                         |
| BIB              | 7              | 12               | BIB              | 7           | 12                         |                         |
| INSTITUTE        | (4RUSMIF)      |                  | INSTITUTE        | (4RUSMIF)   |                            |                         |
| REFERENCE        | •              | ,350,198105) M   |                  | • •         | 5),350,198105) MAIN RE     | FERENCE, DATA ARE GIVEN |
|                  |                | 5,1981) ENGLI    |                  |             | 325,1981) ENGLISH TRA      |                         |
| AUTHOR           |                | 7, A.M. MOTORIN, | AUTHOR           |             | REV, A.M. MOTORIN, S.B. ST |                         |
| TITLE            |                | CROSS SECTION    | TITLE            | •           | ON CROSS SECTIONS OF C     | -                       |
|                  | WITH COLD NE   |                  |                  | WITH COLD   |                            |                         |
| FACILITY         | (REAC)         |                  | FACILITY         | (REAC)      |                            |                         |
| ERR-ANALYS       | (EN-ERR) WA    | AVE-LENGTH RES   | ERR-ANALYS       | (EN-ERR)    | WAVE-LENGTH RESOLUTIO      | N DELTA-LAMBDA/LAMBDA   |
|                  | TI             | IMES 100 (IN P   |                  |             | TIMES 100 (IN PERCENT      | ?)                      |
| HISTORY          | (19981121C)    | + + COMPILED     | HISTORY          | (19981121C  | ) + + COMPILED AT TH       | IE CJD + +              |
|                  | (20050902A)    | Correcte         |                  | (20050902A) | ) Corrected at t           | che CJD + +             |
|                  |                | Data-heading     |                  |             | Data-heading "EN" c        | hanged to "WVE-LN"      |
| ENDBIB           | 12             |                  | ENDBIB           | 12          |                            |                         |
| COMMON           | 3              | 3                | COMMON           | 3           | 3                          |                         |
| EN-ERR           | TEMP TE        | EMP-ERR          | EN-ERR           | TEMP        | TEMP-ERR                   |                         |
| PER-CENT         | DEG-C DE       | EG-C             | PER-CENT         | DEG-C       | DEG-C                      |                         |
| 3.               | 22. 3          | 3.               | 3.               | 22.         | 3.                         |                         |
| ENDCOMMON        | 3              |                  | ENDCOMMON        | :           | 3                          |                         |
| ENDSUBENT        | 19             |                  | ENDSUBENT        | 19          |                            |                         |
| SUBENT           | 41323002       | 20050902         |                  |             | 20050902                   |                         |
| BIB              | 5              | 8                | BIB              | 5           | 8                          |                         |
| REACTION         | (13-AL-27(N,1  |                  | REACTION         |             | N,TOT),,SIG)               |                         |
| SAMPLE           |                | DNOCRYSTAL, PU   | SAMPLE           |             | MONOCRYSTAL, PURITY 9      |                         |
|                  |                | TY 2.70 GRAM     |                  |             | NSITY 2.70 GRAM/CM3 AN     |                         |
|                  |                | LINE ALUMINIU    |                  |             | TALLINE ALUMINIUM, PUR     |                         |
|                  |                | ) MM, DENSITY    |                  |             | 50 MM, DENSITY 2.70 G      | GRAM/CM3                |
|                  | (DATA-ERR) NO  |                  |                  | •           | NO INFORMATION GIVEN       |                         |
| STATUS           | • •            | A ARE TAKEN FR   |                  | • •         | ATA ARE TAKEN FROM TAB     |                         |
| HISTORY          |                | + + CONVERTED    | HISTORY          |             | ) + + CONVERTED FROM       | SUBENT 88023002         |
| ENDBIB           | 8<br>0         | 0                | ENDBIB           | 8<br>0      | 0                          |                         |
| NOCOMMON<br>DATA | 3              | 8                | NOCOMMON<br>DATA | 3           | 8                          |                         |
| WVE-LN           | -              | ATA-ERR          | WVE-LN           | DATA        | DATA-ERR                   |                         |
|                  | B B            | IIA ENN          | ANGSTROM         | B           | B                          |                         |
|                  | 1 1.9300E+00 1 | 30008-01         |                  |             | 0 1.3000E-01               |                         |
|                  | 1 2.1200E+00 9 |                  |                  |             | 0 9.0000E-02               |                         |
|                  | 1 2.2500E+00 8 |                  |                  |             | 0 8.0000E-02               |                         |
|                  | 1 2.3800E+00 7 |                  |                  |             | 0 7.0000E-02               |                         |
|                  | 1 2.5400E+00 6 |                  |                  |             | 0 6.0000E-02               |                         |
|                  | 1 2.6100E+00 6 |                  |                  |             | 0 6.0000E-02               |                         |
|                  | 1 2.8200E+00 8 |                  |                  |             | 0 8.0000E-02               |                         |
|                  | 1 3.1500E+00 6 |                  |                  |             | 0 6.0000E-02               |                         |
| ENDDATA          | 10             |                  | ENDDATA          | 10          |                            |                         |
| ENDSUBENT        | 23             |                  | ENDSUBENT        | 23          |                            |                         |
| ENDENTRY         | 2              |                  | ENDENTRY         | 2           |                            |                         |
|                  |                |                  |                  |             |                            |                         |

### **EXFOR Interpreted: X4+, XML, X4±**

| EVEOR date   | a: http://www    | xml version="1.0" encoding="WINDOWS-1251"?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EX |
|--------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Data retriev | ed from the EXI  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
| Data retriev | cu nom the EX    | - <x4entry <="" accnum="41323" author="V.E.Zhitarev+" p="" ref1year="1981"></x4entry>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
| ENTRY        | 41323            | <pre>- <x4subent n2="20050902" subacc="41323001"> - <bit 10.1011="" doi.org="" https:="" j.j.tex.com="" subacc="41323001"> - <bit 10.1011="" doi.org="" https:="" j.tex.com="" subacc="41323001"> - <br/></bit></bit></x4subent></pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
| SUBENT       | 41323001         | -<br>- <keyword <="" kw="INSTITU" ncodes="1" p="" subacc="41323001"></keyword>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
| BIB          | 7                | - <keyword kw="INSTITU&lt;br" mcodes="1" subacc="41323001">- <kwcode icode="0" pointer=" "></kwcode></keyword>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
| INSTITUTE    | (4RUSMIF)        | - <x4code type="INSTITUTE"></x4code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
| INDITIOIS    | #(4RUSMIF) Mc    | <x4code1 expansion="Moscow Inst.of Engine&lt;/td&gt;&lt;td&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td&gt;REFERENCE&lt;/td&gt;&lt;td&gt;(J,AE,50, (5),&lt;/td&gt;&lt;td&gt;dictionary=" institute"="">4RUSMIF<td></td></x4code1>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
|              | (J, SJA, 50, 32) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
|              | # (J,AE,50,(5),  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
|              | # (J,SJA,50,32   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
| AUTHOR       | (V.E.ZHITARE)    | - <keyword 0"="" kw="REFEREN&lt;/p&gt;&lt;/td&gt;&lt;td&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td&gt;TITLE&lt;/td&gt;&lt;td&gt;INTERACTION&lt;/td&gt;&lt;td&gt;&lt;pre&gt;- &lt;kwCode iCode=" ncodes="2" pointer=" " subacc="41323001"></keyword>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
|              | WITH COLD NE     | - <x4code type="REFERENCE"></x4code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
| FACILITY     | (REAC)           | <x4code1 expansion="Jour: Atomnaya Energi&lt;/td&gt;&lt;td&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td&gt;&lt;/td&gt;&lt;td&gt;#(REAC) React&lt;/td&gt;&lt;td&gt;dictionary=" page<="" reference"="" td="" year="1981"><td></td></x4code1>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| ERR-ANALYS   |                  | Type="J">J,AE,50,(5),350,198105 <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
|              | T1               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
| HISTORY      | (19981121C)      | <free in="1" type="1"> MAIN REFERENCE, DATA</free>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
|              | (20050902A)      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
|              |                  | - <kwcode icode="1" pointer=" "></kwcode>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
| ENDBIB       | 12               | - <x4code type="REFERENCE"></x4code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
| COMMON       | 3                | <x4code1 expansion="Jour: Soviet Atomic Ene&lt;/td&gt;&lt;td&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td&gt;EN-ERR&lt;/td&gt;&lt;td&gt;TEMP TH&lt;/td&gt;&lt;td&gt;dictionary=" pag<="" reference"="" td="" year="1981"><td></td></x4code1>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
| PER-CENT     | DEG-C DI         | Type="J">J,SJA,50,325,1981                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
| 3.           | 22. 3.           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
| ENDCOMMON    | 3                | <free in="1" type="1"> ENGLISH TRANSLATION&lt;</free>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
| ENDSUBENT    | 19               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
| SUBENT       | 41323002         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
| BIB          | 5                | - <keyword <br="" kw="AUTHOR" ncodes="1" subacc="41323001"><keycode="0" "<="" nointer="" p=""></keycode="0"></keyword>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
| REACTION     | (13-AL-27(N,1    | - <kwcode icode="0" pointer=" "><br/><x4cde trans="AUTLOD"></x4cde></kwcode>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
|              | #(13-AL-27(N,1   | - <x4code type="AUTHOR"><br/>- <authors a1="Zhitarev" alini="V.E." nn="3"></authors></x4code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
|              | # Proce:         | <pre>- <authors al="Znitarev" alini="V.E." nn="3"></authors></pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
| SAMPLE       | .ALUMINIUM MC    | <author ii="1">V.E.ZHITAREV</author>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
|              | 96 MM, DENSI     | <author ii="3">S.B.STEPANOV</author>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
|              | MACROCRISTAI     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
|              | THICKNESS 5(     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
|              | (DATA-ERR) NO    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
| STATUS       | (TABLE) DAT?     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
| HISTORY      | (19981121T)      | <pre>- <keyword kw="TITLE" ncodes="1" subacc="41323001"></keyword></pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| ENDBIB       | 8                | <pre>- <kwcode icode="0" pointer=" "></kwcode></pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
| NOCOMMON     | 0                | <free in="2" type="1">.INTERACTION CROSS SE</free>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
| DATA         | 3                | NEUTRONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| WVE-LN       | DATA DA          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
|              | в в              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
| 13.          | 1.93 0.          | - <keyword 0"="" kw="FACILITY&lt;/p&gt;&lt;/td&gt;&lt;td&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td&gt;14.&lt;/td&gt;&lt;td&gt;2.12 0.&lt;/td&gt;&lt;td&gt;&lt;pre&gt;- &lt;kwCode iCode=" ncodes="1" pointer=" " subacc="41323001"></keyword>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
| 15.          | 2.25 0.          | - <x4code type="FACILITY"></x4code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
| 16.          | 2.38 0.          | <x4code1 0"="" 41323001"="" dictionary="FA&lt;/td&gt;&lt;td&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td&gt;17.&lt;/td&gt;&lt;td&gt;2.54 0.&lt;/td&gt;&lt;td&gt;&lt;/x4code&gt;&lt;/td&gt;&lt;td&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td&gt;18.&lt;/td&gt;&lt;td&gt;2.61 0.&lt;/td&gt;&lt;td&gt;&lt;/kwCode&gt;&lt;/td&gt;&lt;td&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td&gt;19.&lt;/td&gt;&lt;td&gt;2.82 0.&lt;/td&gt;&lt;td&gt;&lt;/keyword&gt;&lt;/td&gt;&lt;td&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td&gt;20.&lt;/td&gt;&lt;td&gt;3.15 0.&lt;/td&gt;&lt;td&gt;- &lt;keyword subacc=" expansion="Reactor" kw="ERR-ANA&lt;/p&gt;&lt;/td&gt;&lt;td&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td&gt;ENDDATA&lt;/td&gt;&lt;td&gt;10&lt;/td&gt;&lt;td&gt;&lt;pre&gt;- &lt;kwCode iCode=" ncodes="1" pointer=" "></x4code1> |    |
|              | 23               | <code type="0">EN-ERR</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
| ENDSUBENT    | -                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
| ENDENTRY     | 2                | <free in="2" type="1"> WAVE-LENGTH RESOLUT</free>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
|              | 2                | <free in="2" type="1"> WAVE-LENGTH RESOLUT<br/>(IN PERCENT)</free><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |

#### -EXFOR file

| AFOR IIIe                           |                    |                           |                            |                            |               |                |                |
|-------------------------------------|--------------------|---------------------------|----------------------------|----------------------------|---------------|----------------|----------------|
| · · · · · · · · · · · · · · · · · · |                    |                           |                            | ited: 2005-09-02           | 2             |                |                |
| Υ.                                  |                    |                           | ted: 2005-09               |                            |               |                |                |
|                                     |                    | ic and descri             | otive informat             | tion                       |               |                |                |
|                                     | STITUTE            |                           |                            |                            |               |                |                |
|                                     | FERENCE            | #Moscow Ir                | ist.of Enginee             | ering Physics, Mo          | oscow, Russi  | а              |                |
|                                     |                    |                           | 5) #Jour: A                | tomnaya Energi             | ya, Vol.50, 1 | issue.5, p.350 | (1981), Russia |
|                                     |                    | 25,1981) #<br>H TRANSLATI |                            | Atomic Energy,             | Vol.50, p.32  | 5 (1981), USA  |                |
|                                     | THOR               |                           |                            |                            |               |                |                |
|                                     | (V.E.ZHITA         | REV, A.M.MO               | TORIN, S.B.S               | STEPANOV)                  |               |                |                |
| тт                                  | TLE                |                           |                            |                            |               |                |                |
|                                     |                    | TION CROSS<br>D NEUTRONS  | SECTIONS OF                | F CERTAIN META             | ALS           |                |                |
| FA                                  | CILITY             |                           |                            |                            |               |                |                |
| ER                                  | R-ANALYS           |                           |                            |                            |               |                |                |
| <u></u> +−HI                        | STORY              |                           |                            |                            |               |                |                |
| -COMI                               | MON 3x1 #          | Constant par              | ameters                    |                            |               |                |                |
| E-Le                                | gend               |                           |                            |                            |               |                |                |
|                                     | EN-ERR             | Uncertainty               | in incident p              | rojectile energy           | PER-CENT      | per-cent       |                |
|                                     | TEMP               | Sample ten                |                            |                            | DEG-C         | degrees Celsi  | us, Centigrad  |
|                                     | TEMP-ERR           | Error in sar              | nple tempera               | ture                       | DEG-C         | degrees Celsi  | us, Centigrad  |
| E-Da                                | ata                |                           |                            |                            |               |                |                |
|                                     | EN-ERR<br>PER-CENT | TEMP<br>DEG-C             | TEMP-ERR<br>DEG-C          |                            |               |                |                |
|                                     | 41323002           |                           | 3.0<br>ted: 2005-09        | -02                        |               |                |                |
| <u> </u>                            |                    |                           | otive informat             |                            |               |                |                |
|                                     | ACTION             |                           |                            |                            |               |                |                |
|                                     |                    | N,TOT),,SIG)              |                            |                            |               |                |                |
|                                     | -                  |                           |                            | action:N,TOT #             | Process:TOT   | Total #Quan    | tity:,SIG:CS:0 |
| SA                                  | MPLE               |                           |                            |                            |               |                |                |
|                                     |                    |                           | TAL, PURITY<br>GRAM/CM3 A  | Y 99.99 PC, TH<br>AND      | HICKNESS      |                |                |
|                                     |                    |                           | UMINIUM, PU<br>INSITY 2.70 | JRITY 99.99 PO<br>GRAM/CM3 | с,            |                |                |
|                                     | R-ANALYS           |                           |                            |                            |               |                |                |
| ⊨_ST                                | ATUS               |                           |                            |                            |               |                |                |
|                                     | STORY              |                           |                            |                            |               |                |                |
|                                     | OMMON              |                           |                            |                            |               |                |                |
| DATA                                |                    |                           |                            |                            |               |                |                |
| E-Le                                | gend               |                           |                            |                            |               |                |                |
| <del> </del>                        | WVE-LN             | Wave leng                 | h of incident              | particle                   |               | ANGSTROM       | Angstroms      |
|                                     | DATA               | Cross sect                | on<br>I,TOT),,SIG          |                            |               | в              | barns          |
|                                     | DATA-ERR           |                           |                            | y, defined under           | ERR-ANAL)     | 'S B           | barns          |
| -Da                                 | h                  |                           |                            | fl                         |               |                |                |
|                                     | WVE-LN             | DATA                      | DATA-ERR                   |                            |               |                |                |
|                                     | ANGSTROM           | B                         | В                          |                            |               |                |                |
|                                     | 13.0               |                           | 0.13                       |                            |               |                |                |
|                                     | 15.0               | 2.25                      | 0.08                       |                            |               |                |                |
|                                     | 16.0               |                           | 0.07                       |                            |               |                |                |
|                                     |                    | - 5/                      |                            |                            |               |                |                |



### **EXFOR Request Form. Examples**

Examples of requests: 1234567... Cross section σ(E) /updates/ Less examples... 2 Angular distributions dσ/dΩ 3 Emission spectra do/dEout 4 Double differential cross section d<sup>2</sup>σ/dΩ/dEout 5 Corrections data from EXFOR Ex.1 ZK1 ZK2 AT1 RC1 6 Search by outgoing particles: [ α+γ ] P,XG [ (P,XG),DA ] 6+ Search data for IBANDL: <sup>12</sup>C(α,α)<sup>12</sup>C, θ=167° 7 Enhanced search by product with filtering product coded as ELEM/MASS for quick plot 8 Search by wildcards in full reaction code 9 Ratios converted to cross sections (C4) 10 NUBAR: average number of neutrons per fission PR DL ADL 11 Constructing a covariance matrix from EXFOR uncertainties 12 Extended listing of references (authors, title, DOI, NSR, Web) 13 EXFOR - CINDA sequential search N,F 14 Automatic re-normalization (output data and plots); <sup>55</sup>Mn(n,g) 15 Find data: [digitized] from plots, [not digitized], [from table] [experimental data only] [not empty datasets] [empty] 16 Search by authors using aliases Ex.2 17 Fission spectra b Thick target neutron spectra c Delayed neutrons d Kerma factor 18 Invert reaction using detailed balance  ${}^{13}C(\alpha,n){}^{16}O \rightarrow {}^{16}O(n,\alpha){}^{13}C; \sigma d\sigma/d\Omega$  $E_{x,2}$ : <sup>3</sup>He(d,p)<sup>4</sup>He  $\rightarrow$  <sup>4</sup>He(p,d)<sup>3</sup>He d\sigma/d\Omega [plot] 19 Various fission quantities: a Yield (chain, primary FF, secondary FF) b Cumulative yield of <sup>147</sup>Nd c Total kinetic energy a Multiplicity of prompt fission neutrons 20 Plotting cross section coded with SF8=DAM; all

### **EXFOR Request Form. News & History**

х

Software Version of 2018-10-12

#### News

2017/01 New.Web-ZVView plots: affine transformations (PS/EPS) [how-to], distortion picture using 2D-calibration [how-to] 2016/11 Plotting without grouping by reaction-codes (+ calculating CS ratios between diff. datasets on the fly) [example] 2016/11 Plotting cross section coded with SF8=DAM (CS divided by atomic mass of target) [example] #Adv.plot using C5 2016/11 Recalculation of angular distributions to inverse kinematics (when converting EXFOR→R33) [example] [how-to] [History] 2016/09 New. Mirror-site in Russia: http://www-nds.atomstandard.ru/exfor/ 2016/03 New. Upload your data for constructing covariance matrix, calculating inverse reaction cross sections, etc. [page] 2016/02 Output links to NSR and Web publication for secondary references of an Entry 2016/01 New. Display original publication of the IAEA INDC Reports (in PDF format) 2015/03 New. Inverting reaction data using detailed balance. Example:  ${}^{13}C(\alpha,n){}^{16}O \rightarrow {}^{16}O(n,\alpha){}^{13}C$  See: [how-to] 2014/12 New. Text search in extended EXFOR [instructions/examples] See: [concept], [how-to] 2014/07 New. Database of expert's corrections to EXFOR data on Web. Examples: Fe-54(n,p); Mn-55(n,2n), (n,g) 2014/02 Universal X4Plot with arbitrary selection and groupping columns (use: "Sort by: reaction" and "View: extended") [how-to] 2014/02 New version (v2) of XML output format [about] 2013/05 EXFOR Milestone: 20,000 experimental works are now in the database! News/history with: 2013/01 Collection of video-guides to EXFOR-ENDF database Web retrieval system: [page] 2012/11 Searching data compiled: [digitizing] plots, [not digitized], given [in tables] examples, how-to 2012/10 New plotting regime: switch display of data to display of ratios on the fly [video] instructions, 2012/07 Sort by publications with extended view [example] documentation 2012/07 Searching reactions: n,xp; p,xg, etc. [example] 2012/02 Improvements and extensions: 1) Automactic data re-normalization (optional: for plots and output data only) [video] Web-ZVView plotting: clipboard copy/paste 2011/12 Search in CINDA (+NSR) if data not found in EXFOR 2011/10 Web-ZVView plotting: output PS and PDF files 2011/09 EXFOR to XML; interpretation EXFOR-XML to HTML using XLS [xml] [html] [example] 2011/06 Software development: 1) Interactive Web-constructing a covariance matrix from EXFOR uncertainties [doc] Output to C5 computational format (C5 = C4 + statistical and systematic uncertainties) 2011/05 Improvements and extensions: Search by DOI and NSR-KeyNo (Extended mode) Search by Keyword MONITOR Search by DatasetID (SubentPointer) 2011/01 Improvements and extensions: Search for recently updated data (Extended mode: Last modified) 2) Display titles of original articles (imported from NSR) when data "Sorted by Publications"

2010/08 Improvements and extensions:

1) Display range of products when coded as ELEM/MASS [example]

 Display range of angles and secondary-energies on the "Data Selection" page 2010/02 Improvements and extensions:

1) Production of isotopes coded as ELEM/MASS: filtering and quick [plot], sorting T4 [t4] [t4x]

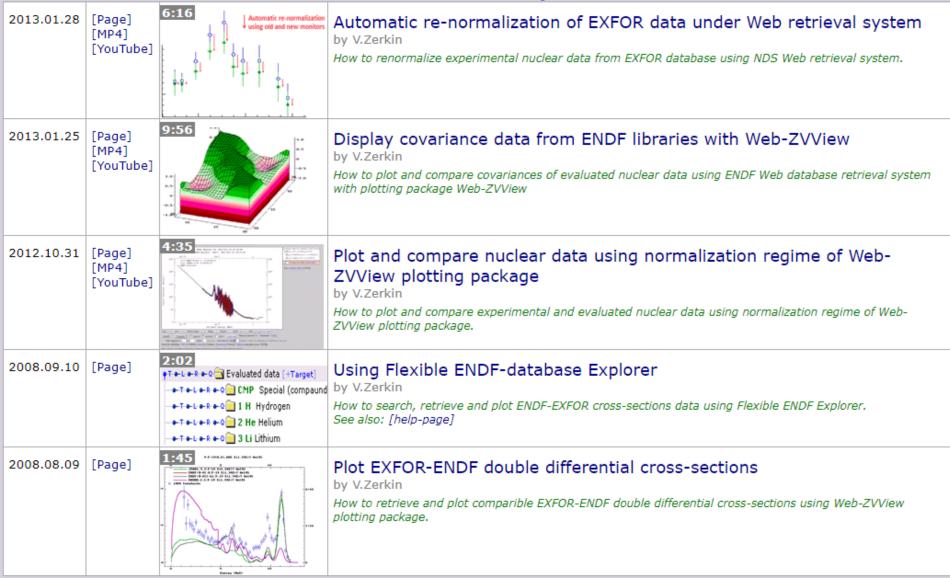
2) Users' definition of ENDF:MF/MT for conversion EXFOR data to format C4 and advanced plotting

- Search by compiling Center-ID (expert mode)
- Search by outgoing particle coded in SF3,4,7 (expert mode)
- 2009/12 Improvements and extensions:
- Correction of experimental data in computational formats [doc]
   2009/07 Improvements and extensions:
- 2009/07 Improvements and extensions:
- Extended using plotting program ZVView via Web [about]
- 2009/02 Improvements and extensions:
- New output format X4±: EXFOR interpreted-interactive-tree [about] [example]
   2008/12 Improvements and extensions:
  - 1) Advanced plot: ratios, ratios converted to cross sections using [IAEA-2006 Standards] [test]
  - 2) Dynamic request page combining Standard, Extended and Advanced requests in one page
  - Prompt-Help system [page]
  - 4) Extensions on Selection-page and EXFOR+: search by Author, Reaction, ENTRY
  - 5) Search by full reaction code and Trans-ID (for experts only)
- 6) Video guide (test): how to plot EXFOR-ENDF double differential cross-sections [page] 2008/10 Common NRDC EXFOR Web Service: [IAEA-NDS] (conclusion of NRDC-2008 meeting) 2008/06 Improvements and extensions:
  - 1) Search by data heading, units, points (in Advanced mode only)
  - 2) New type of request: listing of experimental works
- 2008/04 Search by Title (in Extended and Advanced modes only) 2008/01 Software development:
  - 1) Handling "Large" requests [about]
  - Conversion: EXFOR -> R33/IBANDL (β-version); [about][algorithm]
- 2007/11 Improvements/extensions:
  - 1) General EXFOR Statistics [example]
  - 2) Bibliography (Html and BibTeX) is improved; use link to NSR and Web journals; [example]
  - 3) Output in R33/IBANDL format: version-1
- 2007/05 Output in R33/IBANDL format: angular distributions; includes plotting; version-0
- 2007/03 Interactive Web plotting: zoom by mouse, actions by one click, more functions...
- 2007/01 Improved request page of Web interface (dark non-active criteria, move focus...)
- 2006/10 EXFOR+: Extended EXFOR [example][about]
- 2006/10 BibTeX output: Bibliography for LaTeX [example][about]
- 2006/08 Extended plotting: experimental vs. evaluated data [example][how-to]
  - Cross sections with errors of evaluated data CS => MF3+MF33
  - 2. Differential cross section with respect to angle DA => MF4
  - Energy spectrum of outgoing particles DE => MF5
  - Double differential cross section DAE => MF6
  - 5. Average number of neutrons per fission (nubar) MFQ => MF1
- 2005/11 Submit your data for compilation to the database [here]

#### 2005/06 Global EXFOR Master File !

- 2005/03 Direct link to Web-Journals
- 2004/06 Clone your EXFOR request to CINDA and ENDF

News/history with: examples, how-to instructions, documentation


### **News & History**

#### https://www-nds.iaea.org/exfor/x4guide/

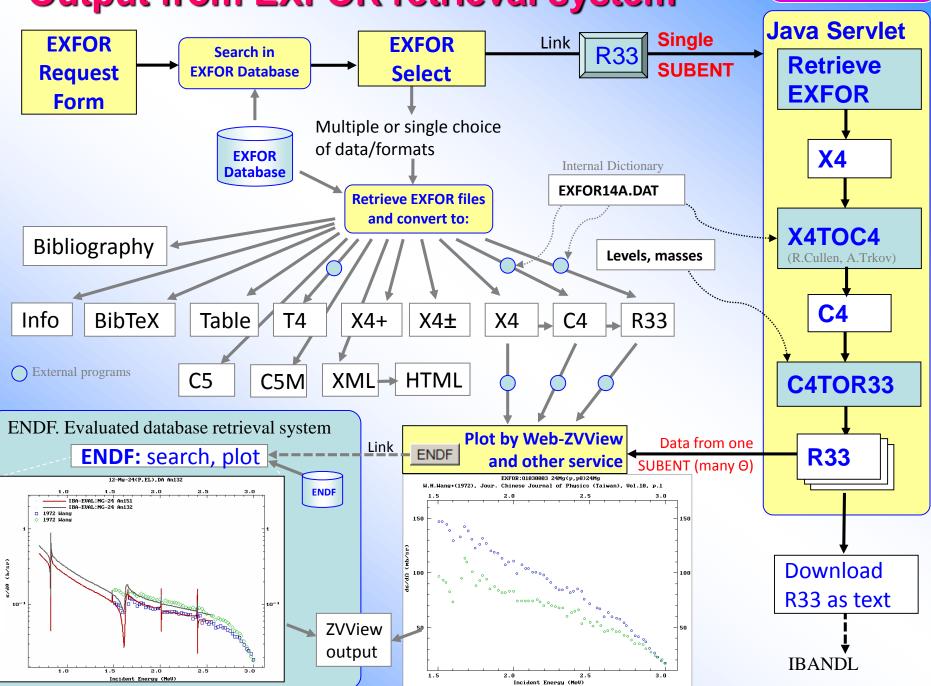
#### Video-guide

by V.Zerkin, IAEA-NDS, 29-Jan-2013

#### How-to for EXFOR-ENDF Database Web Retrieval System

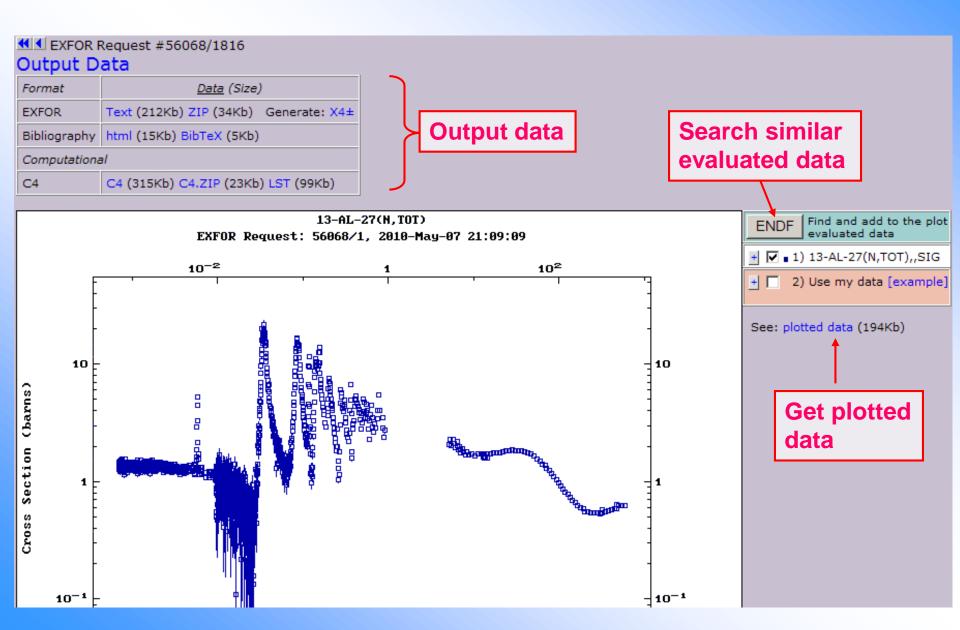





### **EXFOR Select Form**

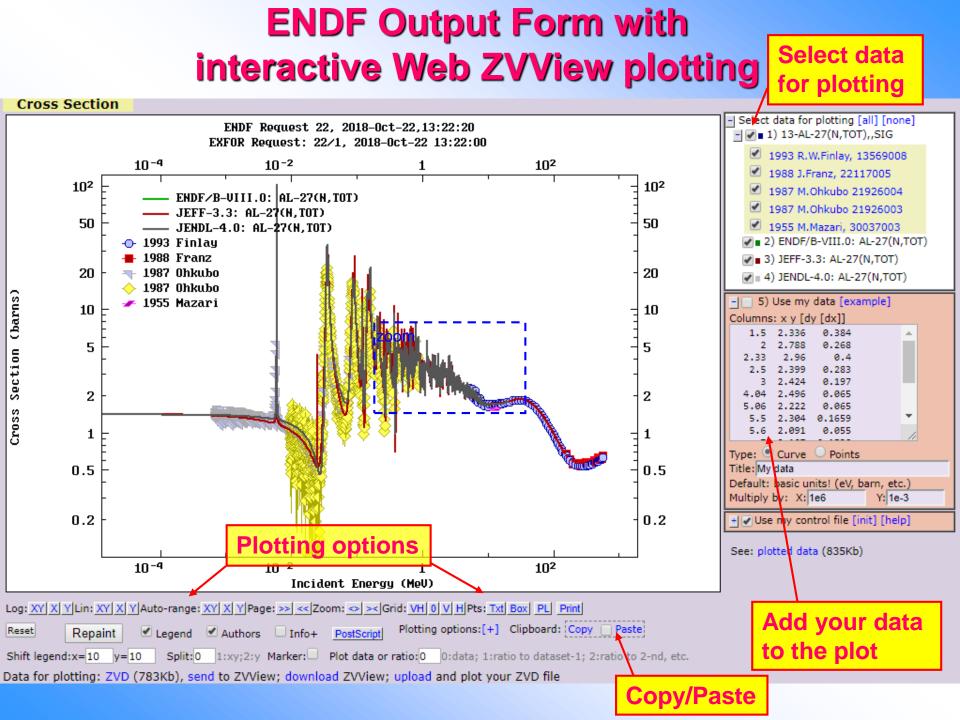
| Request #56068<br>Results: Reactions: 9 Datasets: 144                     |                       |                           |                          |  |  |  |  |  |  |  |  |
|---------------------------------------------------------------------------|-----------------------|---------------------------|--------------------------|--|--|--|--|--|--|--|--|
| Data Selection                                                            |                       |                           |                          |  |  |  |  |  |  |  |  |
| Retrieve © Selected © Unselected © All Reset                              |                       |                           |                          |  |  |  |  |  |  |  |  |
| Output: V EXFOR CAFOR+ V Bibliography TAB V C4 PlotC4 Output options      |                       |                           |                          |  |  |  |  |  |  |  |  |
| Plot:                                                                     |                       |                           |                          |  |  |  |  |  |  |  |  |
| Narrow Energy (optional), eV: Min:                                        |                       |                           |                          |  |  |  |  |  |  |  |  |
| Advanced Select Datasets                                                  |                       |                           | Go to NSR                |  |  |  |  |  |  |  |  |
|                                                                           | y Reaction            |                           |                          |  |  |  |  |  |  |  |  |
| Display Year Author-1 Energy     Display 13-AL-27(N,TOT),,SIG C4: MF3 MT1 | range, ev Points Refe | erence Accessi            | on#P NSR-Key             |  |  |  |  |  |  |  |  |
| Quartity: [CS] Cross section                                              |                       |                           |                          |  |  |  |  |  |  |  |  |
| 1 Info X4 X4+ X4± T4 2009 F.Atchison+ Se                                  | earchaby Author       | Go to Web - jo            |                          |  |  |  |  |  |  |  |  |
| 2 🔽 Info X4 X4+ X4± T4 2008 M.Mazari+                                     | 1.30e7 1.62e7 7       |                           | 30037003                 |  |  |  |  |  |  |  |  |
| 3 🔲 Info X4 X4+ X4± T4 1994 G.Rohr+                                       | 2.50e5 2.00e7 4970    | 09 C,94GATZIN,,215,199405 | 22331004                 |  |  |  |  |  |  |  |  |
| 4 🔽 Info X4 X4+ X4± T4 1993 R.W.Finlay+                                   | 5.29e6 6.00e8 474     | J, PR/C, 47, 237, 9301    | 13569008 1993FI01        |  |  |  |  |  |  |  |  |
| 5 🔲 Info X4 X4+ X4± T4 1991 J.R.Morales+                                  | 1.76e7 1.98e7 2       | J,NIM/A,300,312,1991      | 30764004 1991M009        |  |  |  |  |  |  |  |  |
| 6 🔲 Info X4 X4+ X4± T4 1990 L.Koester+                                    | 1.97e3 1              | J,ZP/A,337,341,1990       | 22217010 1990KO34        |  |  |  |  |  |  |  |  |
| 7 🔽 Info X4 X4+ X4± T4 1988 J.Franz+                                      | 1.60e8 5.75e8 22      | J,NP/A,490,667,88         | 22117005 1988FR23        |  |  |  |  |  |  |  |  |
| 8 🔽 Info X4 X4+ X4± T4 1984 M.Ohkubo                                      | 9.84e3 9.35e5 1010    | W,OHKUBO,8412             | 21926003                 |  |  |  |  |  |  |  |  |
| 9 🔽 Info X4 X4+ X4± T4                                                    | 7.12e2 7.88e4 927     |                           | 004                      |  |  |  |  |  |  |  |  |
| 10 🔲 Info X4 X4+ X4± T4 1983 M.S.Gordon+                                  | 2.50e7 4.50e7 0       | P,NPL-951,40,8304         | 12839004                 |  |  |  |  |  |  |  |  |
| 11 🔲 Info X4 X4+ X4± T4 1981 V.E.Zhitarev+                                | . 8                   | J,AE,50,(5),350,198105    | 41323002                 |  |  |  |  |  |  |  |  |
| 12 🔲 Info X4 X4+ X4± T4 1980 D.C.Larson+                                  | 2.00e6 8.06e7 685     | C,80BNL,,277,8007         | 12882005                 |  |  |  |  |  |  |  |  |
| 13 🔲 Info X4 X4+ X4± T4 1979 L.Koester+                                   | 1.26e0 5.19e0 2       | J,ZP/A,292,(1),95,1979    | 21660015 1979K026        |  |  |  |  |  |  |  |  |
| 14 🗌 Info X4 X4+ X4± T4 1977 R.B.Royer+                                   | 1.86e2 1              | J,NIM,145,245,1977        | 12661004                 |  |  |  |  |  |  |  |  |
| 15 🔲 Info X4 X4+ X4± T4 1976 D.R.Waymire+                                 | 5.22e6 7.24e6 20      | W,WAYMIRE,19761108        | 20671002                 |  |  |  |  |  |  |  |  |
| 16 🗌 Info X4 X4+ X4+ T4 1975 P.V.R.Murthy+                                | 3.40e10 2.73e11 7     | J,NP/B,92,269,197506      | 10403005                 |  |  |  |  |  |  |  |  |
| 17 🔲 Info X4 X4+ X = 14 1975 U.N.Singh+                                   | 4.06e3 4.19e5 432     | J,PR/C,11,1117,197504     | 10515004 <b>1975SI05</b> |  |  |  |  |  |  |  |  |
| Get data in various                                                       | formats               |                           |                          |  |  |  |  |  |  |  |  |

# **Types of plotting on our Web**


- Quick plot: EXFOR-ENDF, cross sections (XS) only; XS filtered by product ELEM/MASS in EXFOR
- Advanced (Universal) plot: EXFOR-ENDF, MF1,3,4,5,6, using EndVer (A.Trkov); ratios, ratios converted to cross sections, XS ± ΔXS
- Native EXFOR plot: EXFOR only, any quantities
- Special ENDF plotting: MF3\*MF6:Low=0 by products, MF10, relative uncertainties, XS with uncertainties (MF3+MF33)
- R33 plot: EXFOR-IBANDL, Web intrerface to IBANDL-SigmaCalc (A.Gurbich, IPPE) data
- PlotC4 (D.E. Cullen): C4 to PS and PS to PDF
- Z(X,Y): MF33, MF35, MF40; correlation matrix constructed on EXFOR uncertainties
- MyPlot: uploaded user's data (input: text columns, arrays, ENDF sections: MF33, MF3+MF33)

### **Output from EXFOR retrieval system**




How it works

### **EXFOR Output Form**



### **ENDF Select Form**

| R  | Plot data         ENDF Data Selection (Plot for EXFOR Request #171)         Retrieve Plot       Selected       Unselected       All       Reset         Plotting options:       Quick plot (cross-sections only: σ) |                                  |                  |                                               |                                           |  |  |  |  |  |  |  |  |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------|-----------------------------------------------|-------------------------------------------|--|--|--|--|--|--|--|--|
| -  |                                                                                                                                                                                                                     | Sorted by: [Reactions] R         | eorder by: [Libr | aries] View: 🔍 basic 🔾 extended:get MAT, PEN, | GND, run Inter: resonance integrals, etc. |  |  |  |  |  |  |  |  |
|    | 0                                                                                                                                                                                                                   | 1) AL-27(N,TOT),SIG              |                  | MT=1 MF=3 NSUB=10                             |                                           |  |  |  |  |  |  |  |  |
| 1  | MF3                                                                                                                                                                                                                 | SIG] Cross sections MT1: [N,TOT  |                  |                                               | u o chaduiche Danniane                    |  |  |  |  |  |  |  |  |
| 1  | Ě                                                                                                                                                                                                                   | ENDF-6 Interpreted $\sigma$ Plot | ENDF/B-VIII.0    | E=150MeV Lab=LANL,ORNL Date=20111222          | M.B.Chadwick+,Derrien+                    |  |  |  |  |  |  |  |  |
| 2  | Ξ.                                                                                                                                                                                                                  | ENDF-6 Interpreted o Plot        | ENDF/B-VII.1     | E=150MeV Lab=LANL,ORNL Date=20111222          | M.B.Chadwick+,Derrien+                    |  |  |  |  |  |  |  |  |
| 3  |                                                                                                                                                                                                                     | ENDF-6 Interpreted $\sigma$ Plot | ENDF/B-VII.0     | E=150MeV Lab=LANL,ORNL Date=DIST-DEC06        | M.B.Chadwick+,Derrien+                    |  |  |  |  |  |  |  |  |
| 4  | <                                                                                                                                                                                                                   | ENDF-6 Interpreted $\sigma$ Plot | JEFF-3.3         | E=150MeV Lab=LANL Date=20171231               | M.B.CHADWICK & P.G.YOUNG                  |  |  |  |  |  |  |  |  |
| 5  |                                                                                                                                                                                                                     | ENDF-6 Interpreted $\sigma$ Plot | JEFF-3.2         | E=150MeV Lab=LANL Date=090105                 | M.B.CHADWICK & P.G.YOUNG                  |  |  |  |  |  |  |  |  |
| 6  |                                                                                                                                                                                                                     | ENDF-6 Interpreted $\sigma$ Plot | JEFF-3.1.2       | E=150MeV Lab=LANL Date=090105                 | M.B.CHADWICK & P.G.YOUNG                  |  |  |  |  |  |  |  |  |
| 7  |                                                                                                                                                                                                                     | ENDF-6 Interpreted $\sigma$ Plot | JEFF-3.1         | E=150MeV Lab=LANL Date=090105                 | M.B.CHADWICK & P.G.YOUNG                  |  |  |  |  |  |  |  |  |
| 8  | <                                                                                                                                                                                                                   | ENDF-6 Interpreted $\sigma$ Plot | JENDL-4.0        | E=20MeV Lab=TIT, JAERI Date=20090828          | Y.HARIMA, H.KITAZAWA, T.FUKAHORI          |  |  |  |  |  |  |  |  |
| 9  |                                                                                                                                                                                                                     | ENDF-6 Interpreted   σ   Plot    | JENDL-3.3        | E=20MeV Lab=TIT,JAERI Date=20010713           | Y.HARIMA, H.KITAZAWA, T.FUKAHORI          |  |  |  |  |  |  |  |  |
| 10 |                                                                                                                                                                                                                     | ENDF-6 Interpreted o Plot        | JENDL-3.3        | E=20MeV Lab=TIT,JAERI Date=20010713 T=300     | Y.HARIMA,H.KITAZAWA,T.FUKAHORI            |  |  |  |  |  |  |  |  |
| 11 |                                                                                                                                                                                                                     | ENDF-6 Interpreted o Plot        | ENDF/B-VI        | E=150MeV Lab=LANL Date=20011108               | M.B.CHADWICK & P.G.YOUNG                  |  |  |  |  |  |  |  |  |
| 12 |                                                                                                                                                                                                                     | ENDF-6 Interpreted o Plot        | ENDF/B-VI        | E=150MeV Lab=LANL Date=20010926 T=300         | M.B.CHADWICK & P.G.YOUNG                  |  |  |  |  |  |  |  |  |
| 13 |                                                                                                                                                                                                                     | ENDF-6 Interpreted o Plot        | BROND-3.1        | E=150MeV Lab=LANL,ORNL Date=DIST-DEC06        | M.B.Chadwick+,Derrien+                    |  |  |  |  |  |  |  |  |
| 14 |                                                                                                                                                                                                                     | ENDF-6 Interpreted o Plot        | ROSFOND-2010     | E=150MeV Lab=IPPE Date=DIST-DEC07             | IGNATYUK A.V.                             |  |  |  |  |  |  |  |  |
| 15 |                                                                                                                                                                                                                     | ENDF-6 Interpreted o Plot        | ROSFOND-2008     | E=150MeV Lab=IPPE Date=DIST-DEC07             | IGNATYUK A.V.                             |  |  |  |  |  |  |  |  |
| 16 |                                                                                                                                                                                                                     | ENDF-6 Interpreted o Plot        | CENDL-3.1        | E=20MeV Lab=CNDC, JNDC Date=DIST-DEC09        | B.S.YU, S.CHIBA, Y.HARIMA                 |  |  |  |  |  |  |  |  |
| 17 |                                                                                                                                                                                                                     | ENDF-6 Interpreted o Plot        | JEFF-3.0         | E=150MeV Lab=LANL Date=DIST-APR02             | M.B.CHADWICK & P.G.YOUNG                  |  |  |  |  |  |  |  |  |
| 18 |                                                                                                                                                                                                                     | ENDF-6 Interpreted $\sigma$ Plot | JEF-2.2          | Lab=ECN Date=920101                           | EC BLANKET TECHNOLOGY, TASK B2            |  |  |  |  |  |  |  |  |
|    |                                                                                                                                                                                                                     |                                  |                  |                                               |                                           |  |  |  |  |  |  |  |  |



# **Flexible ENDF Database Explorer**

### **Sequential search in ENDF database**

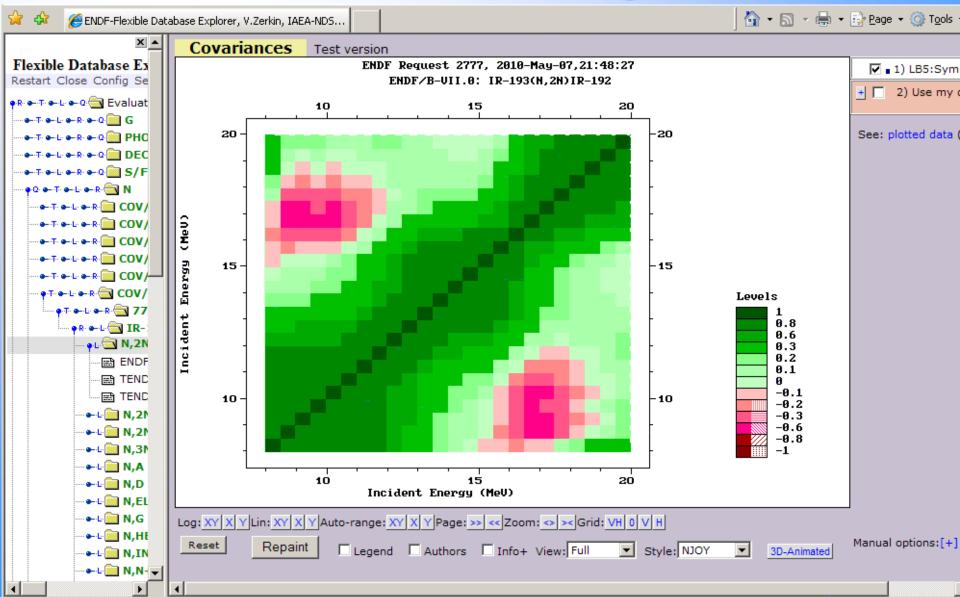
Direct data search: fill in a form and submit request Sequential data search: travel on a database tree /ENDF-Explorer/

### **ENDF Request Form** $\rightarrow$ **ENDF-Explorer**

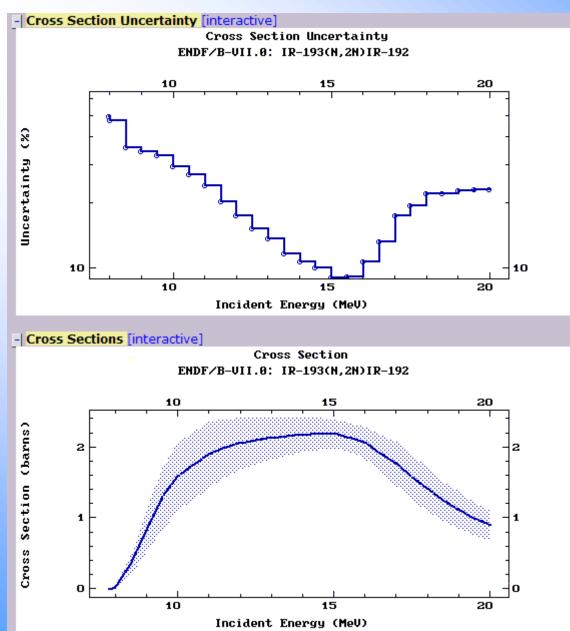
| Help » ENDF Format Manual Plot+ Databases *                                                                                                                                                                                                                                                                                                                                 | » Medical NGAtlas RIPL FENDL IRDF-2002 IRDFF EXFOR CINDA                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| Evalu                                                                                                                                                                                                                                                                                                                                                                       | uated Nuclear Data File (ENDF)<br>Database Version of March 14, 2014<br>Software Version of 2014.07.03 Old interface is [here]                                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |  |
| News & History                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |  |  |
| 2014/05 New feature of software:<br>1) Plotting MF35 & MF5: energy distributions of secondary particles with uncertanties and covariances [example] [img]<br>2014/03 Updated library:<br>1) JEFF-3.2 Evaluated data library (neutron data), OECD Nuclear Energy Agency, 2014 [page]<br>2) IRDFF v-1.03 International Reactor Dosimetry and Fusion File (update-2014) [page] |                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |  |  |
| emphasis on neutron induced reactions. The data were analyz                                                                                                                                                                                                                                                                                                                 | ated cross sections, spectra, angular distributions, fission product yields, photo-atomic and thermal scattering law data, with<br>zed by experienced nuclear physicists to produce recommended libraries for one of the national nuclear data projects (USA,<br>ernationally-adopted ENDF-6 format maintained by CSEWG. See database summary [here]. |  |  |  |  |  |  |  |  |  |
| Standard Request Examples: 1234567<br>Parameters: Submit Reset                                                                                                                                                                                                                                                                                                              | Go to: Advanced Request ENDF-Explorer                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |  |  |
| Target 🔽 IR-193 ×                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                             | □ 1) ENDF/B-VII.1 (USA,2011)                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |  |  |
| Reaction 🔽 n.*                                                                                                                                                                                                                                                                                                                                                              | □ 2) JEFF-3.2 (Europe,2014)                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |  |  |
| Quantity 🔽 COV/SIG »                                                                                                                                                                                                                                                                                                                                                        | 3) JENDL-4.0u2 (Japan,2012)                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |  |  |
| More Parameters                                                                                                                                                                                                                                                                                                                                                             | 4) CENDL-3.1 (China,2009)                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |  |  |
| Submit                                                                                                                                                                                                                                                                                                                                                                      | <ul> <li>5) ROSFOND-2010 (Russia,2010)</li> <li>6) BROND-2.2 (Russia,1992)</li> </ul>                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                             | Options:<br>Sort by: C Reactions Evaluations<br>Clone Request: Feedback:<br>EXFOR CINDA Comments/Questions?                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |  |  |

### **ENDF Flexible Database Explorer**

| 😭 🍄 🔏 ENDF-Flexible Database Explorer, V.Zerkin, IA | -ND5                                                                                                                                                                                                                                                                        | • 🔊 • 🖶 • 📴 Page • 🍥 Tools • 🏾                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Flexible Database Explorer                          | Target Materials                                                                                                                                                                                                                                                            | IAEA Flexible Database Explorer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Restart Close Config Selection Help About           | Isotopes of 1                                                                                                                                                                                                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ●R·●·T·●·L·●·Q 🔁 Evaluated data [+Reaction]         | 1-Hydrogen H                                                                                                                                                                                                                                                                | 6 7 8 9 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                     | H-1<br>H-2<br>Li Be                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 🛶 🖚 🛶 🗣 🗣 🖬 🔁 🔁 PHOTO Photo-Atomic Interac          | H-3 11 12 13                                                                                                                                                                                                                                                                | 14 15 16 17 18<br>Si P S Cl Ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                     |                                                                                                                                                                                                                                                                             | 32 33 34 35 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                     | K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                     |                                                                                                                                                                                                                                                                             | 50 51 52 53 54<br>Sn Sb Te I Xe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                     | 55 56 57 72 73 74 75 76 77 78 79 80 81                                                                                                                                                                                                                                      | 82 83 84 85 86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 🛶 🗣 🗣 🗣 🗭 💼 TSL Thermal Neutron Scatter             |                                                                                                                                                                                                                                                                             | Pb   Bi   Po   At   Rn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                     | 87         88         89**         104         105         106         107         108         109         110         111         112           Fr         Ra         Ac         Rf         Db         Sg         Bh         Hs         Mt         Ds         Rg         * |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                     | * Lanthanides 58 59 60 61 62 63 64 65 66                                                                                                                                                                                                                                    | 67 68 69 70 71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                     |                                                                                                                                                                                                                                                                             | Ho Er Tm Yb Lu<br>99 100 101 102 103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                     | ** Actinides         90         91         92         93         94         95         96         97         98           Th         Pa         U         Np         Pu         Am         Cm         Bk         Cf                                                         | Es Fm Md No Lr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                     | Summary:                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                     | Elements: 110                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                     | Nuclides: 2450                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                     | Selected:<br>> 0) Evaluated data                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                     | * 1) Incident-Particle: [N] Incident-Neutron Data                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                     |                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                     | Nuclides: [List] [Chart-txt]                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ► T - L - R - Q 🛅 HE4/FP Alpha-Induced Fissic       |                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Configuration: [Show]                               |                                                                                                                                                                                                                                                                             | 117 116<br>113 114<br>113 112<br>112 $112$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Video demo: [show]                                  | 110                                                                                                                                                                                                                                                                         | 113 114<br>Rg 112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| How-to slides: [hide]                               | 110                                                                                                                                                                                                                                                                         | Bh Sg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Slide-show: 1 H ◀ 3 ► ₩ 23                          |                                                                                                                                                                                                                                                                             | LT No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ● T ● L ● R ● Q 📄 Evaluated data                    | 100                                                                                                                                                                                                                                                                         | Db <sup>B</sup> , Br<br>Rf<br>Md<br>Bk<br>Es<br>Bk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Switch                                              |                                                                                                                                                                                                                                                                             | Am Cm<br>Np                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Switches: open/close tree-node Closed =             | 90 Pa                                                                                                                                                                                                                                                                       | Rg 112<br>Mt Job<br>Bht Job<br>Bht Sg<br>Kr S |
| P Opened                                            | Bi                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| T:target R:reaction L:library Q:quantity            | 80 TI                                                                                                                                                                                                                                                                       | Pb T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                     | Re                                                                                                                                                                                                                                                                          | os 🗸                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                     |                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |


### **ENDF Explorer: data found**

| 🔆 🍄 🏉 ENDF-Flexible Database Explorer, V.Zerkin, IAEA-NDS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 🚺 🔹 🔝 👻 🖶 Page 🔹 🎯 Tools 🔹                                                                                                                                                                                                                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Flexible Database Explorer     X       Restart Close Config Selection Help About                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Select and retrieve data from database IAEA Flexible Database Explore                                                                                                                                                                                                   |
| • • • • • • • • • • • • • • • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Clean Selected:<br>1) ▼ Selected:<br>1) ▼ 1) Incident-Particle: Incident-Neutron Data<br>2) Quantity: Covariances of neutron cross sections<br>3) Element: Irirdium<br>4) Isotope: IR-193<br>5) Reaction: Production of two neutrons and a residual.<br>3 datasets (0%) |
| COV/NU Covariances of the average r     COV/RES Covariances of resonance p     T - L - R COV/SIG Covariances of neutron cross     T - L - R T OV/SIG Covariances of neutron cross     P T - L - R T OV/SIG Covariances of neutron cross     P T - L - R T OV/SIG Covariances of neutron cross     P T - L - R T OV/SIG Covariances of neutron cross     P T - L - R T OV/SIG Covariances of neutron cross     P T - L - R T OV/SIG Covariances of neutron cross     P T - L - R T OV/SIG Covariances of neutron cross     P T - L - R T OV/SIG Covariances of neutron cross     P T - L - R T OV/SIG Covariances of neutron cross     P T - L - R T OV/SIG Covariances of neutron cross     P T - L - R T OV/SIG Covariances of neutron cross     P T - L - R T OV/SIG Covariances of neutron cross     P T - L - R T OV/SIG Covariances of neutron cross     P T - L - R T OV/SIG Covariances of neutron cross     P T - L - R T OV/SIG Covariances of neutron cross     P T - L - R T OV/SIG Covariances of neutron cross     P T - L - R T OV/SIG Covariances of neutron cross     P T - L - R T OV/SIG Covariances of neutron cross     P T - L - R T OV/SIG Covariances of neutron cross     P T - L - R T OV/SIG Covariances of neutron cross     P T - L - R T OV/SIG Covariances of neutron cross     P T - L - R T OV/SIG Covariances of neutron cross | Retrieve Reset Retrieve in new Window Retrieve listing of evaluations only FDBE - Flexible Database Explorer, v-1.0, 2006/01/20                                                                                                                                         |
| ENDF/B-VII.0 U.S. Evaluated Nuclear C     TENDL-2008 TALYS-based Evaluated N     TENDL-2009 TALYS-based Evaluated N     N.2N+A Production of two neutrons ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Created by V.Zerkin, IAEA, 2005-2008                                                                                                                                                                                                                                    |
| N,3N Production of three neutrons and     N,A Production of an alpha particle, p     N,D Production of a deuteron, plus a     N,EL Elastic scattering cross section fc     N,G Radiative capture.     N,HE3 Production of a 3He particle plu     N,INL Production of one neutron in the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                         |
| N,N+A Production of a neutron and ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                         |


### **Standard ENDF Select Form**

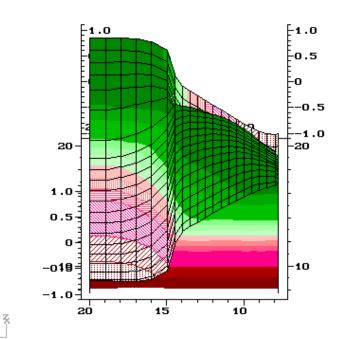
| 😭 🔅 🖉 ENDF-Flexible Database Explorer, V.Ze | rkin, IAEA-NDS                                                                                                                           |
|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Flexible Database Explorer                  | Request #2777                                                                                                                            |
| Restart Close Config Selection Help About   | ENDF Data Selection                                                                                                                      |
|                                             |                                                                                                                                          |
| 🗣 🍽 🗣 🗣 🗣 💼 G 🛛 Photo-Nuclear Data          | Retrieve Selected Ounselected OAll                                                                                                       |
| 🏎 🖛 🛻 🛶 💀 🖬 🖬 🖬 🖬 🖬 🖬 PHOTO Photo-Atomic I  |                                                                                                                                          |
|                                             | Sorted by: [Reactions] Reorder by: [Libraries] View: Obasic Cextended                                                                    |
|                                             | □ 1) IR-193(N,2N) IR-192,COV/SIG MT=16 MF=33 NSUB=10                                                                                     |
| 🗝 🗣 👁 🖛 🖛 🖶 🗪 🖳 N 🛛 Incident-Neutron D      | MF33: [COV/SIG] Covariances of neutron cross sections MT16: [N,2N] Production of two neutrons and a residual.                            |
|                                             | 1 ENDF-6 Interpreted MF33-Plot ENDF/B-VII.0 E=20MeV Lab=LANL, BNL Date=DIST-DEC06                                                        |
|                                             | 2 ENDF-6 Interpreted MF33-Plot TENDL-2008 E=20MeV Lab=NRG Date=REV1-                                                                     |
|                                             | 3 ENDF-6 Interpreted MF33-Plot TENDL-2009 E=200MeV Lab=NRG Date=REV1-                                                                    |
|                                             |                                                                                                                                          |
|                                             |                                                                                                                                          |
| 🛶 🗣 🏎 🕒 🗣 🔄 COV/SIG Covariances c           | *Plotting options:                                                                                                                       |
| 🛶 🗣 🗣 🖢 🗣 🚔 77 Ir Irirdium [+Targ           | Plot cross sections with reconstructed resonances and applied Doppler broadening at the temperature 293°K = 20°C                         |
| 🗣 🍽 📥 IR-193 Irirdium [+Rea                 | Other plots dσ/dΩ - angular distributions,                                                                                               |
|                                             | do/dE - energy distributions,                                                                                                            |
| ENDF/B-VII.0 U.S. Evalu                     | $d^2\sigma/dE/d\Omega$ - double differencial cross sections,<br>$\sigma \pm \Delta\sigma$ - cross sections with uncertainties (if given) |
| TENDL-2008 TALYS-base                       |                                                                                                                                          |
| TENDL-2009 TALYS-bas                        | [Glossary]: meaning of abbreviations and variables<br>[About]: a few words on ENDF-6 format                                              |
|                                             |                                                                                                                                          |
| ••••••••••••••••••••••••••••••••••••••      | Page generated: 2010/05/07,21:46:11 by E4-Servlet on www-nds.iaea.org                                                                    |
|                                             | Project: "Multi-platform EXFOR-CINDA-ENDF", V.Zerkin, IAEA-NDS, 1999-2010<br>Request from: iaea.org (161.5.149.203)                      |
|                                             | (101.0.140.200)                                                                                                                          |
| ••••••••••••••••••••••••••••••••••••••      |                                                                                                                                          |
| ••••••••••••••••••••••••••••••••••••••      |                                                                                                                                          |
| • • • • • • • • • • • • • • • • • • •       |                                                                                                                                          |
| • • • • • • • • • • • • • • • • • • •       |                                                                                                                                          |
|                                             |                                                                                                                                          |
|                                             |                                                                                                                                          |
| N,N+D Production of a                       |                                                                                                                                          |
| ▲                                           |                                                                                                                                          |

### Again ENDF Output Form with interactive ZVView plotting

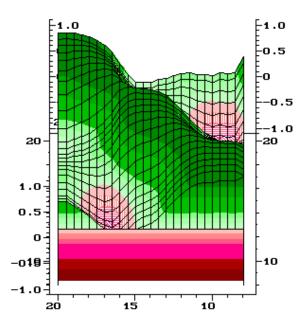


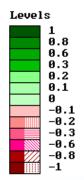
### **Display Cross Section and Uncertainty**




## **Correlation matrix**

#### #ZVView-data-copy: 7-May-2010 22:13:17


| #          |                                                                                              |        |          |        |        |            |            |            |       |       |       |            |       |       |       |       |        |        |        |       |     |
|------------|----------------------------------------------------------------------------------------------|--------|----------|--------|--------|------------|------------|------------|-------|-------|-------|------------|-------|-------|-------|-------|--------|--------|--------|-------|-----|
| #LB5:Sy    | LB5:Symmetric Matrix<br>$Z(26x26): Z_{} = Cor(\sigma_{}, \sigma_{-})*1000$                   |        |          |        |        |            |            |            |       |       |       |            |       |       |       |       |        |        |        |       |     |
|            | $Z(26x26): Z_{i,j} = Cor(\sigma_{Xi'}\sigma_{Yj})*1000$                                      |        |          |        |        |            |            |            |       |       |       |            |       |       |       |       |        |        |        |       |     |
|            | X (MeV)<br>7 7.992 8 8.5 9 9.5 10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15 15.5 16 16.5 17 17 |        |          |        |        |            |            |            |       |       |       |            | 17    |       |       |       |        |        |        |       |     |
|            |                                                                                              |        | 8.5<br>0 | 0      | 9.5    | 10         |            |            | 0     |       |       |            |       |       |       | 15    |        |        |        |       | 17. |
| 7.992<br>8 | 1000<br>0                                                                                    | 0      | 930.6    | -      | 926.4  | 0<br>898.3 | 0<br>895.5 | 0<br>866.7 | 805.2 | 0     | 0     | 0<br>352.7 | 0     | 0     | 0     | -     | 0      | 0      | 0      | 0     | 0   |
| 8.5        | 0                                                                                            |        | 1000     |        | 998.7  | 992        | 980.3      | 943.8      | 866.1 | 730   |       | 404.7      |       |       |       |       | -112   |        | -344.3 |       |     |
| 9          | 0                                                                                            | 920.5  | 999.4    | 1000   | 999.4  | 995.4      | 984.9      | 950.7      | 875.7 | 743.4 |       | 424.6      |       |       | 130.3 |       | -93.97 |        | -346.6 |       |     |
| 9.5        | 0                                                                                            | 926.4  |          | 999.4  | 1000   | 996.5      | 989        | 959.1      | 889.9 |       |       |            |       |       |       | 76.36 |        |        | -315.5 |       |     |
| 10         | 0                                                                                            | 898.3  | 992      |        | 996.5  | 1000       | 996        | 973.3      | 912.2 | 796.1 |       | 500.7      |       |       |       | 133.4 | -17.89 |        |        |       |     |
| 10.5       | 0                                                                                            |        |          |        | 989    | 996        | 1000       | 989.8      | 944.9 |       |       |            |       |       |       | 211.4 | 64.16  | -124.1 |        |       |     |
| 11         | 0                                                                                            | 866.7  |          |        | 959.1  | 973.3      | 989.8      | 1000       | 981.8 |       |       |            |       |       |       | 338.2 | 196.2  | 2.736  | -143.1 |       |     |
| 11.5       | 0                                                                                            | 805.2  | 866.1    | 875.7  | 889.9  | 912.2      | 944.9      | 981.8      | 1000  | 973.5 | 909.6 | 802.9      | 697.6 | 615.5 | 569.6 | 498.9 | 370.6  | 179.7  | 12.5   | -37.4 | -15 |
| 12         | 0                                                                                            | 679.6  | 730      | 743.4  | 763.2  | 796.1      | 846.1      | 912.9      | 973.5 | 1000  | 980   | 916.6      | 840.9 | 775.5 | 736.4 | 677   | 566.6  | 378.6  | 184.9  | 101.2 | 89. |
| 12.5       | 0                                                                                            | 529.7  | 583.1    | 600.1  | 623.2  | 666        | 727.6      | 816.6      | 909.6 | 980   | 1000  | 977.7      | 931.2 | 884.7 | 854   | 806.6 | 710    | 521.5  | 303.1  | 188.5 | 145 |
| 13         | 0                                                                                            | 352.7  | 404.7    | 424.6  | 450.2  | 500.7      | 571.9      | 679.8      | 802.9 | 916.6 | 977.7 | 1000       | 986.9 | 962.5 | 942.9 | 910.7 | 834.6  | 656.1  | 423    | 282.1 | 209 |
| 13.5       | 0                                                                                            | 210.1  | 257.4    | 278.7  | 305.7  | 360        | 436.3      | 555.3      | 697.6 | 840.9 | 931.2 | 986.9      | 1000  | 993.3 | 983.2 | 964.1 | 907.5  | 744    | 508.5  | 352.6 | 260 |
| 14         | 0                                                                                            | 101.7  | 156.3    | 179    | 205.7  | 263.3      | 340.7      | 464.3      | 615.5 | 775.5 | 884.7 | 962.5      | 993.3 | 1000  | 997.2 | 987.1 | 939.2  | 779.5  | 538.1  | 370.7 | 265 |
| 14.5       | 0                                                                                            | 52     | 107.4    | 130.3  | 156.7  | 214.3      | 291.4      | 415.4      | 569.6 | 736.4 | 854   | 942.9      | 983.2 | 997.2 | 1000  | 995.7 | 955.3  | 801.6  | 561.7  | 391.1 | 280 |
| 15         | 0                                                                                            | -17.93 | 27.05    | 49.66  | 76.36  | 133.4      | 211.4      | 338.2      | 498.9 | 677   | 806.6 | 910.7      | 964.1 | 987.1 | 995.7 | 1000  | 974.7  | 838.5  | 608.2  | 436.4 | 320 |
| 15.5       | 0                                                                                            | -85.39 | -112     | -93.97 | -64.34 | -17.89     | 64.16      | 196.2      | 370.6 | 566.6 | 710   | 834.6      | 907.5 | 939.2 | 955.3 | 974.7 | 1000   | 938.2  | 766.4  | 616.6 | 504 |
| 16         | 0                                                                                            | -125.4 | -269.4   | -260.9 | -228.8 | -205.1     | -124.1     | 2.736      | 179.7 | 378.6 | 521.5 | 656.1      | 744   | 779.5 | 801.6 | 838.5 | 938.2  | 1000   | 940.4  | 846   | 757 |
| 16.5       | 0                                                                                            | -97.66 | -344.3   | -346.6 | -315.5 | -318.8     | -248.4     | -143.1     | 12.5  | 184.9 | 303.1 | 423        | 508.5 | 538.1 | 561.7 | 608.2 | 766.4  | 940.4  | 1000   | 975.3 | 925 |
| 17         | 0                                                                                            | -12.27 |          |        |        |            | -251.3     |            |       |       |       |            |       |       | 391.1 | 436.4 | 616.6  | 846    | 975.3  | 1000  | 985 |
| 17.5       | 0                                                                                            | 102.2  |          |        |        |            | -187.3     |            |       |       |       |            |       |       |       | 320.3 | 504    | 757    | 925.6  | 985   | 100 |
| 18         | 0                                                                                            |        | -97.99   |        |        |            | -91.32     |            |       |       |       |            |       |       |       | 221.6 | 399.2  | 660.3  | 855    |       | 985 |
| 18.5       | 0                                                                                            |        | 11.1     | -7.856 |        |            | 0.5162     |            |       |       |       |            |       |       |       | 153.2 |        | 577.8  | 784.5  | 891.4 | 954 |
| 19         | 0                                                                                            |        | 118.1    |        |        |            | 95.14      |            |       |       |       |            |       |       |       |       |        | 504.7  | 713.4  |       | 912 |
| 19.5       | 0                                                                                            | 531.8  | 225.4    |        |        |            |            |            | 221.2 |       |       |            |       |       |       |       | 188    | 419.2  |        |       | 854 |
| 20         | 0                                                                                            |        |          | 204.6  | 224.2  |            |            |            | 221.2 |       | 166.6 |            |       | 50.83 |       |       | 188    |        | 628.5  |       | 854 |
| i          | 1                                                                                            | 2      | 3        | 4      | 5      | 6          | 7          | 8          | 9     | 10    | 11    | 12         | 13    | 14    | 15    | 16    | 17     | 18     | 19     | 20    | 21  |


# IR-193(n,2n)IR-192 TENDL-2008 vs. ENDF-B/VII.0

ENDF Request 2777, 2010-May-07,21:48:27 ENDF/B-VII.0: IR-193(N,2N)IR-192



u –





# **IBANDL Web system**

# IBANDL Web system http://www-nds.iaea.org/ibandl



#### Nucleus H-1 v

- Projectile
- p d 3He  $\alpha$   $^{6}Li$  $^{7}Li$
- Type of data
- EBS ○ NRA
- PIGE
- All

IBANDL [Summary]

EXFOR

Home

CD version

Updates

Nuclear Data Services

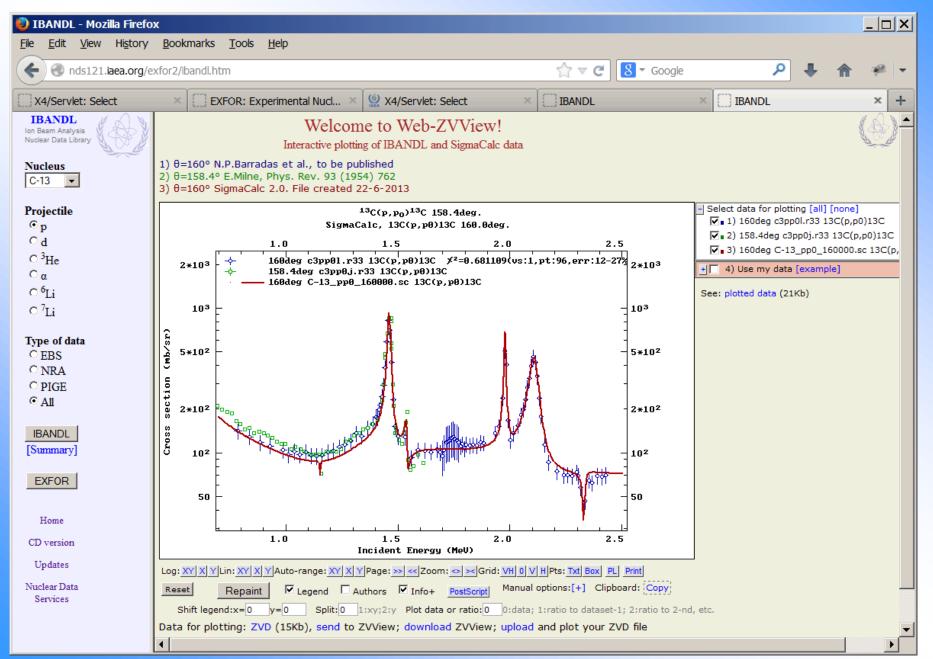


This is the Ion Beam Analysis Nuclear Data Library developed and formerly maintained by A.Gurbich under the IAEA auspices. It contains available **experimental** nuclear cross-sections relevant to Ion Beam Analysis. Differential cross sections are presented both as graphs and data files. The numerical data are in the R33 format. Currently, most of the data are being extracted from EXFOR using an automatic conversion procedure available in EXFOR retrieval system (see details of the algorithm here).

Two Coordinated Research Projects (CRP) have catered to the data needs of the IBA community: the CRP on Reference Database for Ion Beam Analysis (2005-2010, see: IAEA-TECDOC-1780), and the CRP on Development of a Reference Database for Particle-Induced Gamma Ray Emission (PIGE) Spectroscopy (2011-2015, see: IAEA-TECDOC-1822) both of which resulted in new measurements and the bulk of the relevant nuclear data made available in IBANDL. The activity has been further supported by the IAEA through the Technical Meeting on Benchmarking Experiments for Ion Beam Analysis, and the nuclear data evaluation project R-matrix Codes for Charged-particle reactions in the Resolved-Resonance Region.

Members of the IBA community are invited to submit new experimental data to IBANDL. Numerical data (in R33 or any other format) including references should be sent to: nds.contact-point@iaea.org (IAEA-NDS).

The IBANDL Web interface also provides evaluated (recommended) cross sections obtained with the SigmaCalc calculator developed by A. Gurbich. Evaluated cross-section data produced by SigmaCalc up to October 2013 are available for easier access and plotting. In addition, the user is offered the option to obtain SigmaCalc files on-the-fly, through remote access to the SigmaCalc calculator. R33 files can be also downloaded from SigmaCalc and imported into IBANDL. Users are cautioned however, that the 'on-the-fly' calculations can experience significant delays due to problems related with the connection to the external Web server. The IAEA therefore accepts no responsibility for usage of this option.


New

- Total cross sections (mb) can be converted to differential cross sections (mb/sr) in cases where the angular distributions are known to be isotropic. Differential cross sections (mb/sr) can be converted to Ratio-to-Rutherford (rr) and vice versa. Press 'Convert units for plotting' button on the data table header.
- Conversion to inverse kinematics is possible. Press 'inverted' button on the data table header.
- User can upload own data files to compare with existing data. See 'Add your dataset in R33 format for plotting' on the bottom of the data table.
- Search data by first author and reference:  $[Summary] \rightarrow [+]References \rightarrow click on >$ .

### **IBANDL Web system**

| IBANDL - Mozilla Firefox                            |       | kmarks Too                                                   | la Holp      |              |        |               |        |                                                                              |     |  |  |
|-----------------------------------------------------|-------|--------------------------------------------------------------|--------------|--------------|--------|---------------|--------|------------------------------------------------------------------------------|-----|--|--|
| File Edit View History                              |       | Bookmarks Tools Help<br>g/exfor2/ibandl.htm ☆ マ ♂ 8 - Google |              |              |        |               |        |                                                                              |     |  |  |
| T T T HOSIZI.kded.C                                 | ng/ex | .iorz/ibandi.nu                                              | Π            |              |        |               |        |                                                                              |     |  |  |
| X4/Servlet: Select                                  | ×     | EXFOR:                                                       | Experimer    | ntal Nucl ×  | (G)    | X4/Servlet: S | elec   | × BANDL × BANDL ×                                                            | +   |  |  |
| IBANDL<br>Ion Beam Analysis<br>Nuclear Data Library |       |                                                              |              |              |        |               |        | $^{13}C + p$                                                                 |     |  |  |
| Nucleus                                             |       |                                                              |              | Type of a    | data:  | ALL View      | :  √ e | xtended Convert units for plotting: Ono @rr->mb/sr Omb/sr->rr Plots: [reset] |     |  |  |
| C-13 🔻                                              | No.   | Reaction                                                     | Angle        | Energy(keV)  | Pts    | Update        | X4     | Reference File Plot                                                          |     |  |  |
| Projectile<br>© p                                   | 1     | <sup>13</sup> C(p,p <sub>0</sub> ) <sup>13</sup> C           | 160          | 700-2500     | 451    | 2013-08-15    |        | SigmaCalc 2.0. File created 21-6-2013 View Save View                         |     |  |  |
| Od                                                  | 2     | <sup>13</sup> C(p,p <sub>0</sub> ) <sup>13</sup> C           | 163.8°       | 2600-4990    | 169    | 2006-06-23    |        | E. Kashy et al., Phys. Rev. 122(3) (1961) 884 » View Save 🗆 mb               |     |  |  |
| <sup>O 3</sup> He                                   | 3     | <sup>13</sup> C(p,p <sub>0</sub> ) <sup>13</sup> C           | 160°         | 780-2430     | 96     | 2013-05-27    |        | N.P.Barradas et al., to be published »                                       | -   |  |  |
| Οα<br>Ο <sup>6</sup> Li                             | 4     | <sup>13</sup> C(p,p <sub>0</sub> ) <sup>13</sup> C           |              | 450-1620     | 90     | 2011-11-22    |        | E.Milne, Phys. Rev. 93 (1954) 762 » View Save View                           | , - |  |  |
| o <sup>7</sup> Li                                   | 5     | <sup>13</sup> C(p,p <sub>0</sub> ) <sup>13</sup> C           |              | 1630-3310    |        | 2011-11-22    |        | D.Zipoy et al., Phys. Rev. 106 (1957) 793 » View Save                        | _   |  |  |
| Type of data                                        |       |                                                              |              |              |        |               |        |                                                                              | -   |  |  |
| ° EBS                                               | 6     | <sup>13</sup> C(p,p <sub>0</sub> ) <sup>13</sup> C           |              | 780-2430     | 97     | 2013-09-18    |        | N.P.Barradas et al., Nucl. Instr. and Meth. B 316 (2013) 81 » View Save      | _   |  |  |
| O NRA                                               | 7     | <sup>13</sup> C(p,p <sub>0</sub> ) <sup>13</sup> C           | 137°         | 450-1600     | 93     | 2011-11-22    |        | E.Milne, Phys. Rev. 93 (1954) 762 »                                          |     |  |  |
| ○ PIGE<br>⊙ All                                     | 8     | <sup>13</sup> C(p,p <sub>0</sub> ) <sup>13</sup> C           | 124.1°       | 1620-3340    | 97     | 2011-11-22    |        | D.Zipoy et al., Phys. Rev. 106 (1957) 793 »                                  | ·   |  |  |
| IBANDL                                              | 9     | <sup>13</sup> C(p,p <sub>0</sub> ) <sup>13</sup> C           | 121.5°       | 1000-2580    | 279    | 2011-08-29    | X4     | V.A.Latorre+(1966), Jour. Physical Review, Vol.144, p.891 » View Save D mb   |     |  |  |
| [Summary]                                           | 10    | <sup>13</sup> C(p,p <sub>0</sub> ) <sup>13</sup> C           | 116°         | 410-1600     | 88     | 2011-11-22    |        | E.Milne, Phys. Rev. 93 (1954) 762 » View Save 🗆 mb                           |     |  |  |
| EXFOR                                               | 11    | 13C(p,p0)13C                                                 | 102.1°       | 1600-3340    | 82     | 2011-11-22    |        | D.Zipoy et al., Phys. Rev. 106 (1957) 793 » View Save                        | ,   |  |  |
|                                                     | 12    | 13C(p,p0)13C                                                 | 85.6°        | 1610-3340    | 85     | 2011-11-22    |        | D.Zipoy et al., Phys. Rev. 106 (1957) 793 » View Save                        |     |  |  |
| Home                                                | 13    | <sup>13</sup> C(p,p0) <sup>13</sup> C                        | 85.6°        | 1580-4380    | 75     | 2011-11-22    |        | H.J.Kim,W.T.Milner and F.K.McGowan Nuclear Data Tables v.A2                  | ,   |  |  |
| CD version                                          |       | •••                                                          |              |              |        |               |        | (1966) 353 »                                                                 | _ _ |  |  |
| Updates                                             |       | <sup>13</sup> C(p,p <sub>0</sub> ) <sup>13</sup> C           |              | 430-1590     |        | 2011-11-22    |        | E.Milne, Phys. Rev. 93 (1954) 762 »                                          |     |  |  |
| Nuclear Data<br>Services                            |       | tasets: 13 Rea<br>dd your dataset                            |              |              |        | ences: 7      |        |                                                                              |     |  |  |
|                                                     | _     | eferences.                                                   |              |              | 0      |               |        |                                                                              |     |  |  |
|                                                     | -     | end:<br>link to the da                                       | itaset in EX | FOR database | retrie | val svstem    |        |                                                                              | -   |  |  |

# Web IBANDL calling Web-ZVView



# Web IBANDL calling Web-ZVView

| iBANDL - Mozilla Firefo                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _                                                                                                 | . D X  |
|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------|
| <u>File Edit View History</u>                       | <u>B</u> ookmarks <u>T</u> ools <u>H</u> elp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                   |        |
| A nds121.iaea.org/e                                 | xfor2/ibandl.htm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                   | **     |
| X4/Servlet: Select                                  | × EXFOR: Experimental Nucl × 👷 X4/Servlet: Select                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                   | × +    |
| IBANDL<br>Ion Beam Analysis<br>Nuclear Data Library | Welcome to Web-ZVView!<br>Interactive plotting of IBANDL and SigmaCalc data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                   |        |
| Nucleus<br>C-13                                     | 1) $\theta$ =160° N.P.Barradas et al., to be published<br>2) $\theta$ =158.4° E.Milne, Phys. Rev. 93 (1954) 762<br>3) $\theta$ =160° SigmaCalc 2.0. File created 22-6-2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                   |        |
| Projectile<br>© p                                   | <sup>13</sup> C(p,p <sub>0</sub> ) <sup>13</sup> C 158.4deg.<br>SigmaCalc, 13C(p,p0)13C 160.0deg.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <ul> <li>Select data for plotting [all] [none]</li> <li>1 160deg c3pp0l.r33 13C(p,p0)1</li> </ul> | .3C    |
| ٥d                                                  | 2.00 2.05 2.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.15                                                                                              |        |
| C <sup>3</sup> He<br>Cα                             | ↓- 160deg c3pp01.r33 13C(p,p0)13C ≯²=0.175079(vs:1,pt:15<br>↓- 158.4deg c3pp0j.r33 13C(p,p0)13C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                   | 13C(p, |
| °℃Li                                                | 500 - 160deg C-13_pp0_160000.sc 13C(p,p0)13C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 500 See: plotted data (21Kb)                                                                      |        |
| ° <sup>7</sup> Li                                   | 461.433                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                   |        |
| Type of data<br>© EBS<br>© NRA<br>© PIGE            | 1 400<br>1 339.335<br>3 300<br>284.011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 400                                                                                               |        |
|                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - 300                                                                                             |        |
| [Summary]                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 200                                                                                               |        |
| Home                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                   |        |
| CD version                                          | 2.00 2.05 2.10 Incident Energy (MeV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.15                                                                                              |        |
| Updates                                             | Log: XY X Y Lin: XY X Y Auto-range: XY X Y Page: >> << Zoom: <> >< Grid: VH 0 V H Pts:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | :: Txt  Box  PL  Print                                                                            |        |
| Nuclear Data<br>Services                            | Reset Repaint Clegend Authors Info+ PostScript Manual options                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | s:[+] Clipboard: Copy                                                                             |        |
|                                                     | Shift legend:x=0 y=8 Split:0 1:xy;2:y Plot data or ratio:0 0:data; 1:ratio<br>Data for plotting: ZVD (15Kb), send to ZVView; download ZVView; upload and p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                   |        |
|                                                     | Initial processing in the second of the |                                                                                                   |        |

# EXFOR data re-normalization system

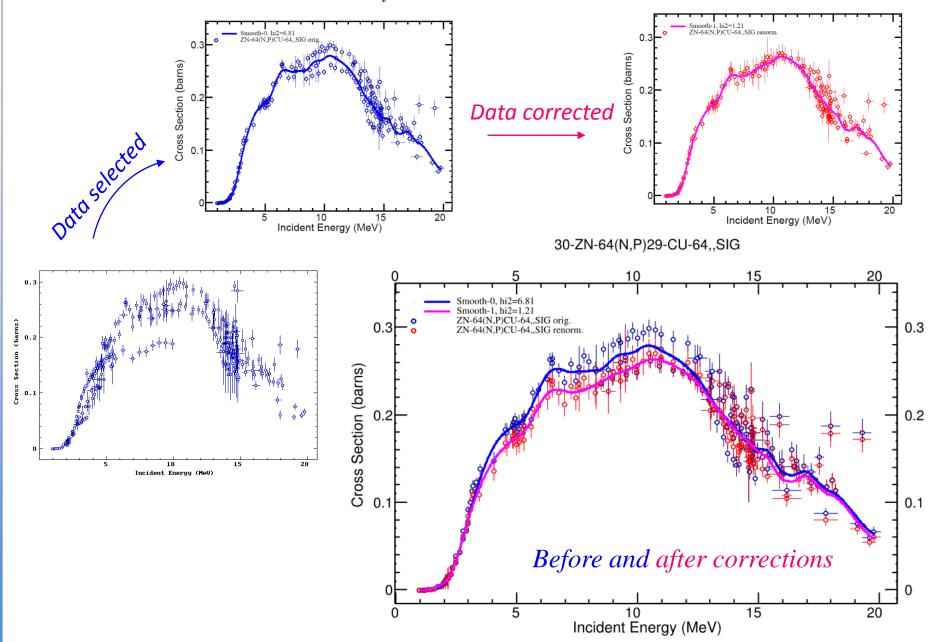
Example 14

14 Automatic re-normalization (output data and plots); <sup>55</sup>Mn(n,g)

# EXFOR data re-normalization system (correction system)

Main ideas:

- 1) to re-normalize data using old monitors and new standards
- 2) to re-normalize data using decay data
- 3) to create a convenient tool for data modifications: multiply data to a factor, correct wrong units, set up uncertainties, delete part of a data set, recalculate data using isotope abundances, etc.


We DO NOT change EXFOR data - we re-normalize output from EXFOR system

### Final goals:

- 1) to implement possibility of corrections
- 2) to re-normalize data from EXFOR automatically (using EXFOR information)
- 3) to collect experts' corrections to a database
- 4) to re-normalize data using experts' corrections database
- 5) to have Web system offering and implementing automatic, experts' and user's corrections in optional, semi-automatic and interactive modes
- 6) to generate and distribute renormalized data of whole EXFOR database

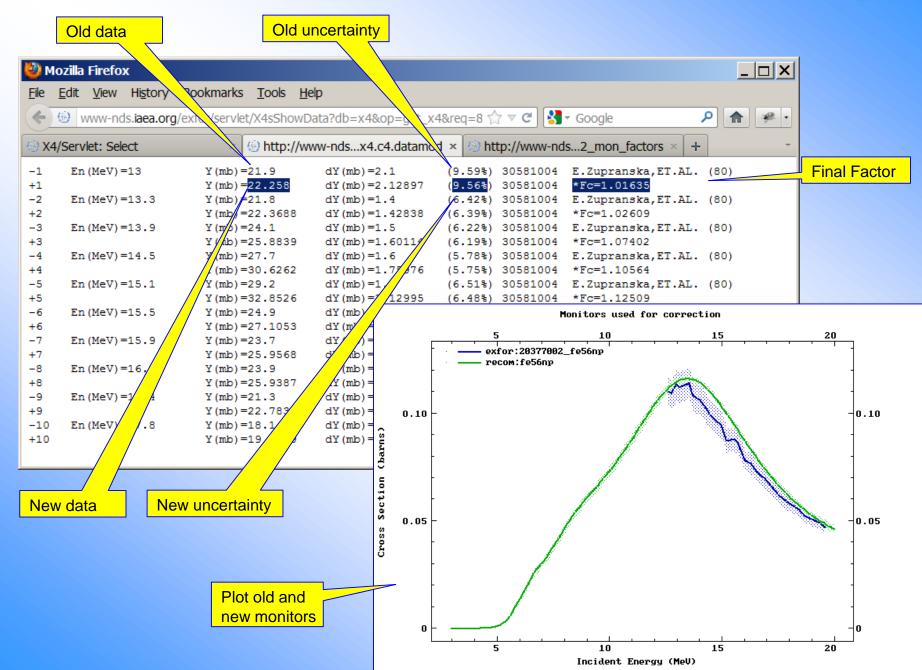
### **Example of expert's corrections results**

by K.Zolotarev, 2011

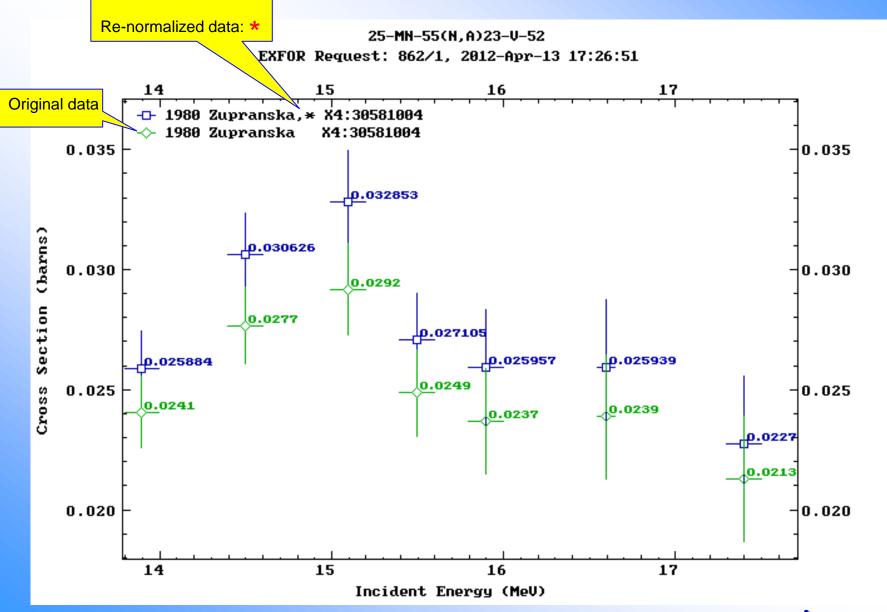


# **Applying automatic data re-normalization**

|             |              |                                       |                 |             |       |            |         |         |               |                        |            |            |            |         |        |                            | And the second se |
|-------------|--------------|---------------------------------------|-----------------|-------------|-------|------------|---------|---------|---------------|------------------------|------------|------------|------------|---------|--------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | 2            | X4/Ser                                | vlet:           | Sele        | ct -  | Mozil      | la Fire | efox    |               |                        |            |            |            |         |        |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|             | <u>F</u> ile | <u>E</u> dit                          | View            | Hi          | story | <u>B</u> o | okma    | rks     | <u>T</u> ools | <u>H</u> elp           |            |            |            |         |        |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|             | 4            | ) (e) w                               | 000/-r          | nds ia      | ea or | n/exf      | or/set  | rvlet/  | X4sSe         | arch5                  |            |            |            |         |        | ☆ <b>~</b> C               | Go                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|             | _            |                                       |                 |             | culoi | great      | 017501  | - vieq. | _             | areno                  |            |            |            |         |        |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|             | (ھ)          | (4/Servl                              | et: Se          | elect       |       |            |         | -       | F             |                        |            |            |            |         |        |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|             | Res          | Request<br>Access-<br>ults: Re<br>ata | Leve<br>eaction | l=2<br>ons: |       |            | USE     |         | orrect        | tions,<br>ntation      |            |            |            |         |        |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|             | R            | etrieve                               | 0               | Seleo       | ted   | OUn        | sele    |         |               | Reset                  |            |            |            |         |        |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|             | Out          | tout:                                 | 」<br>IV FX      | FOR         |       | EXEC       | )R      | JE Bi   | blioara       | aphy 🗆                 | ТАВ 🗖      | C4 🗆 Plo   | tC4        |         |        |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Apply       | Plo          | t: 🛛                                  | Oui             | ck-p        | lot ( | cross/     | ect     | tions   | only)         | Advar                  | ced plot   | [how-to    | l usina∏ ( | C5 and  | C conv | erting ratios              | to cross                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| corrections |              | ndards,                               | _               |             |       |            |         |         | ,,,           |                        |            | ·····      |            |         |        | <b>j</b>                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|             | Nar          | row En                                | ergy            | ,<br>opti   | ional | ), eV:     | : Min:  | : []    |               | M                      | ax: 🗖      |            |            |         |        |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|             |              | Apply(7)                              | A)∛ D           | ata         | re-n  | ormali     | izatio  | n (fo   | r adv         | anced us               | ers, resul | lts in: C4 | , TAB and  | Plots)  |        |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|             |              |                                       | -               |             |       |            |         |         |               |                        |            |            |            |         |        |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|             |              | 🗋 n 👘                                 | Disp            | lay         |       |            |         |         | Year          | Author-1               |            | Energy     | range,eV   | Points  |        | Reference                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Auto        | <b>3</b>     | 01)                                   | ۵ 🛈             | 25-         | MN-5  | 5 (N, A    | ) 23-V  | -52,    | ,SIG          | C4: MF3                | MT107      |            |            |         |        |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| corrections |              | Quanti                                | ty:             | [CS]        | Cros  | s sec      | tion    |         |               |                        |            |            |            |         |        |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|             |              | 1 🕅                                   | Info            |             |       |            |         |         |               | A.Fessler              |            |            | 2.03e7     | 5       |        | J,NSE,134, (               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| is possible |              | 2 🕅                                   | Info            |             |       | X4±        |         |         |               | A.A.Filat              |            |            | 1.48e7     | 8       |        | R,RI-252,19                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|             | _            | 3                                     | Info            |             | X4+   |            |         |         |               | A.A.Filat              |            | 1.41e7     |            | 1       |        | R,RI-252,19                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|             | А            | 4 🗖                                   | Info            |             |       | X4±        |         |         |               | M.Bostan+              |            |            | 1.20e7     | 7       |        | J, PR/C, 49, 2             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| J           | -            | 5                                     | Info            |             | X4+   |            |         |         |               | A.Graller              | rt+        | 1.47e7     |            | 1       |        | R, INDC (NDS)              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|             |              | 6 🗆 A                                 |                 | X4          |       |            |         |         |               | A.Ercan+               |            | 1.46e7     |            | 1       |        | C,91JUELIC,                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|             |              | 7 [                                   | Info            |             | X4+   |            |         | _       |               | B.M.Bahal              |            | 1.47e7     |            | 1       |        | R,GKSS-85-E                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|             |              | 8                                     | Info            |             | X4+   |            |         |         |               | G.Helfer+              |            | 2.96e6     |            | 1       |        | J,CZJ/B,34,                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|             | f            | 9                                     | Info            | X4          | X4+   |            |         | _       |               | R.Vaenska              |            | 1.47e7     |            | 2       |        | J,NIM,171,2                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|             |              | 10 🗖<br>11 🔽 A                        | Info            | X4<br>X4    | X4+   |            |         |         |               | P.N.Ngoc+<br>E.Zuprans |            | 1.46e7     | 1.78e7     | 1<br>10 |        | T,NGOC,1980<br>J,APP/B,11, |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|             |              | 11 🔽 A                                |                 | X4<br>X4    |       |            |         |         |               | J.Garuska              |            | 1.30e7     | 1.7667     | 10      |        | P, INR-1773/               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|             |              | 13                                    | Info            |             | X4+   |            |         |         |               | G.P.Dolya              |            | 1.40e7     |            | 1       |        | J, VAT/F, 1, (             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|             |              | 14 T A                                |                 |             |       |            |         |         |               | B.Minetti              |            | 1.47e7     |            | 1       |        | J, ZP, 199, 27             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|             |              |                                       |                 |             |       |            |         |         |               | F Frevert              |            | 1 4867     |            | 1       |        | T APA 20 30                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

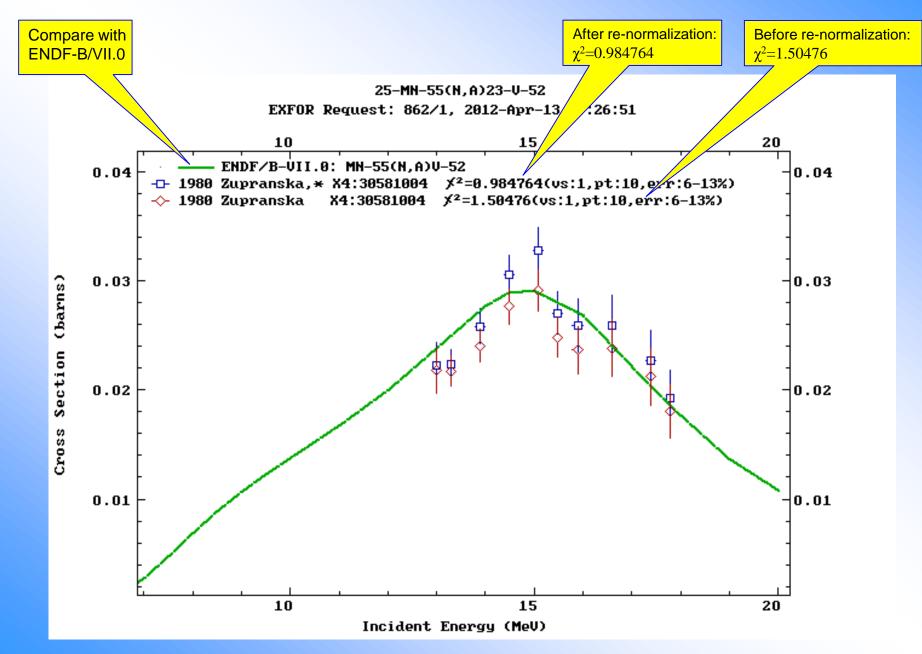

## **Automatic re-normalization: simple plot**

|                | 실 X4/Servlet: Select -                                                                                                                | - Mozilla Firefox                                                                  |                                                     |                                               |                                        |                |                                           |                | _ 🗆 ×               |                 |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------|----------------------------------------|----------------|-------------------------------------------|----------------|---------------------|-----------------|
|                | <u>File Edit View Histor</u>                                                                                                          | y <u>B</u> ookmarks <u>T</u> oo                                                    | ls <u>H</u> elp                                     |                                               |                                        |                |                                           |                |                     |                 |
|                | ( www-nds.iaea.c                                                                                                                      | org/exfor/servlet/X4sN                                                             | 1akeX4                                              |                                               |                                        | ☆ ◄            | C Soogle                                  | ٩              | <b>↑</b> <i>₩</i> • |                 |
|                | (i) X4/Servlet: Select                                                                                                                | +                                                                                  |                                                     |                                               |                                        |                |                                           |                | -                   |                 |
| L              | EXFOR Request #8                                                                                                                      | 62/276                                                                             |                                                     |                                               |                                        |                |                                           |                | <b>_</b>            |                 |
|                | Format                                                                                                                                |                                                                                    | <u>Data</u> (Si                                     | e)                                            |                                        | _              |                                           |                |                     |                 |
|                | EXFOR Text (7Kb)                                                                                                                      | ZIP (3Kb) Generate: )                                                              |                                                     |                                               |                                        |                | - '                                       |                |                     |                 |
|                | Bibliography html (4Kb)                                                                                                               | BibTeX (2Kb)                                                                       |                                                     |                                               |                                        | )506 #1980     | -                                         |                |                     |                 |
|                | Computational                                                                                                                         |                                                                                    |                                                     |                                               |                                        | 55 (N, A) 23-V |                                           |                |                     |                 |
|                | С4 С4 (2Кb) С                                                                                                                         | 4.ZIP (1Kb) LST (128K                                                              | b)                                                  |                                               |                                        | 6(N,P)25-M     |                                           | 2 1065021 0    | follow              | ;#old monit-ref |
|                | Advanced Plotting:                                                                                                                    | LCT (1//b)                                                                         |                                                     |                                               |                                        |                | #old moni                                 |                | -                   |                 |
|                | Select experimental da                                                                                                                |                                                                                    |                                                     | ml: recom                                     |                                        | ,              |                                           | tor (energy)   |                     | UK              |
|                |                                                                                                                                       | antity type #Plots                                                                 |                                                     | dy=dy/y;                                      | steppip,                               |                |                                           | uncertaint:    |                     |                 |
|                | σ(E) sig Cro                                                                                                                          | oss section data 1                                                                 |                                                     | y=y/m0*m1                                     |                                        |                | #renormal                                 |                | Les                 |                 |
| pplied         | Go to plot evaluated                                                                                                                  |                                                                                    |                                                     |                                               |                                        | Jm1**2)**∩     | .5;#replace                               |                | Portaint            | ios             |
| ••             | ENDF Retrieve e                                                                                                                       | valuated data and plot.                                                            | ,                                                   | dy=(dy 2<br>dy=dy*y;                          |                                        | unit 2) 0      |                                           | uncertaint:    |                     | .163            |
| orrections     | Requested corrections                                                                                                                 |                                                                                    | /                                                   | ay ay y,                                      |                                        |                | 1100 abs.                                 |                | 105                 |                 |
|                | <pre>#Reaction: 25-MN-55 #Monitor: 26-FE-56 #m0: {20377002_ m1: recom\$fe56np; dy=dy/y; y=y/m0*m1; dy=(dy**2-dm0**2+dm dy=dy*y;</pre> | <pre>(N, P) 25-MN-56, , SIG<br/>SKIEN+, J, JNE/AB, 19,<br/>fe56np;</pre>           | nitor(ener<br>nitor(ener<br>. uncertai<br>alized CS | gy) in EXFOR<br>gy)<br>nties<br>uncertainties | onit-ref                               |                |                                           |                |                     |                 |
| Check          | Correction protocol                                                                                                                   |                                                                                    |                                                     |                                               |                                        |                |                                           |                |                     |                 |
| Monitors       | Applied corrections. I<br>1) EXFOR:#30581004 Re                                                                                       | ef:E.Zupranska,ET.AL. (<br>6; M0:exfor\$20377002_<br>plot]<br>ted] datasets [corre | _fe56np; Mi                                         | :recom\$fe56np; dY=                           | _Points:0<br>TYX: X=X/M0*M1<br>Check d |                | +dM1^2; dY=tmp0^0.5;                      |                |                     |                 |
| Plot result of |                                                                                                                                       |                                                                                    | -MN-55(N,<br>862/1, 2                               | A)23-V-52<br>012-Apr-13 17:10:                | 16                                     |                | ENDF Find and add                         |                |                     |                 |
| corrections    |                                                                                                                                       |                                                                                    |                                                     |                                               |                                        | 10             | + 🔽 1) 25-MN-55(N,                        | A)23-V-52,,SIG |                     |                 |
|                |                                                                                                                                       | <b>14</b><br>                                                                      |                                                     |                                               |                                        |                | + 2) Use my data<br>See: plotted data (2K |                |                     |                 |
|                |                                                                                                                                       |                                                                                    |                                                     |                                               |                                        | 1              |                                           |                |                     |                 |
|                | ê 0.030 -                                                                                                                             | +                                                                                  | I.                                                  |                                               |                                        | -0.030         |                                           |                |                     |                 |
|                | 0.030 -<br>54 -<br>9                                                                                                                  | 1                                                                                  |                                                     |                                               |                                        | 1              |                                           |                | •                   |                 |


Appli corre

Plot corre

## Automatic re-normalization: data checking




## Automatic data re-normalization: common plot



**Use Copy/Paste** 

# **Comparing to ENDF**



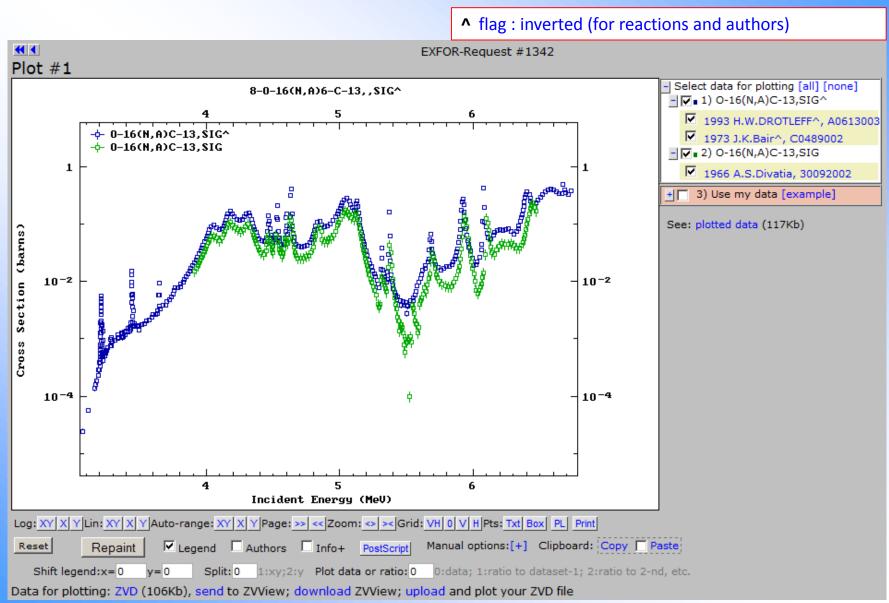
# Inverse reactions and inverse kinematics in EXFOR and IBANDL

Example 18

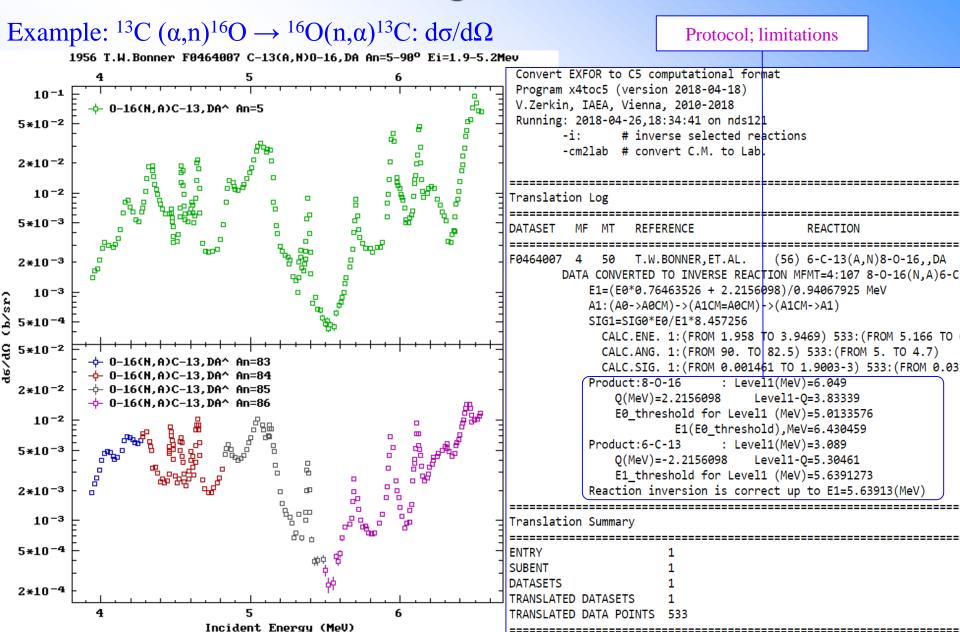
18 Invert reaction using detailed balance  ${}^{13}C(\alpha,n){}^{16}O \rightarrow {}^{16}O(n,\alpha){}^{13}C$ :  $\sigma d\sigma/d\Omega$ <u>Ex.2</u>:  ${}^{3}He(d,p){}^{4}He \rightarrow {}^{4}He(p,d){}^{3}He d\sigma/d\Omega$  [plot]

# EXFOR. Recalculation of cross sections to inverse reactions using detailed balance relation

View: extended  $\rightarrow$  "Invert data"  $\rightarrow$  Advanced plot via C5

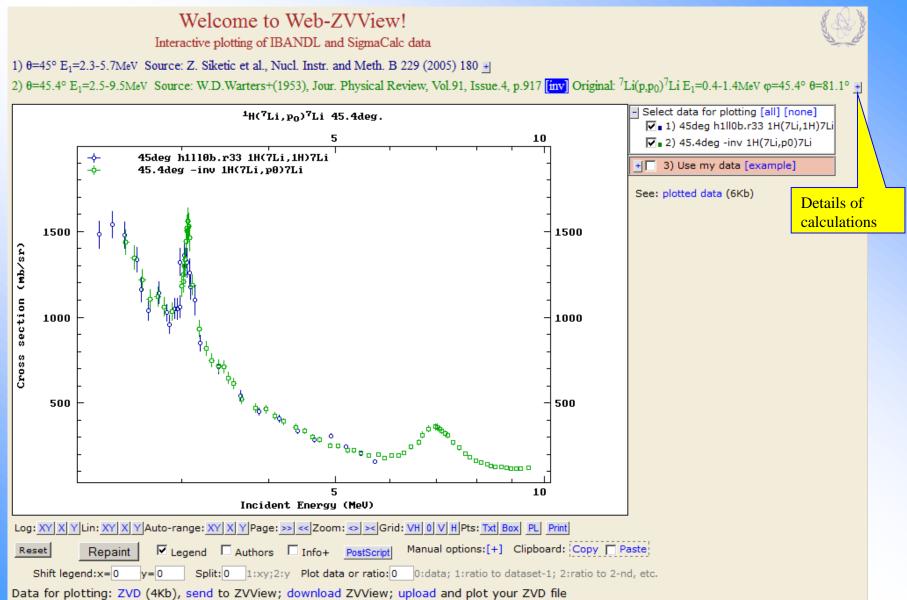

|          |         |      |        | ctio    |       |       |        |        |                 |          |               |              |           |                |                               |                         |            |
|----------|---------|------|--------|---------|-------|-------|--------|--------|-----------------|----------|---------------|--------------|-----------|----------------|-------------------------------|-------------------------|------------|
| F        | Retriev | e    | Sel    | ected   | OU    | nsele | ected  | A O L  | ll Reset        |          |               |              |           |                |                               |                         |            |
| οι       | tput:   |      | K4+    |         | OR    | 🔽 B   | ibliog | raphy  |                 | C4 🗆     | PlotC4        |              |           |                |                               |                         |            |
| Plo      |         |      |        |         |       |       |        |        | /) 🔽 Advanced ( | plot [ho | w-to] using 🖡 | C5 and       | conv      | /ert ratios t  | σ                             |                         |            |
| Na       | rrow i  | ncid | ent er | hergy   | (opti | onal  | ), eV  | : Min  | : 🗆             | M        | ax: 🗆         |              |           |                |                               |                         |            |
|          | Apply   | (4A) | × C    | )ata re | e-nor | mali: | zatio  | n (foi | advanced us     | ers, re  | esults in: (  | C4, TAB      | and P     | lots)          |                               |                         |            |
|          |         |      |        |         |       |       |        |        |                 |          |               |              | /         |                |                               |                         |            |
| <u> </u> | 🗋 n     | I    | )ispla |         |       |       |        | uthor  |                 |          | range,eV      |              |           | Referen        |                               | Subentry#P NSR-Ke       | У          |
|          | 01)     | Ð    |        |         |       |       |        | IG     | C4: MF3 MT4     | Doing    | g advanced pl | ot via C5: 🔽 | invert of | data to reac   | tion 8-0-16(N,A)6-C-13,,SIG   | (PAR,SIG:LVL=0)         |            |
|          |         |      |        | ] Cros  |       |       |        |        |                 |          |               |              |           |                |                               |                         |            |
| *        | 1       |      | - Info | X4+     | X4±   | T4    | Cov    | 2005   | S.Harissopul    | 03+      | 7.67e5        | 7.96e6       | 679       | [pdf]+         | J,PR/C,72,062801,200          | 05 F0786004 [2          | 2005HA69   |
|          | 2       |      | Info   | X4+     | X4±   | T4    | Cov    | 1993   | H.W.Drotleff    | +        | 2.79e5        | 1.06e6       | 55        | [pdf]+         | J,AJ,414,735,1993             | A0613003 [6             | ] 1993DR08 |
|          | 3       |      | Info   | X4+     | X4±   | T4    | Cov    | 1989   | S.E.Kellogg+    |          | 4.50e5        | 1.04e6       | 13        | [pdf]+         | J, BAP, 34, 1192 (E10.5)      | ,198904 C0517002 [4     | ]          |
| *        | 4       |      | - Info | X4+     | X4±   | T4    | Cov    | 1973   | J.K.Bair+       |          | 9.97e5        | 5.40e6       | 855       | [pdf]+         | J,PR/C,7,1356,1973            | C0489002 [3             | ] 1973BA10 |
| g*       | 5       |      | ln fo  | x4+     | X4±   | T4    | Cov    | 1967   | K.K.Sekheran    | +        | 1.94e6        | 5.53e6       | 290       | [pdf]+         | J, PR, 156, (4), 1187, 19     | 067 D6089002 [1         | 1967SE07   |
|          |         |      |        |         |       |       |        |        |                 |          |               |              |           | invert dat     | a to reaction 8-0-16(N,A)6-C- | 13,,SIG (PAR,SIG:LVL=0) |            |
|          |         |      |        | ] Cros  |       |       |        |        |                 |          |               |              |           |                |                               |                         |            |
|          | 6       |      | Info   | X4+     | X4±   | T4    | Cov    | 1968   | C.N.Davids      |          | 4.75e5        | 7.00e5       | 10        | [pdf]+         | J,NP/A,110,619,19680          | )3 F0304004 [4          | 1968DA05   |
|          |         |      | -      |         |       |       |        |        | C4: MF3 MT107   | Do       | oing advanced | plot via C5  | inve      | ert data to re | action 6-C-13(A,N)8-O-16,,SI  | G (PAR,SIG:LVL=0)       |            |
|          | Quan    | tity | : [CS  | ] Cros  | s se  | ctio  | n      |        |                 |          |               |              |           |                |                               |                         |            |
|          | 7       |      | Info   | X4+     | X4±   | T4    | Cov    | 1968   | B.Leroux+       |          | 1.49e7        |              | 1         | [pdf]+         | J,NP/A,116,(1),196,1          | 196807 21461002 (e      | ] 1968LE11 |
| *        | 8       |      | ln fo  | X4+     | X4±   | T4    | Cov    | 1968   | D.Dandy+        |          | 7.14e6        | 1.20e7       | 11        | +              | R,AWRE-0-60/68,,6810          | 21474003 [8             | ]          |
|          | 9       |      | + Info | X4+     | X4±   | T4    | Cov    | 1966   | A.S.Divatia+    |          | 3.92e6        | 6.49e6       | 406       | [pdf]+         | C,66PARIS,1,233,1966          | 510 30092002 [6         | 0          |
|          | 10      |      | - Info | X4+     | X4±   | T4    | Cov    | 1963   | M.Bormann+      |          | 1.48e7        |              | 1         | [pdf]+         | J,ZP,174,1,196302             | 21343010 [1             | ]          |
|          | 11      |      | ln fo  | X4+     | X4±   | T4    | Cov    |        |                 |          | 1.23e7        | 1.95e7       | 7         |                |                               | 21343012 [1             | 1          |
| *        |         |      |        |         |       |       |        | 1955   | J.Seitz+        |          | 3.65e6        | 4.22e6       | 26        | [pdf]+         | J,HPA,28,227,5503             | 21072002 [8             | ]          |

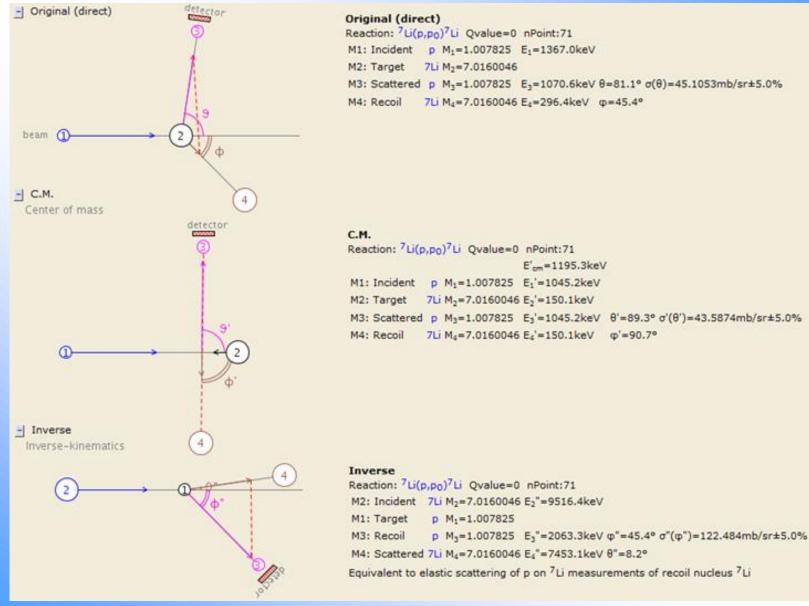
### **Inverse reactions in EXFOR**

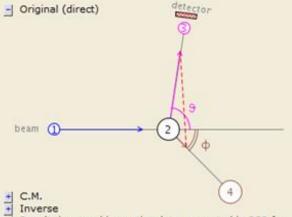

| Output Data       |                                                                                                                                                                             |   | T. C.                                                                                                                | •, ,•     |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----------------------------------------------------------------------------------------------------------------------|-----------|
| Format            | <u>Data</u> (Size)                                                                                                                                                          |   | Lin                                                                                                                  | nitations |
| EXFOR Interpreted | X4+ (74Kb) Generate: X4± XML:: v1: X4.xml X4.html v2: X4.xml X4.html                                                                                                        |   |                                                                                                                      |           |
| EXFOR Output      | X4Out X4Out.xml X4Comp Test: C5 C5M:see:[doc]                                                                                                                               |   | Convert EXFOR to C5 computational format                                                                             |           |
| EXFOR Original    | EXFOR (122Kb) zip (20Kb)                                                                                                                                                    | 1 | Program x4toc5 (version 2015-04-14)                                                                                  |           |
| Bibliography      | html (9Kb) BibTeX (3Kb)                                                                                                                                                     |   | V.Zerkin, IAEA, Vienna, 2010-2015<br>Running: 2015/04/17:17:03:48 on nds121.iaea.org                                 |           |
| Computational     |                                                                                                                                                                             | 1 | -i: # inverse selected reactions<br>-cm2lab # Try to convert all C.M. to Lab.                                        |           |
| C4                | C4(C5) (170Kb) C4.ZIP (21Kb) C5 (175Kb) LST (3Kb) -                                                                                                                         |   |                                                                                                                      |           |
|                   | The cross sections of inverse reaction follow the principle of detailed balance:                                                                                            |   | Translation Log                                                                                                      |           |
|                   | $\sigma_{B(b,a)A} = \sigma_{A(a,b)B} \frac{(2j_a+1)(2j_A+1)}{(2j_b+1)(2j_b+1)} \frac{p_a^2}{p_b^2}$                                                                         |   | DATASET MF MT REFERENCE REACTION                                                                                     |           |
|                   |                                                                                                                                                                             |   | 30092002 3 107 A.S.Divatia, ET.AL. (66) 8-0-16(N,A 6-<br>A0613003 3 4 H.W.DROTLEFF, ET.AL. (93) 6-C-13(A,N) 8-       |           |
|                   | where:<br>i : spin of a particle;                                                                                                                                           |   | CONVERT INC-ENERGY: C.M. TO LAB K=1.3078132                                                                          |           |
|                   | <i>p</i> : relative momentum in the center-of-mass system                                                                                                                   |   | DATA CONVERTED TO INVERSE REACTION MFMT=3:107 8-0-<br>E1=(E0*0.76463526 + 2.2153838)/0.94067925                      |           |
|                   | p relative momentum in the center-or-mass system                                                                                                                            |   | SIG1=SIG0*E0/E1*8.457255                                                                                             |           |
|                   | $Q = (m_a + m_A) - (m_b + m_B)$                                                                                                                                             |   | Product:8-0-16 : Level1(MeV)=6.049<br>Q(MeV)=2.2153838 Level1-Q=3.833616                                             |           |
|                   | $Q = (m_a + m_A) - (m_b + m_B)$                                                                                                                                             |   | E0_threshold for Level1 (MeV)=5.0136533                                                                              |           |
|                   | $(m, ) (m_{\pi})$                                                                                                                                                           |   | E1(E0_threshold), MeV=6.4304595                                                                                      |           |
|                   | $E_b = \left(E_a \frac{m_A}{m_a + m_A} + Q\right) / \left(\frac{m_B}{m_b + m_B}\right)$                                                                                     |   | Product:6-C-13 : Level1(MeV)=3.089<br>Q(MeV)=-2.2153838 Level1-Q=5.3043838<br>E1 threshold for Level1 (MeV)=5.638887 |           |
|                   |                                                                                                                                                                             |   | Reaction inversion is correct up to E1=5.63888                                                                       | 7         |
|                   | $\Delta E_b = \Delta E_a \left( \frac{m_A}{m_a + m_a} \right) / \left( \frac{m_B}{m_b + m_b} \right)$                                                                       |   | C0489002 3 4 J.K.Bair,ET.AL. (73) 6-C-13(A,N)8-<br>DATA CONVERTED TO INVERSE REACTION MFMT=3:107 8-0-                |           |
|                   | $\Delta L_b = \Delta L_a \left( \frac{m_a + m_A}{m_b + m_B} \right)^{\prime} \left( \frac{m_b + m_B}{m_b + m_B} \right)$                                                    |   | E1=(E0*0.76463526 + 2.2153838)/0.94067925                                                                            |           |
|                   |                                                                                                                                                                             |   | SIG1=SIG0*E0/E1*8.457255<br>Product:8-0-16 : Level1(MeV)=6.049                                                       |           |
|                   | $\sigma_{B(b,a)A}(E_b) = \frac{(2j_a+1)(2j_A+1)}{(2j_b+1)(2j_b+1)} \frac{m_a m_A^2}{(m_a+m_A)^2} \frac{(m_b+m_B)^2}{m_b m_B^2} \frac{E_a}{E_b} \cdot \sigma_{A(a,b)B}(E_a)$ |   | Q(MeV)=2.2153838 Level1-Q=3.833616                                                                                   |           |
|                   | $(2j_b+1)(2j_B+1)(m_a+m_A)^2 = m_b m_B^2 = E_b^{-2A(a,b)B(Cab)}$                                                                                                            |   | E0_threshold for Level1 (MeV)=5.0136533                                                                              |           |
|                   |                                                                                                                                                                             |   | E1 (E0_threshold), MeV=6.4304595<br>Product:6-C-13 : Level1 (MeV)=3.089                                              |           |
|                   | $\Delta \sigma_{B(b,a)A} = \sigma_{B(b,a)A} \left( \frac{\Delta \sigma_{A(a,b)B}}{\sigma_{A(a,b)B}} \right)$                                                                |   | Q(MeV)=-2.2153838 Level1-Q=5.3043838                                                                                 |           |
|                   | $\Delta \sigma_{B(b,a)A} = \sigma_{B(b,a)A} \left( \frac{\sigma_{A(a,b)B}}{\sigma_{A(a,b)B}} \right)$                                                                       |   | E1_threshold for Level1 (MeV)=5.638887<br>Reaction inversion is correct up to E1=5.63888                             | 7         |
|                   | ( interve )                                                                                                                                                                 |   |                                                                                                                      |           |
|                   |                                                                                                                                                                             | - | Translation Summary                                                                                                  |           |
| Advanced Plotti   | ng: LST (1Kb)                                                                                                                                                               |   | ENTRY 3                                                                                                              |           |
| Select experiment | tal data for plotting                                                                                                                                                       |   | SUBENT 3                                                                                                             |           |
| Go to             | Quantity type #Plots                                                                                                                                                        |   | DATASETS 3<br>TRANSLATED DATASETS 3                                                                                  |           |
| σ(E) sid          | G Cross section data 1                                                                                                                                                      |   | TRANSLATED DATA POINTS 1316                                                                                          |           |
| Go to plot eval   | uated data                                                                                                                                                                  |   |                                                                                                                      |           |
|                   | eve evaluated data and plot                                                                                                                                                 |   |                                                                                                                      |           |

Advanced plot via C5

### **Inverse reactions in EXFOR**





### EXFOR. Recalculation of differential cross sections to inverse reactions using detailed balance relation




|                                                     | Flag to transform data to invert kinematics when presenting data                                                                                                                                                                        |
|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                     |                                                                                                                                                                                                                                         |
| IBANDL<br>Ion Beam Analysis<br>Nuclear Data Library | $^{1}\text{H} + ^{7}\text{Li}$                                                                                                                                                                                                          |
| Nucleus                                             | Type of data: ALL View: ☑ extended                                                                                                                                                                                                      |
| H-1 💌                                               | No.         Reaction         Angle         Energy(keV)         Pts         Update         X4         Reference         File         Plot                                                                                                |
| Projectile                                          | 1 <sup>1</sup> H( <sup>7</sup> Li, <sup>1</sup> H) <sup>7</sup> Li       45°       2280-5700       29       2006-06-23       -       Z. Siketic et al., Nucl. Instr. and Meth. B 229 (2005) 180 »       View       Save       Image: mb |
| Op<br>Od                                            | 2 <sup>1</sup> H( <sup>7</sup> Li, <sup>1</sup> H) <sup>7</sup> Li 30° 2280-5700 29 2006-06-23 <sup>-</sup> Z. Siketic et al., Nucl. Instr. and Meth. B 229 (2005) 180 » View Save                                                      |
| ⊙ a<br>⊙ <sup>3</sup> He                            | Datasets: 2 Reactions: 1 Points: 58 References: 1                                                                                                                                                                                       |
| Oα                                                  | Add your dataset in R33 format for plotting                                                                                                                                                                                             |
| O⁰Li                                                | 1 Comment: Automatically converted from EXFOR                                                                                                                                                                                           |
| O <sup>7</sup> Li                                   | by the IAEA-NDS EXFOR Web-Retrieval System program version-2015/02/20, by V.Zerkin.                                                                                                                                                     |
|                                                     | "The elastic scattering of protons by lithium"                                                                                                                                                                                          |
| Type of data<br>C EBS                               | W.D.Warters, W.A.Fowler, C.C.Lauritsen<br>EXFOR: A1401003 Created: 1980-07-28 Updated: 2014-11-13                                                                                                                                       |
| O NRA                                               | X4Reaction: 3-LI-7(P.EL) 3-LI-7DAEXP: X4Points: 295                                                                                                                                                                                     |
| C PIGE                                              | Converted from C.M. to Lab.: Data (assumed DATA-CM), Theta                                                                                                                                                                              |
| © A11                                               | DataLab= DataCM/0.9664059<br>ThetaCM: 89.2                                                                                                                                                                                              |
|                                                     | Example: [1] [2]                                                                                                                                                                                                                        |
| IBANDL                                              | Legend:                                                                                                                                                                                                                                 |
| [Summary]                                           | <ul> <li>X4 link to the dataset in EXFOR database retrieval system</li> <li>+ search in EXFOR database the data of given reaction published by given author</li> </ul>                                                                  |
|                                                     | mb Cross section, mb/sr                                                                                                                                                                                                                 |
| EXFOR                                               | rr Ratio to Rutherford<br>ru Cross section, Relative Units                                                                                                                                                                              |
|                                                     | tot Cross section, mb                                                                                                                                                                                                                   |
| Home                                                | yield Yield, Ngamma/sr/uC                                                                                                                                                                                                               |

### **IBANDL** contains angular distributions $d\sigma/d\Omega(\theta, E)$ for incident charged particle reactions







Original (direct)

 Reaction: <sup>7</sup>Li(p,p\_0)<sup>7</sup>Li
 Qvalue=0
 nPoint:71

 M1: Incident
 p
 M1=1.007825
 E1=1367.0keV

 M2: Target
 7Li
 M2=7.0160046

 M3: Scattered
 p
 M3=1.007825
 E3=1070.6keV
 0(0)=45.1053mb/sr±5.0%

 M4: Recoil
 7Li
 M4=7.0160046
 E4=296.4keV
 φ=45.4°

Result: inverse-kinematics data presented in R33 format



Result: inverse-kinematics data presented in R33 format

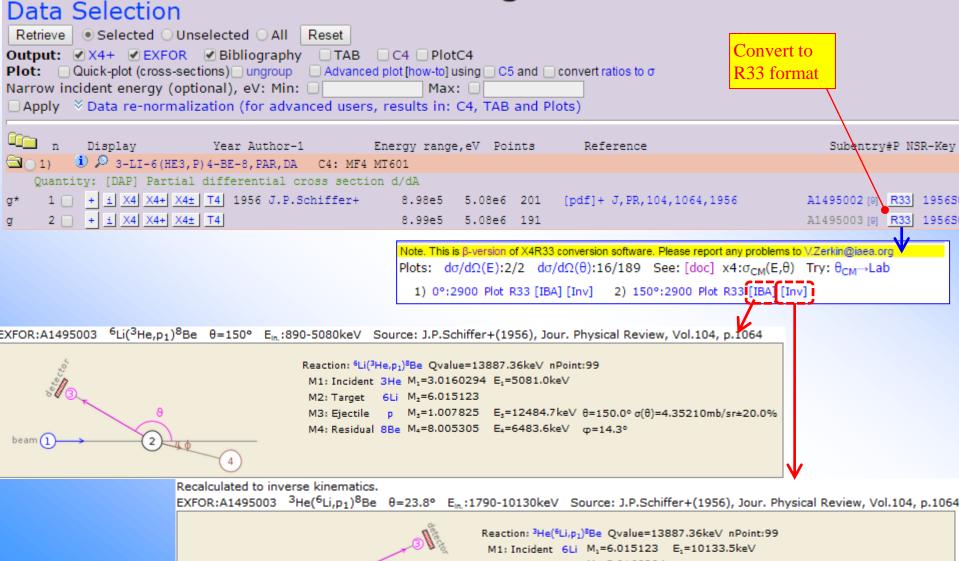
Reaction: <sup>1</sup>H(<sup>7</sup>Li,p<sub>0</sub>)<sup>7</sup>Li Qvalue=0 nPoint:71 M1: Incident 7Li M<sub>1</sub>=7.0160046 E<sub>1</sub>=9516.4keV M2: Target 1H M<sub>2</sub>=1.007825 M3: Ejectile p M<sub>3</sub>=1.007825 E<sub>3</sub>=2061.1keV θ=45.4° σ(θ)=122.484mb/sr±5.0%

M4: Residual 7Li M4=7.0160046 E4=7455.3keV φ=8.2°

| T  |                         |      | Original (l    | ab.): | 7Li(p,po)7L | i Q=0          |         | _       |      |      | Cen     | ter of ma | ss      |         |         | Inverse kinametics |      |         |     |         |       |        |
|----|-------------------------|------|----------------|-------|-------------|----------------|---------|---------|------|------|---------|-----------|---------|---------|---------|--------------------|------|---------|-----|---------|-------|--------|
| #  | E <sub>1</sub> ,<br>keV | θ°   | σ(θ),<br>mb/sr | φ     | σ(φ)        | E <sub>3</sub> | E4      | E'cm    | θ.   | φ'   | σ'(θ')  | E'1       | E'2     | E'3     | E'4     | E2"                | φ"   | σ"(φ")  | θ"  | σ"(θ")  | E3"   | E4"    |
| 1  | 358.6                   | 81.1 | 529.741        | 45.4  | 4.35366e6   | 280.851        | 77.7494 | 313.558 | 89.3 | 90.7 | 511.914 | 274.174   | 39.3842 | 274.174 | 39.3842 | 2496.4             | 45.4 | 1438.52 | 8.2 | 164261. | 541.3 | 1955.2 |
| 2  | 368.3                   | 81.1 | 497.427        | 45.4  | 4.08809e6   | 288.447        | 79.8525 | 322.04  | 89.3 | 90.7 | 480.687 | 281.591   | 40.4495 | 281.591 | 40.4495 | 2563.9             | 45.4 | 1350.77 | 8.2 | 154241. | 555.9 | 2008   |
| 3  | 378.5                   | 81.1 | 450.076        | 45.4  | 3.69894e6   | 296.436        | 82.064  | 330.959 | 89.3 | 90.7 | 434.93  | 289.389   | 41.5698 | 289.389 | 41.5698 | 2634.9             | 45.4 | 1222.18 | 8.2 | 139559. | 571.3 | 2063.6 |
| 4  | 388.2                   | 81.1 | 407.779        | 45.4  | 3.35132e6   | 304.033        | 84.1671 | 339.441 | 89.3 | 90.7 | 394.056 | 296.805   | 42.6351 | 296.805 | 42.6351 | 2702.5             | 45.4 | 1107.33 | 8.2 | 126444. | 585.9 | 2116.5 |
| 5  | 398.4                   | 81.1 | 413.26         | 45.4  | 3.39637e6   | 312.021        | 86.3786 | 348.359 | 89.3 | 90.7 | 399.353 | 304.604   | 43.7553 | 304.604 | 43.7553 | 2773.5             | 45.4 | 1122.21 | 8.2 | 128143. | 601.3 | 2172.1 |
| 6  | 407.1                   | 81.1 | 391.875        | 45.4  | 3.22062e6   | 318.835        | 88.2649 | 355.967 | 89.3 | 90.7 | 378.687 | 311.256   | 44.7108 | 311.256 | 44.7108 | 2834               | 45.4 | 1064.14 | 8.2 | 121512. | 614.5 | 2219.6 |
| 7  | 417.8                   | 81.1 | 382.085        | 45.4  | 3.14016e6   | 327.215        | 90.5848 | 365.323 | 89.3 | 90.7 | 369.227 | 319.437   | 45.886  | 319.437 | 45.886  | 2908.5             | 45.4 | 1037.55 | 8.2 | 118476. | 630.6 | 2277.9 |
| 8  | 432.2                   | 81.1 | 435.468        | 45.4  | 3.57888e6   | 338.493        | 93.7069 | 377.914 | 89.3 | 90.7 | 420.813 | 330.446   | 47.4675 | 330.446 | 47.4675 | 3008.8             | 45.4 | 1182.52 | 8.2 | 135029. | 652.3 | 2356.4 |
| 9  | 433.7                   | 81.1 | 445.21         | 45.4  | 3.65895e6   | 339.668        | 94.0321 | 379.226 | 89.3 | 90.7 | 430.227 | 331.593   | 47.6322 | 331.593 | 47.6322 | 3019.2             | 45.4 | 1208.97 | 8.2 | 138050. | 654.6 | 2364.6 |
| 10 | 434.2                   | 81.1 | 461.032        | 45.4  | 3.78898e6   | 340.059        | 94.1405 | 379.663 | 89.3 | 90.7 | 445.517 | 331.976   | 47.6872 | 331.976 | 47.6872 | 3022.7             | 45.4 | 1251.94 | 8.2 | 142956. | 655.4 | 2367.3 |
| 11 | 435.1                   | 81.1 | 480.354        | 45.4  | 3.94778e6   | 340.764        | 94.3357 | 380.45  | 89.3 | 90.7 | 464.189 | 332.664   | 47.786  | 332.664 | 47.786  | 3029               | 45.4 | 1304.4  | 8.2 | 148948. | 656.7 | 2372.2 |
| 12 | 437                     | 81.1 | 493.156        | 45.4  | 4.05299e6   | 342.252        | 94.7476 | 382.111 | 89.3 | 90.7 | 476.56  | 334.116   | 47.9947 | 334.116 | 47.9947 | 3042.2             | 45.4 | 1339.17 | 8.2 | 152917. | 659.6 | 2382.6 |

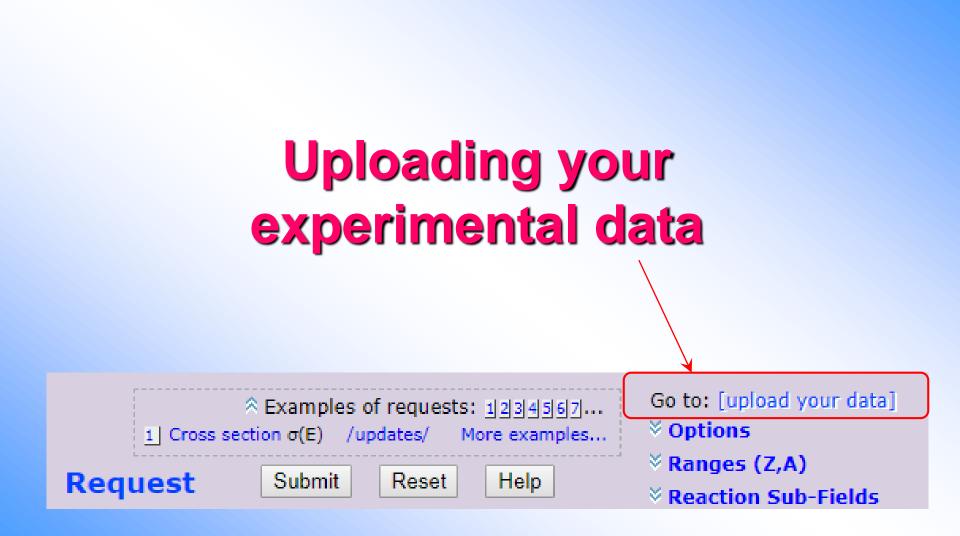
|                                                                                                                                                                             |                  |       |           | leV So       | ource: A.J.                          | Elwyn+(1       | 977), Jou                       | . Physica             | l Revie                                                              | w, Pa                                                                                   | rt C, Nuclea                                       | ar Physics                    | s, Vol.16, j | p.1744 <mark>[i</mark> | v] Origin                                       | al: <sup>6</sup> Li(d                                                                                          | ,p <sub>1</sub> ) <sup>7</sup> L                                           | i E <sub>1</sub> =0.1-1M                                                          | leV φ=                                                                  | =61.3°-46.3°                                                                                      | <del>θ</del> =105°                  | -                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------|-----------|--------------|--------------------------------------|----------------|---------------------------------|-----------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------|--------------|------------------------|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------|--------------------|
| - 0                                                                                                                                                                         | riginal          | (aire | ct.)      | detecto<br>3 | or                                   |                | Reaction<br>M1: Inci<br>M2: Tar | dent d I<br>get 6Li I | ) <sup>7</sup> Li Qv<br>M <sub>1</sub> =2.01<br>M <sub>2</sub> =6.01 | 41017<br>5123                                                                           | =4547.4keV<br>7 E1=975.0k<br>E3=4394.0             | eV                            |              |                        | Comment:                                        | by IAE<br>"Absol<br>on 6L<br>A.J.El<br>J.E.Mo<br>EXFOR:<br>X4Reac<br>LevelE                                    | A-NDS<br>ute cr<br>i at e<br>wyn, R<br>nahan,<br>T0134<br>tion:3<br>nergy: | oss sections<br>nergies belo<br>.E.Holland,<br>F.P.Mooring<br>004 Creat           | trieva<br>for (<br>)w 1 Me<br>C.N.Da<br>(, W.Ra<br>() ed: 20<br>-LI-7,1 | al System (v-<br>deuteron-indu<br>eV."<br>avids, L.Meya<br>ay Jr<br>D00-11-21 Up<br>PAR,DA; X4Po: | uced reac<br>er-Schuet<br>pdated: 2 | tions<br>zmeister, |
| be                                                                                                                                                                          | am (1            | )—,   |           |              | 9                                    | 4              | M4: Res                         |                       |                                                                      |                                                                                         | <sup>5 E₄=1128.4</sup>                             |                               | 5.3°         |                        |                                                 | <pre># Orig.Fi # Orig.Re # Orig.Ma # Orig.Th # Orig.En # Orig.Ph # Calcula # Calc.Re # Calc.Th # Program</pre> | le:<br>action<br>sses_a<br>eta:<br>:<br>:<br>:<br>ted: i<br>action<br>eta: | li6dp1\$9<br>: 6Li(d,p1<br>mu: 2.014101<br>105.0<br>145.0<br>61.3<br>nverse kinem | 9.r33<br>1)7Li<br>17, 6.0<br>975.0<br>46.3<br>atins<br>01)7Li<br>58.5   |                                                                                                   | matics)                             |                    |
| <ul> <li>C.M.</li> <li>Inverse</li> <li>Result: inverse-kinematics data presented in R33 format</li> <li>Result: inverse-kinematics data presented in R33 format</li> </ul> |                  |       |           |              |                                      |                |                                 |                       | at                                                                   | Version:<br>X4Number:<br>Source:<br>Reaction:<br>Distributi<br>Sigfactors<br>Enfactors: | 2H(6<br>ion: Ener<br>s: 1.0,<br>: 1.0,             | Elwyn+<br>Li,p1)<br>gy<br>0.0 |              | r. Phy:                | sical Review,                                   | , Part C,                                                                                                      | Nuclear I                                                                  |                                                                                   |                                                                         |                                                                                                   |                                     |                    |
|                                                                                                                                                                             |                  |       |           |              |                                      | aretector      |                                 |                       |                                                                      |                                                                                         | e=4547.4ke                                         |                               |              |                        | Units: mb<br>Composition:                       |                                                                                                                |                                                                            |                                                                                   |                                                                         |                                                                                                   |                                     |                    |
|                                                                                                                                                                             |                  |       |           |              |                                      | P              |                                 |                       |                                                                      |                                                                                         | E <sub>1</sub> =2911.8                             | keV                           |              |                        | Masses:<br>Zeds:                                |                                                                                                                |                                                                            | 1.0, 7.0<br>1.0, 3.0                                                              |                                                                         |                                                                                                   |                                     |                    |
|                                                                                                                                                                             |                  |       |           |              | 1                                    | 1              |                                 | get 2H                | -                                                                    |                                                                                         |                                                    |                               |              |                        | Qvalue: 4547.4, 0.00, 0.00, 0.00<br>Theta: 63.1 |                                                                                                                |                                                                            |                                                                                   |                                                                         |                                                                                                   |                                     |                    |
|                                                                                                                                                                             |                  |       |           |              |                                      |                |                                 |                       |                                                                      |                                                                                         | E <sub>3</sub> =5446.3<br>6 E <sub>4</sub> =2013.0 |                               |              | 3.46672r               | Data:<br>433.0                                  | 043 0                                                                                                          | .00000                                                                     | 0.0633396                                                                         | 5 (                                                                     | 0.00000                                                                                           |                                     |                    |
|                                                                                                                                                                             |                  |       |           |              |                                      |                | M4: Kes                         | idual /Li i           | M <sub>4</sub> =7.0.                                                 | 10004                                                                                   | 0 E4=2013.0                                        | κev φ=53                      | 5.0-         |                        | 543.5<br>785.4                                  |                                                                                                                | .00000                                                                     |                                                                                   |                                                                         | D.00000<br>D.00000                                                                                |                                     |                    |
|                                                                                                                                                                             | 6                | <hr/> |           |              | A9                                   |                |                                 |                       |                                                                      |                                                                                         |                                                    |                               |              |                        | 794.4<br>1093.                                  | 10 0                                                                                                           | .00000                                                                     | 0.362960                                                                          | ) (                                                                     | D.00000<br>D.00000                                                                                |                                     |                    |
| be                                                                                                                                                                          | am (1            |       |           |              |                                      |                |                                 |                       |                                                                      |                                                                                         |                                                    |                               |              |                        | 1102.                                           | .02 0                                                                                                          | .00000                                                                     | 0.710805                                                                          | i (                                                                     | 0.00000                                                                                           |                                     |                    |
|                                                                                                                                                                             |                  |       |           |              | N Y                                  |                |                                 |                       |                                                                      |                                                                                         |                                                    |                               |              |                        | 1702.<br>2009.                                  | .92 0                                                                                                          | .00000                                                                     | 2.11322                                                                           | 2 (                                                                     | D.00000<br>D.00000                                                                                |                                     |                    |
|                                                                                                                                                                             |                  |       |           |              |                                      | X              |                                 |                       |                                                                      |                                                                                         |                                                    |                               |              |                        | 2308.<br>2613.                                  |                                                                                                                | .00000                                                                     |                                                                                   |                                                                         | D.00000<br>D.00000                                                                                |                                     |                    |
|                                                                                                                                                                             |                  |       |           |              |                                      | 4              |                                 |                       |                                                                      |                                                                                         |                                                    |                               |              |                        | 2911.<br>EndData:                               |                                                                                                                | .00000                                                                     |                                                                                   |                                                                         | 0.00000                                                                                           |                                     |                    |
| -10                                                                                                                                                                         | alculat          |       | al (lab.) | . 613        | i(d,p <sub>1</sub> ) <sup>7</sup> Li | Q=4547.4       | ke)/                            |                       |                                                                      |                                                                                         | Cente                                              | r of mass                     |              |                        |                                                 |                                                                                                                |                                                                            | Inver                                                                             | se kir                                                                  | nametics                                                                                          |                                     |                    |
| #                                                                                                                                                                           | E <sub>1</sub> , | -     | σ(θ),     | φ            | σ(φ)                                 | Q=4547.4<br>E3 | E4                              | E'cm                  | θ'                                                                   | φ'                                                                                      | σ'(θ')                                             | E'1                           | E'2          | E'3                    | E'4                                             | E2"                                                                                                            | φ"                                                                         | σ"(φ")                                                                            | θ"                                                                      | σ"(θ")                                                                                            | E3"                                 | E4"                |
|                                                                                                                                                                             | keV              |       | mb/sr     | · .          |                                      |                |                                 |                       |                                                                      | · .                                                                                     |                                                    |                               |              |                        |                                                 |                                                                                                                |                                                                            |                                                                                   |                                                                         |                                                                                                   |                                     |                    |
| 1                                                                                                                                                                           |                  |       |           |              |                                      |                |                                 |                       |                                                                      |                                                                                         |                                                    |                               | 0.0633396    |                        | 0.0831837                                       | 4348.1                                                                                                         |                                                                            |                                                                                   |                                                                         |                                                                                                   |                                     |                    |
| 2                                                                                                                                                                           | 182<br>263       | 105   |           |              | 0.99946                              |                |                                 |                       |                                                                      |                                                                                         | 0.0918301 0.317601                                 |                               |              |                        |                                                 |                                                                                                                | 67                                                                         | 0.0995302                                                                         |                                                                         | 0.146473                                                                                          | 4415.3                              |                    |
| 4                                                                                                                                                                           | 265              |       |           |              | 3.42385                              |                |                                 |                       |                                                                      |                                                                                         | 0.317801                                           |                               |              |                        |                                                 |                                                                                                                |                                                                            |                                                                                   |                                                                         | 0.684576                                                                                          | 4555                                |                    |
| 5                                                                                                                                                                           | 366              |       |           |              | 6.20191                              | 4092.          |                                 |                       |                                                                      |                                                                                         |                                                    |                               |              |                        | 605.611                                         |                                                                                                                |                                                                            | 0.698637                                                                          |                                                                         | 1.72735                                                                                           | 4723.5                              | B                  |
|                                                                                                                                                                             | 369              |       |           |              | 6.29947                              |                |                                 |                       |                                                                      |                                                                                         | 0.627752                                           |                               |              |                        |                                                 |                                                                                                                |                                                                            |                                                                                   |                                                                         | 1.77102                                                                                           | 4728.3                              |                    |
| 7                                                                                                                                                                           | 570              |       |           |              | 13.434                               |                |                                 |                       |                                                                      |                                                                                         | 1.41956                                            |                               |              |                        | 624.807                                         |                                                                                                                |                                                                            |                                                                                   |                                                                         | 6.64402                                                                                           | 5041.1                              |                    |
|                                                                                                                                                                             | 673              |       |           |              | 16.3212                              | 4240.65        |                                 |                       |                                                                      |                                                                                         |                                                    |                               |              |                        | 634.499                                         |                                                                                                                |                                                                            |                                                                                   |                                                                         | 10.3753                                                                                           | 5196.4                              |                    |
|                                                                                                                                                                             | 773              |       |           |              | 17.0642                              | 4290.89        |                                 |                       |                                                                      |                                                                                         |                                                    |                               |              |                        | 643.908                                         |                                                                                                                |                                                                            |                                                                                   |                                                                         | 13.5864                                                                                           |                                     | 1510.9             |
| 10                                                                                                                                                                          | 875              | 105   | 1.69      | 47.2         | 15.6695                              | 4342.73        | 1079.67                         | 655.509               | 109.3                                                                | 70.7                                                                                    | 1.76542                                            | 491.077                       | 164.432      | 4549.4                 | 653.506                                         | 2613.2                                                                                                         | 59.2                                                                       | 2.1/612                                                                           | 36.2                                                                    | 15.4581                                                                                           | 5494.9                              | 1665.7             |

547.2 183.224 4614.91 662.916 2911.8 58.5 3.46672


34.7 29.1078

5640.4 1818.9

46.3 24.2084 4394.01 1128.39 730.425 109.5 70.5 2.77457

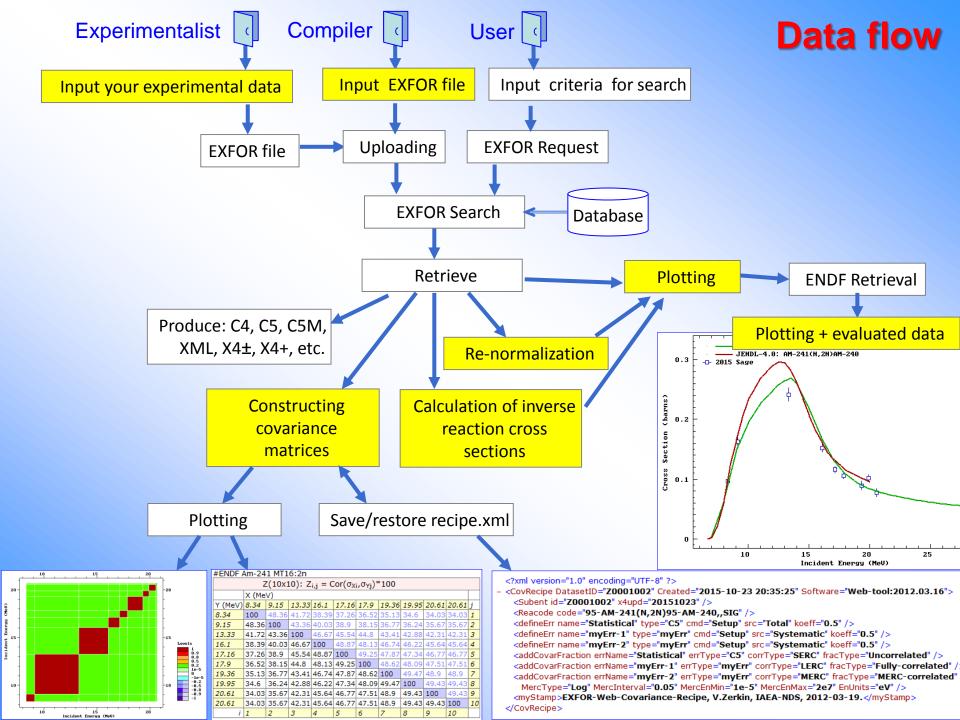

11 975 105 2.65

# Recalculation of angular distributions from EXFOR to inverse kinematics and integration with Web-IBANDL



beam 1 2 0 0 M2: Tary M3: Ejec M4: Res

### 

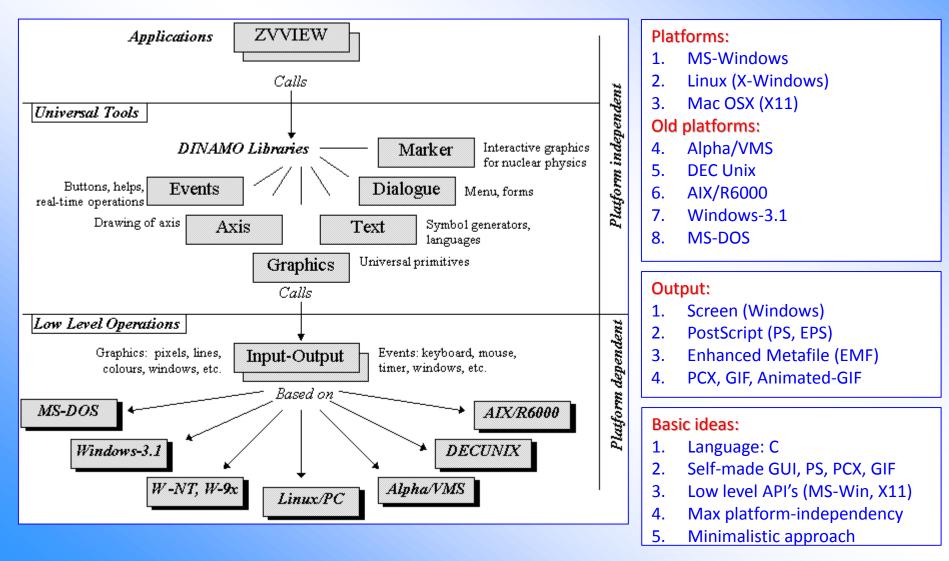



### **Uploading your experimental data** https://www-nds.iaea.org/exfor/x4data.htm

| $\leftarrow \Rightarrow G$ | ft https://www-nds.iaea.org/exfor/x4data.htm                                                                                                                                                                                 | ☆ 〓                      |
|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
|                            | Nernational Atomic Energy Agency<br>Nuclear Data Services<br>Trovided by the Nuclear Data Section                                                                                                                            | ors: India   China<br>Go |
|                            | Web tools for experimenters<br>Upload your data to EXFOR system for comparing with EXFOR and ENDF data, plotting,<br>constructing covariance matrix, calculating inverse reaction data, etc.<br>Web server: www-nds.laea.org |                          |
|                            | Required code:<br>Enter code:<br>1858<br>Gol<br>Gol                                                                                                                                                                          |                          |
|                            | Input data to Web EXFOR system                                                                                                                                                                                               |                          |
|                            | Uploading experimental data for interactive construction of covariance mat                                                                                                                                                   | rix                      |
|                            | by V.Zerkin, IAEA-NDS, 2015, ver-2015-10-23                                                                                                                                                                                  |                          |
|                            | Submit Reset                                                                                                                                                                                                                 |                          |
| Author:                    |                                                                                                                                                                                                                              |                          |
| Reaction:                  | ?                                                                                                                                                                                                                            |                          |
| Method:                    |                                                                                                                                                                                                                              |                          |
|                            | 2                                                                                                                                                                                                                            |                          |
|                            | xamples: [1] [2] [3] [4] [5]<br>lescription                                                                                                                                                                                  |                          |
| x                          | y Δy input your data below (copy/paste)                                                                                                                                                                                      |                          |
|                            |                                                                                                                                                                                                                              |                          |
|                            |                                                                                                                                                                                                                              |                          |
|                            | Submit Reset                                                                                                                                                                                                                 |                          |
|                            | ning: Viktor Zerkin, NDS, International Atomic Energy Agency (V.Zerkin@iaea.org)<br>10/23/2015 19:29:19                                                                                                                      |                          |

## **Uploading your experimental data**

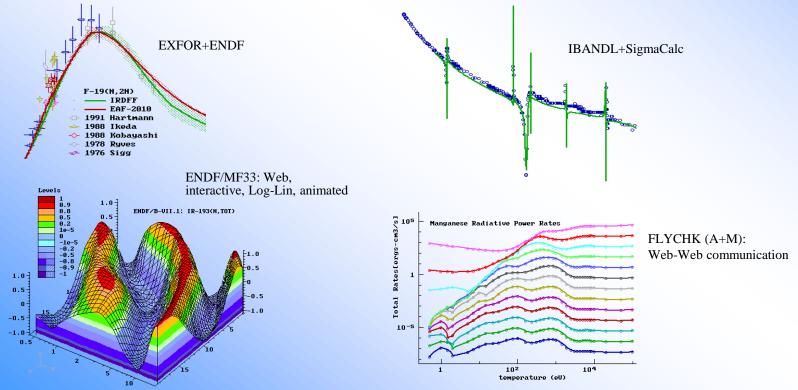
|              |                                         |            |              | Submit           | Re        | set                 |            |                     |       |                     |      |                     |                  |          |                       |
|--------------|-----------------------------------------|------------|--------------|------------------|-----------|---------------------|------------|---------------------|-------|---------------------|------|---------------------|------------------|----------|-----------------------|
| Author       | : C.S                                   | Sage,      | at al.       |                  |           |                     |            |                     |       |                     |      |                     |                  |          |                       |
|              |                                         |            |              | 5-AM-240,,S      | IG        |                     |            | ?                   |       |                     |      |                     |                  |          |                       |
|              |                                         |            | 4 I(IN,2IN)5 | //////-240,,0    | 10        |                     |            |                     |       |                     |      |                     |                  |          |                       |
| Metho        | d: TO                                   | F          |              |                  |           |                     |            | ?                   |       |                     |      |                     |                  |          |                       |
|              | Exam<br>ata descr                       |            | [1] [2] [3]  | [4] [5]          |           |                     |            |                     |       |                     |      |                     |                  |          |                       |
|              | Uncert                                  | tanties    | Δy: nn       | nn++ ; n         | n=7       |                     |            |                     |       |                     |      |                     |                  |          |                       |
|              | ar: <u>{X}</u>                          | _          | {Y}          | {ΔY}1            | o <b></b> | {ΔY}2               |            | {ΔY}3               |       | ΔY}4                |      | {ΔY}5               | {ΔY}6            | -        | {ΔY}7                 |
| Head         |                                         | •<br>• • • | DATA<br>mb 🔻 | ERR-T<br>per-cer | _         | MONIT-E<br>per-cent |            | ERR-1<br>per-cent V |       | ERR-2<br>ber-cent ▼ | •    | ERR-7<br>per-cent V | ERR-8<br>per-cen | <b>T</b> | ERR-3 V<br>per-cent V |
| Uni<br>Typ   |                                         | v ·        | Table ▼      | Table            |           | Table V             |            | Table ▼             | _     | Table ▼             |      | Table V             | Table V          |          | Const ▼               |
| Valu         | · • · · · · · · · · · · · · · · · · · · |            |              |                  | _         |                     |            |                     |       |                     |      |                     |                  |          | 1.2                   |
|              |                                         |            |              |                  |           |                     |            |                     |       |                     |      |                     |                  |          |                       |
| X            | у                                       |            | Δy           |                  |           | elow (copy          |            |                     |       | _                   |      |                     |                  |          |                       |
| 8.34<br>9.15 | 96.8<br>162.9                           | 6.5<br>5.7 | 1.9<br>1.9   | 5                | 1         | .9                  | .3         |                     |       | <b>A</b>            |      |                     |                  |          |                       |
| 13.33        | 241.8                                   | 4.6        | 1.6          | 2.5              | 1         | .4                  | .3         |                     |       |                     |      |                     |                  |          |                       |
| 16.1         | 152.4<br>116.1                          | 4.6<br>4.4 | 2            | 2.1              | 1         | .6<br>.6            | .3         |                     |       |                     |      |                     |                  |          |                       |
| 17.16        | 105.7                                   | 4.4        | 2.2          | 1.3              | .7        | .7                  | .3         |                     |       |                     |      |                     |                  |          |                       |
| 19.36        | 89.5                                    | 8.2        | 3.1          | 6.3              | 2         | .6                  | 1.3        |                     |       | -                   |      |                     |                  |          |                       |
| 19.95        | 102.1                                   | 5.8<br>8.8 | 4.1<br>5.4   | 1.4              | 1         | .6                  | 1.4<br>1.4 |                     |       | ·                   |      |                     |                  |          |                       |
| 20.01        |                                         | 0.0        | 214          |                  | 1.0       |                     | 114        |                     |       |                     |      |                     |                  |          |                       |
|              |                                         |            |              | Submit           | Re        | set                 |            |                     |       |                     |      |                     |                  |          |                       |
|              |                                         |            |              | Submit           |           |                     |            |                     |       |                     |      |                     |                  |          |                       |
|              |                                         |            |              | C Submit         | In new w  | muow                |            |                     |       |                     |      |                     |                  |          |                       |
|              |                                         |            |              |                  |           |                     |            |                     |       |                     |      |                     |                  |          |                       |
| <u></u>      |                                         |            |              |                  |           |                     |            |                     |       |                     |      |                     |                  |          |                       |
|              |                                         | Disp:      | -            |                  | r Autho   |                     |            | Energy              | range | ,eV Po              | ints | 8 F                 | eference         |          |                       |
| <b>a</b> o 1 | ) 🔳                                     | 0          | 95-AM-24     | l (N, 2N) 95     | -AM-24    | D,,SIG              | C4:        | MF3 MT1(            | 6     |                     |      |                     |                  |          |                       |
| Qu           | antity                                  | /: [C      | S] Cross     | section          |           |                     |            |                     |       |                     |      |                     |                  |          |                       |
|              | 1                                       | + uj       | ploaded      | X4 X4± C         | ov 201    | 6 C.Sag             | ge+        |                     | 8.34  | e6 2.061            | le7  | 9                   | + W,S            | AGE,20   | 160622                |
|              | 2 📃                                     | + i        | X4 X4+       | X4± T4 (         | 20:       | 16 A.Ka             | lamara     | +                   | 1.00  | e7 1.               | 71e7 | 4                   | [pdf]+ J,1       | PR/C,9   | 3,014610,2016         |




# Plotting on Web with Web-ZVView

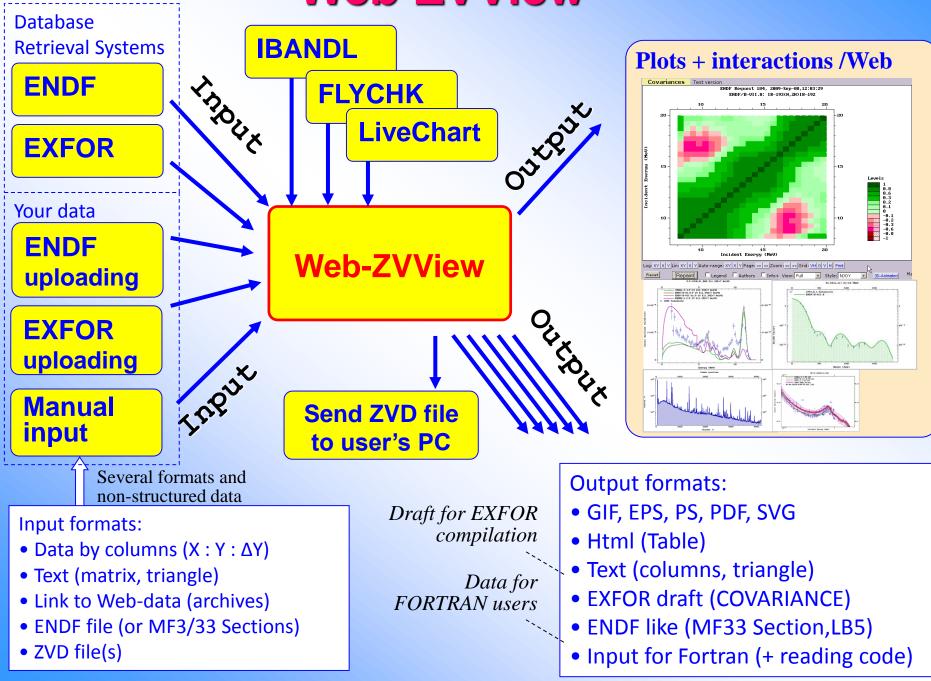
# **ZVView/DINAMO: interactive plotting system**

ZVView is a multi-platform program designed for nuclear reactions data evaluators to perform efficient interactive visual analysis of cross section data retrieved from EXFOR and ENDF libraries. Kiev-Vienna, **1993-2018** 


### http://www-nds.iaea.org/public/zvview/



# ZVView: interactive plotting program for display and analysis of nuclear data


Features:

- All features inherited from DINAMO;
- Integrated with Empire, EndVer, EXFOR CD-ROMs.
- Works on Web: integrated with EXFOR-ENDF database retrieval systems, IBANDL, SigmaCals, LiveChart: can read data from remote archives, can be called as part of external Web service, etc.
- Reads nuclear data formats: TABLE/XREF, ENDF-MF3/MF40/MF33(Law5);
- Can read data from text files(columns):  $\{y\}$ ;  $\{x \ y \ dy\}$ ;  $\{x \ y \ dy \ dx\}$ ;  $\{x \ y \ dx\}$ ;  $\{x \ y \ dy \ dx\}$ ;  $\{x \ y \ dx\}$ ;  $\{x \$
- Understands ENDF interpolation laws, can display ratios to selected curve
- Can do some least squared fitting, displays  $\chi^2$  (EXFOR-ENDF)
- Can work with authors: filter data, select, legend etc.



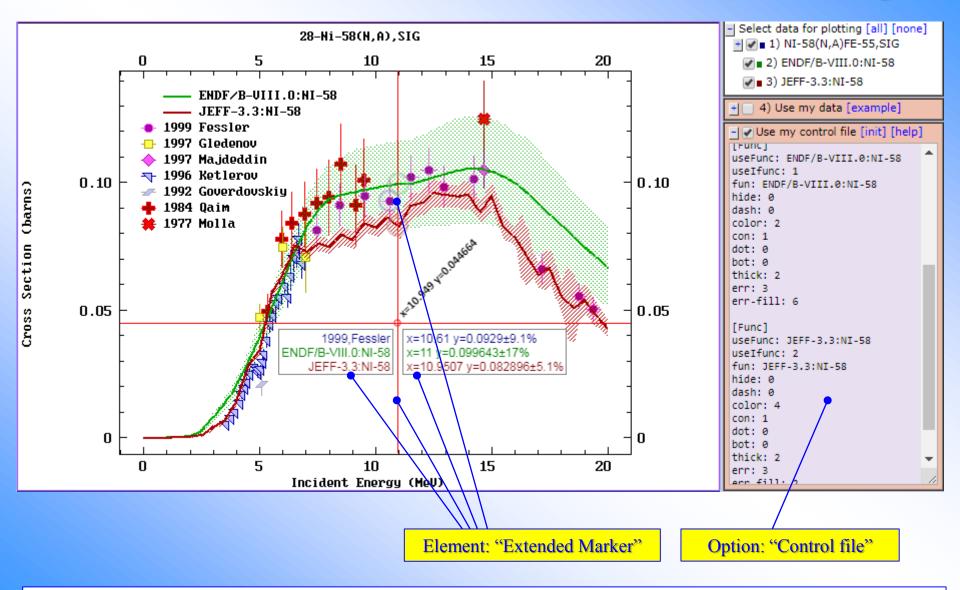


# Web-ZVView



# **Useful features of Web-ZVView**

Useful features of Web-ZVView:


- copy/paste data to plots (inside Web session) between: EXFOR-ENDF-IBANDL-MyPlot-etc.
- insert text of ZVD file to the form as "my data" to compare them to data from databases
- output of plotted data in several formats (can be used for reformatting data, e.g. free-text matrix to EXFOR and ENDF)
- "manual" options: dimensions, distortions, image corrections
- generates output: PS, EPS, PDF
- etc.

### **Example of interactive Web ZVView plotting**

Select data for plotting **Cross Section** -| Select data for plotting [all] [none] ENDF Request 22, 2018-Oct-22,13:22:20 - 1) 13-AL-27(N,TOT),,SIG EXFOR Request: 22/1, 2018-Oct-22 13:22:00 1993 R.W.Finlay, 13569008 10-4  $10^{-2}$  $10^{2}$ 1988 J.Franz, 22117005  $10^{2}$  $10^{2}$ 1987 M.Ohkubo 21926004 ENDF/B-VIII.0: AL-27(N,TOT) 1987 M.Ohkubo 21926003 JEFF-3.3: AL-27(N,TOT) 50 50 — JENDL-4.0: AL-27(N.TOT) 1955 M.Mazari, 30037003 2) ENDF/B-VIII.0: AL-27(N,TOT) 1993 Finlay 1988 Franz 3) JEFF-3.3: AL-27(N,TOT) 20 20 1987 Ohkubo 4) JENDL-4.0: AL-27(N,TOT) 1987 Ohkubo (barns) 1955 Mazari -| 5) Use my data [example] 10 10 Columns: x y [dy [dx]] 1.5 2.336 0.384 2.788 0.268 5 5 Section 2.33 2.96 0.4 2.399 0.283 2.5 0.197 2.424 2 2 2.496 0.065 2.222 0.065 5.06 Cross 2.304 0.1659 5.5 0.055 5.6 2,091 1 1 Type: 🤍 Curve Points (interest 0.5 Title: My data 0.5 Default: basic units! (eV, barn, etc.) Multiply by: X: 1e6 Y: 1e-3 0.20.2 + Use my control file [init] [help] **Plotting options** See: plotted data (835Kb) 10-4  $10^{2}$ 10 Incident Energy (MeV) Log: XY X YLin: XY X YAuto-range: XY X YPage: >> << Zoom: <> >< Grid: VH 0 V HPts: Txt Box PL Print Add your data Plotting options: [+] Clipboard: Copy Pastel Reset Legend Authors Info+ PostScript Repaint to the plot Split:0 1:xy;2:y Marker: Plot data or ratio:0 0:data; 1:ratio to dataset-1; 2:ratio to 2-nd, etc. Shift legend:x=10 y=10 Data for plotting: ZVD (783Kb), send to ZVView; download ZVView; upload and plot your ZVD file

**Copy/Paste** 

# **Recent news in Web-ZVView plotting**

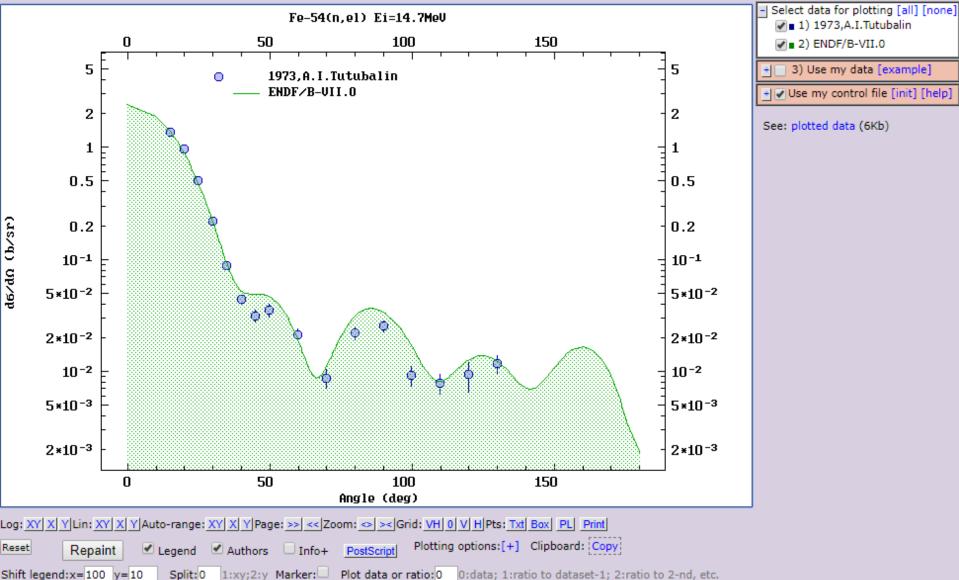


Implementation: ZVView  $\rightarrow$  JSON  $\rightarrow$  AJAX  $\rightarrow$  HTML5

### **Plot your data: MyPlot** http://www-nds.iaea.org/exfor/myplot.htm

Plot my data on Web

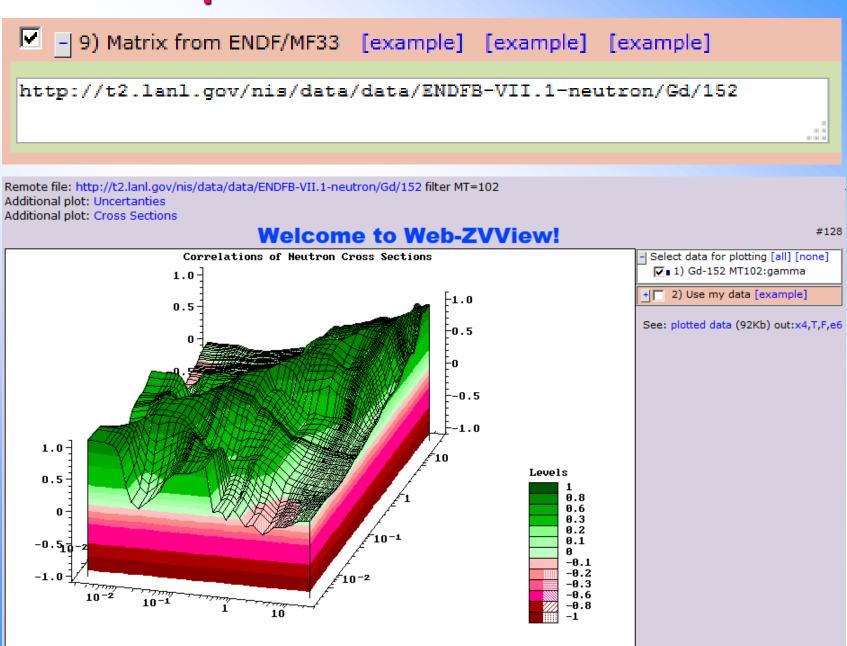
Uploading data for interactive plotting by Web-ZVView by V.Zerkin, IAEA-NDS, 2009-2018, ver-2018-10-19


|                                    | S             | Submit Reset                      |
|------------------------------------|---------------|-----------------------------------|
| 🗌 1) ZVD file:                     | Choose File   | No file chosen                    |
| 2) ZVD file:                       | Choose File   | No file chosen                    |
| + Examples/Help                    |               |                                   |
|                                    | le] [example] |                                   |
| Χ Υ ΔΥ                             | ΔΧ            | - Graph Parameters                |
| 15 1.39 0.096<br>20 0.982 0.068    |               | ▲ Drawing: Scatter ▼ Fill: None ▼ |
| 25 0.506 0.037                     |               | Symbol: Circle V Color: Blue V    |
| 30 0.223 0.013                     |               | Line: Solid   Thickness: 1        |
|                                    |               | Errors: Bars V Error-Fill: None V |
|                                    |               | Multiply X: 1 Y: 1                |
|                                    |               | Label: 1973, A.I. Tutubalin       |
| 🗹 🔄 4) Array Y(X)                  |               |                                   |
| Χ Υ ΔΥ                             | ΔX            | - Graph Parameters                |
| 180 0.0019079<br>175.647 0.0036046 |               | ▲ Drawing: Lines ▼ Fill: ▼        |
| 173.94 0.0050829                   |               | ▼ Symbol: Point ▼ Color: Green ▼  |
| 173.549 0.0054489                  |               | Line: Solid Thickness: 1 T        |
|                                    |               | Errors: Bars V Error-Fill: None V |
|                                    |               | Multiply X: 1 Y: 1                |
|                                    |               | Label: ENDF/B-VII.0               |



# Web-ZVView

#33


### Welcome to Web-ZVView!



# **Input ENDF section of MF33**

|                |                                                              | ſ                         |                                    |              |         |               |                          | Correlations of Neutron Cross Sections |
|----------------|--------------------------------------------------------------|---------------------------|------------------------------------|--------------|---------|---------------|--------------------------|----------------------------------------|
|                |                                                              |                           | Submit                             | Reset        |         |               | :                        | 1.0                                    |
| 🗆 1) Z\        | /D file:                                                     | Browse                    | No file selected                   | d.           |         |               | 1                        | 0.5                                    |
|                |                                                              |                           |                                    |              |         |               |                          | 0.5                                    |
| 🗆 2) Z\        | /D file:                                                     | Browse                    | No file selected                   | ٥.           |         |               |                          |                                        |
| - Evami        | ples/Help                                                    |                           |                                    |              |         |               | AT FA                    | -0.5                                   |
|                | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                       |                           |                                    |              |         |               |                          |                                        |
| 🗌 🕂 3)         | ) Array Y(X) [example]                                       |                           |                                    |              |         |               | 1.0                      | <b>F10</b>                             |
|                | ) Array Y(X)                                                 |                           |                                    |              |         |               | 0.5                      |                                        |
| _              |                                                              |                           |                                    |              |         |               | 0                        |                                        |
| · + 5)         | ) Array Y(X)                                                 |                           |                                    |              |         |               |                          | -10 <sup>-1</sup>                      |
|                | ) Matrix Z(X,Y) Dimension: X:                                | 10 1.10 7.1               | <ol> <li>fauralal</li> </ol>       |              |         |               | -1.0<br>10 <sup>-2</sup> |                                        |
|                |                                                              |                           |                                    |              |         |               | 10-2 10-1                | 1 10                                   |
| L + 7)         | ) Matrix Z(X,Y) Dimension: X:                                | 31 Y:31 Z:4               | 96 [example]                       |              |         |               |                          |                                        |
| 🗹 - 8)         | ) Matrix from ENDF/MF33 [ex                                  | ample]                    |                                    |              |         |               |                          |                                        |
| 2 2074         | 00+4 7.328890+1 0                                            | 0                         | 0                                  | 1332233      | 2 1     | - Graph Paran | neters                   |                                        |
|                | 00+0 0.000000+0 0                                            | 2                         | 0                                  | 1332233      | 2 2     | View: Full    | -1                       |                                        |
|                | 00+0 0.000000+0 1<br>00-5 5.000000+3 7.000000+3 1            | 5                         | 496                                | 31332233     | 2 3     | Color: Brown  |                          |                                        |
|                | 00+4 1.000000+5 2.000000+5 4                                 |                           |                                    | 000+5332233  | 2 5     |               |                          |                                        |
| 1.0000         | 00+6 1.200000+6 1.500000+6 1                                 |                           |                                    | 0000+6332233 | 2 6     | Label:        |                          |                                        |
| 3.0000         | 00+6 4.000000+6 5.000000+6 6<br>00+6 1.000000+7 1.200000+7 1 | .000000+6 7<br>400000+7 1 | .000000+6 8.000<br>.600000+7 1.800 | 0000+6332233 | 2 7 2 8 | MT: all       |                          |                                        |
|                |                                                              |                           |                                    |              |         |               |                          |                                        |
| 🗌 🖬 9)         | ) Matrix from ENDF/MF33 [ex                                  | ample] [ex                | ample] [exan                       | nple]        |         |               |                          |                                        |
|                | 0) Matrix from ENDF/MF33: up                                 |                           |                                    |              |         |               |                          |                                        |
| <u>т 🕂 — ,</u> | ) Matrix from ENDF/MF33: up                                  | load your loo             | ai ENDE file                       |              |         |               |                          |                                        |
| Set defai      | ult plotting parameters: y(x)                                | ): CS DA DE               | DAE z(x,y): CO                     | DV/SIG       |         |               |                          |                                        |
| - Comn         | non Plotting Parameters                                      |                           |                                    |              |         |               |                          |                                        |
| Title          | Correlations of Neutron Cross Sectio                         | ns                        |                                    |              |         |               |                          |                                        |
| X-axis         | Incident Energy                                              | » Scale: A                | Auto 👻                             |              |         |               |                          |                                        |
| Y-axis         | Incident Energy                                              | » Scale: A                | Auto 👻                             |              |         |               |                          |                                        |
| X-units        | 1e6, (MeV)                                                   | »                         |                                    |              |         |               |                          |                                        |
| Y-units        | 1e6, (MeV)                                                   | »                         |                                    |              |         |               |                          |                                        |
| View           | 3D-0 🔻                                                       |                           |                                    |              |         |               |                          |                                        |
| Style          | ▼ YOUN                                                       |                           |                                    |              |         |               |                          |                                        |

# **Input link to Web address**



# **Not covered topics**

- 1. Text search in EXFOR (~Google)
- 2. Native EXFOR plotting
- 3. Calculating CS ratios between different EXFOR datasets
- 4. Constructing covariance matrix from EXFOR uncertainties on Web
- 5. Reconstruction of ENDF elemental reaction data in EXFOR-ENDF Web system
- 6. MyEndf system for ENDF evaluators

# Thank you.

Citing of the materials of this presentation should be done with proper acknowledgement of the IAEA and author.