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General
• Nuclear reactions are the means by which we study 

nuclear properties- both structure and dynamics

– Inelastic scattering to low-lying states to extract spins
– Reactions in the resonance region to study resonances and spins-

parities
– Transfer and knockout reactions
– Coulomb excitation
– Heavy ion reactions – fusion evaporation reactions to study 

structure properties of neutron-deficient nuclei
– Fission and deep inelastic scattering to study nuclear structure or 

neutron-rich nuclei
– Photonuclear reactions and Nuclear Resonance Fluoresence to 

study the E/M response of the nucleus (GDR, pygmy, etc)



General cont’d
• Nuclear reactions are studied because we want to 

know how ions interact with nuclear matter and how 
to produce nuclear species at different energies and 
angles
– Nuclear reactor inventories – production of neutrons, fission 

products, delayed neutrons
– Fusion plasma erosion of structural material
– Surface and bulk analysis of materials
– Production of radioisotopes for medical applications
– Radiation transport in materials 
– Production of nuclei in the universe: nucleosynthesis 

(astrophysical reaction rates) etc



Example: Nucleosynthesis 
data needs
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Applications:
Projectiles:  γ, n, p, d, t, 3He, α, fission                             

light ions (Be, Li, C)
Incident energies: up to ~200 MeV



Nuclear reactions
a + A  b + B

A(a,b)BTarget nucleus

Projectile-
Incident beam Ejectile-

Detected particle

Residual nucleus-
Undetected part

Q-value = masses (before) – masses (after)
= Ma + MA – MB –Mb

Q-value > 0 : exothermic
Q-value < 0 : endothermic
Q = 0          : elastic scattering



Thresholds of reaction 
channels

Depend on 
Q-value 



Masses
AME 2016 (Wang et al, CJP 41 (2017)): 
2498 experimentally known masses + 938 extrapolated = 
3436 recommended masses

Nucleosynthesis calculations require knowledge
of 8000 masses of 0<Z<110 nuclides



Masses: global models



Global mass models: extrapolation to 
unknown region



Cross section 
• Probability of a projectile to ‘hit’ a target nucleus and 

interact with it (scatter, break up, transfer a particle 
etc)

• Formal definition (Fermi Golden Rule)
Probability = n•x•σ

n = # nuclei per volume; x = thickness; σ = effective area 
of nucleus for reaction

• σ (units = 10-24 cm2 or 1 barn) – in nuclear physics 
mb (10-3 b) or μb (10-6 b)



Types of measured cross sections
• Total cross sections σT (in 4π)

• Angular distribution dσ/dΩ (in dΩ)

• Double-differential cross sections d2σ/dEdΩ
(emission spectrum: in dΩ with E’)

E’



Reaction mechanisms

• Elastic scattering
• Inelastic scattering
• Transfer reactions 

(stripping, pickup)
• Knock-out
• Capture
• Break-up

Direct reactions: 
10-22 s

Compound Nucleus reactions:
10-18 s

T T CN

• Resonance scattering
• Evaporation
• Fission

Depending on incident energy



Angular distributions dσ/dΩ

90 1800

Direct: extract spins-parities

Compound



Reaction mechanisms I

Direct reactions: 10-22 s Compound Nucleus reactions:
10-18 s

T T CN

Preequilibrium reactions

• Elastic scattering
• Inelastic scattering
• Capture
• Transfer reactions 

(stripping, pickup)
• Knock-out
• Break-up

• Inelastic scattering
• Transfer reactions 

(stripping, pickup)
• Knock-out
• HI reactions

• Resonance scattering
• Evaporation (incl. 

radiative capture)
• Fission

Depending on incident energy

Above ~ 10 MeV 
Incident energy



Reaction mechanisms II

Direct reactions: 10-22 s Compound Nucleus reactions:
10-18 s

T T CN

Preequilibrium reactions:
exciton model

• Elastic scattering
• Inelastic scattering
• Capture
• Transfer reactions 

(stripping, pickup)
• Knock-out
• Break-up

• Inelastic scattering
• Transfer reactions 

(stripping, pickup)
• Knock-out

• Resonance scattering
• Evaporation (incl. 

radiative capture)
• Fission

Depending on incident energy

Above ~ 10 MeV



Angular distributions dσ/dΩ

90 1800

Direct: extract spins-parities

Compound Preequilibrium



Reaction Models
d2 σ

/d
Ed

ΩStatistical models:
Hauser Feshbach
Weisskopf-Ewing

Distorted-Wave Born 
Approximation (DWBA)
Plane-Wave Impulse 
Approximation (PWIA)-HE
Coupled-Channels 
approximations 
Direct capture models

Exciton models: cluster exciton, hybrid exciton, 
geometry dependent exciton, cascade exciton
Collective models (TUL)
QM model (FKK)



Slow neutron reactions
Cross sections for neutrons 
at thermal energies (0.025 eV)
follow 1/v law

Coulomb barrier hinders 
proton-induced reactions 
at very low energies (<1 MeV)

Problem for Nuclear 
Astrophysics:
Cross sections are 
extrapolated
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Cross section calculations
• Depending on incident energy more than one 

reaction channel may be open

• Use different models to describe reaction channels at 
different energies

• Models make use of parameters that have to be 
adjusted to experimental data

• Independent experimental information can be used to 
constrain the parameters



Compound nucleus reactions
Statistical model: excitation to overlapping states

ΤαΑ

TbB



Ingredients of HF cross 
sections



Photon Strength Function

(E0, J0, π0) (Ef, Jf, πf)

From (γ,abs), (γ,xn): From (γ,γ), charged-particle 
reactions, average resonance 
captures𝜎𝜎 𝐸𝐸𝛾𝛾 = 3𝐸𝐸𝛾𝛾(𝜋𝜋ℏ𝑐𝑐)2𝒇𝒇(𝑬𝑬𝜸𝜸)
𝒇𝒇 𝑬𝑬𝜸𝜸,𝑻𝑻 → 𝚪𝚪(𝑬𝑬𝜸𝜸,𝑻𝑻)

Temperature



Photon Strength Function



Empirical Photon Strength 
Functions



Empirical Photon Strength 
Functions



Semi-microscopic PSF
HFB+ QRPA (Goriely et al.)

c/o: S. Goriely



Low-energy limit of Photon Strength 
Functions

c/o: S. Goriely

Impact on Total Radiative 
Capture Width <Γγ>



Low-energy limit of Photon Strength 
Functions

c/o: S. Goriely

Impact on Total Radiative 
Capture Width <Γγ>Models of PSFs have to be fine-

tuned or tested against other
independent data



Compound Nucleus:
R-matrix theory

• Nucleus excited to resolved resonance states

• R-matrix theory to describe individual resonances and non-
resonant background between them

• Describes the asymptotic wavefunctions outside a fixed radius, R 
≥ a in terms of pole energies ep and reduced width amplitudes γnp
for each channel n and pole p

- ep taken from nuclear structure (ENSDF) and fitted
- γnp taken from nuclear structure (ENSDF) and fitted

In practice sum over 
finite poles



Compound nucleus: 
Resonances

σ0

Γ

ER

ep ER
γnp Γ

single resonance:

𝜎𝜎~
Γ

(𝐸𝐸− 𝐸𝐸𝑅𝑅)2 + (Γ/2)2

Level distance: D
Level width Γ:

Resolved:  D>Γ
Continuum: D<Γ



R-matrix calculations

c/o: I. Thompson



c/o: I. Thompson

R-matrix fit to α-elastic scattering on 3He 
and proton elastic scattering on 6Li



Evaluation of nuclear cross 
sections



Evaluation of nuclear cross 
sections



Evaluation methodology
• Compile available exp. data for a specific incident 

particle on a target nucleus up to energy of interest –
include all data in all open reaction channels

• Assess exp. data: identify outliers; adopt final 
datasets – subjective

• Fit cross sections (total, angular distributions, double-
differential) in open channels – subjective

• Provide recommended cross sections and 
associated uncertainties (statistical, covariances)



Different evaluations

Green: ENDF/B-VIII.0
Grey: JENDL-4.0



Types of evaluation
• Based on nuclear models

model parameter fits to data
cross-section uncertainties: 
propagation of parameter uncertainties

• Based on cross section space
initial cross section (prior)
variation of cross sections to fit the data

• Cubic-spline fit



Types of evaluation
• Based on nuclear models

model parameter fits to data
cross-section uncertainties: 
propagation of parameter uncertainties

• Based on cross section space
initial cross section (prior)
MC variation of cross sections
cross section fits to data

• Cubic-spline fit

Example of cubic-spline fit



Uncertainties
• Mean:
• Variance:
• Standard deviation:

• Covariance: 𝑐𝑐𝑐𝑐𝑐𝑐 𝑥𝑥, 𝑦𝑦 = 𝜎𝜎𝑥𝑥𝑥𝑥2 = ∑(𝑥𝑥𝑖𝑖−𝜇𝜇)(𝑥𝑥𝑖𝑖−𝜈𝜈)
𝑁𝑁−1

for𝑁𝑁 = 2: 𝑉𝑉𝑥𝑥𝑥𝑥=
𝜎𝜎𝑥𝑥2 𝜎𝜎𝑥𝑥 ,𝑥𝑥

𝜎𝜎𝑥𝑥,𝑥𝑥 𝜎𝜎𝑥𝑥2

• Correlations: 𝜚𝜚𝑥𝑥𝑥𝑥 = 𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥, 𝑦𝑦)/𝜎𝜎𝑥𝑥𝜎𝜎𝑥𝑥
measure of the degree to which two variables move 
together :

-1 to +1: 0 means they are not related

spread of the data of 
cross sections

How two variables change together:
Positive (+): move together
Negative (-): move in opposite directions

mean cross section
# iterations

ex: cross sections at 
two different energies

Covariance matrix



Fitting data: uncertainty propagation

• σ = f(x1,x2,…xN)

• 𝛼𝛼𝑖𝑖 = 𝜗𝜗𝜗𝜗
𝜗𝜗𝑥𝑥𝑖𝑖

→ A

• Mean �𝜎𝜎 = 𝑓𝑓(𝜇𝜇, 𝜈𝜈, … )

• Uncertainty propagation:  

Vσ = AVx AT

Total σ uncertainty
variance-covariance matrix



Uncertainties
• Multivariate data: σ = f(p1,p2,..pN)
Need to calculate mean vector (mean values) and 
variance-covariance matrix (diagonal – off 
diagonal)

Experimental : statistical errors (diagonal) and systematic errors 
(off diagonal)

Parameter uncertainties when adjusting model parameters (αi, αj, 
…) to data: 𝜗𝜗2/𝜗𝜗𝑝𝑝𝑖𝑖𝜃𝜃𝑝𝑝𝑗𝑗

Cross section uncertainties when adjusting cross sections to data: 
cov(δσi,δσj)

ex: energies, angles



Experimental covariance matrix: EXFOR

input all possible 
uncertainties
statistical & systematic

estimate correlations 
among uncertainties i and 
j (where diagonal i=j 
means statistical and i≠j
means off-diagonal i.e. 
systematic uncertainties)

from correlation matrix 
calculate covariance

See V. Zerkin’s lecture



Example: R-matrix fit

c/o: S. Kunieda

Uncertainty for 6Li(p,α)3He



Example cont’d

c/o: S. Kunieda

• Off-diagonal correlations are reduced
• Strong correlations at lower and higher energies

Correlation matrix for 6Li(p,α)3He

fit



To summarize:

Compilation

Archival

Evaluation

Verification/
Validation

Dissemination

Model/cross section fits
Least Squares/Bayesian 
inference
Cross sections & Covariances

Benchmark differential cross 
sections against integral 
measurements

ENDF/B-VIII, JEFF, JENDL



Thank you!

Presenter
Presentation Notes
Thank you!
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