

Nuclear Reactions for Applications

Paraskevi (Vivian) Dimitriou Nuclear Data Section, International Atomic Energy Agency, Vienna, Austria

General

- Nuclear reactions are the means by which we study nuclear properties- both structure and dynamics
 - Inelastic scattering to low-lying states to extract spins
 - Reactions in the resonance region to study resonances and spinsparities
 - Transfer and knockout reactions
 - Coulomb excitation
 - Heavy ion reactions fusion evaporation reactions to study structure properties of neutron-deficient nuclei
 - Fission and deep inelastic scattering to study nuclear structure or neutron-rich nuclei
 - Photonuclear reactions and Nuclear Resonance Fluoresence to study the E/M response of the nucleus (GDR, pygmy, etc)

General cont'd

- Nuclear reactions are studied because we want to know how ions interact with nuclear matter and how to produce nuclear species at different energies and angles
 - Nuclear reactor inventories production of neutrons, fission products, delayed neutrons
 - Fusion plasma erosion of structural material
 - Surface and bulk analysis of materials
 - Production of radioisotopes for medical applications
 - Radiation transport in materials
 - Production of nuclei in the universe: nucleosynthesis (astrophysical reaction rates) etc

Example: Nucleosynthesis data needs

General cont'd

 Nuclear reactions are studied because we want to know how ions interact with nuclear matter and how to produce nuclear species at different energies and angles

> Applications: Projectiles γ, n, p, d, t, ³He, α, fission light ions (Be, Li, C) Incident energies: up to ~200 MeV

rates) etc

Nuclear reactions

$a + A \rightarrow b + B$

Q-value = masses (before) – masses (after) = $M_a + M_A - M_B - M_b$

Q-value > 0 : exothermic Q-value < 0 : endothermic Q = 0 : elastic scattering

Thresholds of reaction channels

Depend on Q-value

Fig. 4-5 Excitation functions for proton-induced reactions on ⁶³Cu. [From J. W. Meadows, *Phys. Rev.* 91, 885 (1953).]

Masses

AME 2016 (Wang et al, CJP 41 (2017)): 2498 experimentally known masses + 938 extrapolated = 3436 recommended masses

Nucleosynthesis calculations require knowledge of 8000 masses of 0<Z<110 nuclides

Masses: global models

Macroscopic-Microscopic Approaches

Liquid drop model (Myers & Swiateki 1966) Droplet model (Hilf et al. 1976) FRDM model (Moller et al. 1995, 2012) KUTY model (Koura et al. 2000) Weizsäcker-Skyrme model (Wang et al. 2011)

Approximation to Microscopic models

Shell model (Duflo & Zuker 1995) ETFSI model (Aboussir et al. 1995)

Mean Field Model

Hartree-Fock-BCS model (2000) Hartree-Fock-Bogolyubov model (2010) Relativistic Hartree-Bogolyubov

Global mass models: extrapolation to unknown region

Cross section

- Probability of a projectile to 'hit' a target nucleus and interact with it (scatter, break up, transfer a particle etc)
- Formal definition (Fermi Golden Rule)
 Probability = n•x•σ
- n = # nuclei per volume; x = thickness; $\sigma =$ effective area of nucleus for reaction
- σ (units = 10⁻²⁴ cm² or 1 barn) in nuclear physics mb (10⁻³ b) or μb (10⁻⁶ b)

Types of measured cross sections

- Total cross sections σ_T (in 4π)
- Angular distribution $d\sigma/d\Omega$ (in $d\Omega$)
- Double-differential cross sections $d^2\sigma/dEd\Omega$ (emission spectrum: in $d\Omega$ with E')

Reaction mechanisms

- Transfer reactions (stripping, pickup)
- Knock-out
- Capture
- Break-up

Compound Nucleus reactions: 10⁻¹⁸ s

- Resonance scattering
- Evaporation
- Fission

Angular distributions $d\sigma/d\Omega$

Reaction mechanisms I

Depending on incident energy

Incident energy

Direct reactions: 10⁻²² s Preequilibrium reactions Inelastic scattering Elastic scattering Transfer reactions Inelastic scattering (stripping, pickup) Capture Knock-out Transfer reactions HI reactions (stripping, pickup) Knock-out Break-up Above ~ 10 MeV

Compound Nucleus reactions: 10^{-18} s

- Resonance scattering
- Evaporation (incl. radiative capture)
- Fission

Reaction mechanisms II

Depending on incident energy

Direct reactions: 10-22 s

- Elastic scattering
- Inelastic scattering
- Capture
- Transfer reactions (stripping, pickup)
- Knock-out
- Break-up

Preequilibrium reactions: exciton model

- Inelastic scattering
 - Transfer reactions (stripping, pickup)
- Knock-out

•

Above ~ 10 MeV

Compound Nucleus reactions: 10⁻¹⁸ s

- Resonance scattering
- Evaporation (incl. radiative capture)
- Fission

Angular distributions $d\sigma/d\Omega$

Reaction Models

Slow neutron reactions

Cross sections for neutrons at thermal energies (0.025 eV) follow 1/v law

Coulomb barrier hinders proton-induced reactions at very low energies (<1 MeV)

Problem for Nuclear Astrophysics: Cross sections are extrapolated

Cross section calculations

- Depending on incident energy more than one reaction channel may be open
- Use different models to describe reaction channels at different energies
- Models make use of parameters that have to be adjusted to experimental data
- Independent experimental information can be used to constrain the parameters

Compound nucleus reactions

Statistical model: excitation to overlapping states

Ingredients of HF cross sections

- Particle entrance/exit channels: a + A transmission coefficients T_{aA} are obtained by solving scattering of projectile a off target A using an Optical Model Potential (OMP): U = V_c+ V + i·W (T's are related to scatt. amplitudes)
- Photon exit channel: $\gamma + A$ transmission coefficient $T_{\gamma A}$ is obtained from Giant Resonances Strength Function (γ SF) assuming E1/M1 transitions are important
- For excitations to phase space where levels are strongly overlapping and unresolved: Nuclear Level Density (NLD) formulas are used to describe number of states per E and J
- Ground-state properties: masses, deformations, density distributions, single-particle level schemes are obtained from nuclear models

Photon Strength Function

 $(\mathsf{E}_0, \mathsf{J}_0, \pi_0)$

From (γ ,abs), (γ ,xn): $\sigma(E_{\gamma}) = 3E_{\gamma}(\pi\hbar c)^{2}\vec{f}(E_{\gamma})$

 $(\mathsf{E}_{\mathsf{f}}, \mathsf{J}_{\mathsf{f}}, \pi_{\mathsf{f}})$

From (γ, γ) , charged-particle reactions, average resonance captures

 $\tilde{f}(E_{\gamma},T) \rightarrow \Gamma(E_{\gamma},T)$ Temperature

Photon Strength Function

Dipole electric gamma-transitions are dominant ones, if they take place together with transitions of other multipolarities and types

Nuclear states excited by E1 field GDR skin neutron vibrations $\int \vec{f_{E1}} (E_{\gamma})$ asymmetric р n slopes p,n quasi-deutron **Two Phonon** photodisintegration Pygmy Dipole state Resonance (2p2h) S.L. mode 4 S_n 12 -:- 20 Low-energy MeV states

Empirical Photon Strength Functions

Standard Lorentzian (SLO) Brink(1955) & Axel(1962)

Depressed Lorentzian (DLO) Lane&Lynn(1960)

Fermi liquid model (KFM) Kadmensky, Markushev, Furman(1983)

Enhanced Generalized Lorentzian (EGLO) Kopecky& Uhl(1993)

Hybrid model (GH) Goriely (1998)

Modified Lorentzian model (MLO) Plujko et al (1999)

Generalized Fermi liquid model (GFL) Mughabghab&Dunford (2000)

Triple (triaxial) Lorentzian model (TL) Junghans et al (2008)

Empirical Photon Strength Functions

Semi-microscopic PSF

HFB+QRPA (Goriely et al.)

Comparison with SLO & SMLO predictions for Pb isotopic chain

Low-energy limit of Photon Strength Functions

Non-zero limit of the *E1* strength at $\varepsilon_{\gamma} \rightarrow 0$

Upbend of the *M1* strength at $\varepsilon_{\gamma} \rightarrow 0$

Impact on Total Radiative Capture Width $<\Gamma_{\gamma}>$

where error bars on predictions are obtained with different NLD models

where error bars on predictions are obtained with different NLD models

c/o: S. Goriely

c/o: S. Goriely

Compound Nucleus: R-matrix theory

- Nucleus excited to resolved resonance states
- R-matrix theory to describe individual resonances and nonresonant background between them
- Describes the asymptotic wavefunctions outside a fixed radius, R
 ≥ *a* in terms of pole energies e_p and reduced width amplitudes γ_{np}
 for each channel n and pole p
 - e_p taken from nuclear structure (ENSDF) and fitted γ_{np} taken from nuclear structure (ENSDF) and fitted

Compound nucleus: Resonances

$$e_p \rightarrow E_R$$

 $\gamma_{np} \rightarrow \Gamma$
single resonance:
 $\sigma \sim \frac{\Gamma}{(E - E_R)^2 + (\Gamma/2)^2}$

Level distance: D Level width Γ:

Resolved: D>Γ Continuum: D<Γ

R-matrix calculations

Examples: ⁴He+³He elastic scattering with p+⁶Li Find R-matrix fit.

Selected data to be fit up to 8.0 MeV ⁷Be* excitation

Channels	Data points
(<u>a.a</u>)	1609
(<u>a,p</u>)	120
(<u>p,a</u>)	630
(p,p)	420

Dominant channels: ${}^{4}\text{He} + {}^{3}\text{He}$ and $p + {}^{6}\text{Li}$ Next: $p_{1} + {}^{6}\text{Li}^{*}$ ($p_{1} = 3^{+}$, $p_{2} = 2^{+}$, etc) breakup.

c/o: I. Thompson

R-matrix fit to α-elastic scattering on ³He and proton elastic scattering on ⁶Li

c/o: I. Thompson

Evaluation of nuclear cross sections

Evaluation of nuclear cross sections

Cross Section

Evaluation methodology

 Compile available exp. data for a specific incident particle on a target nucleus up to energy of interest – include all data in all open reaction channels

- Assess exp. data: identify outliers; adopt final datasets subjective
- Fit cross sections (total, angular distributions, doubledifferential) in open channels – *subjective*
- Provide recommended cross sections and associated uncertainties (statistical, covariances)

Different evaluations

Types of evaluation

Based on nuclear models

model parameter fits to data cross-section uncertainties: propagation of parameter uncertainties

Based on cross section space

initial cross section (prior) variation of cross sections to fit the data

• Cubic-spline fit

Types of evaluation

Based on nuclear models

Uncertainties

- Mean:
- Variance:
- Standard deviation:

 $\sigma = \sqrt{\text{variance}} = \sqrt{\sigma^2}$

 $\mu = \underbrace{\sum x_i}_{N \bullet} \qquad \text{# iterations} \\ \sigma^2 = \frac{(x_1 - \mu)^2 + \dots + (x_N - \mu)^2}{N}$

ex: cross sections at two different energies

spread of the data of

cross sections

• Covariance: $cov(x, y) = \sigma_{xy}^2 = \frac{\sum (x_i - \mu)(y_i - \nu)}{N - 1}$

How two variables change together: Positive (+): move together Negative (-): move in opposite directions for N = 2: $V_{\chi y} = \begin{bmatrix} \sigma_{\chi}^2 & \sigma_{\chi,y} \\ \sigma_{\chi,\chi} & \sigma_{\chi}^2 \end{bmatrix}$

Covariance matrix

- Correlations: $\rho_{xy} = cov(x, y)/\sigma_x \sigma_y$ measure of the degree to which two variables move together :
 - -1 to +1: 0 means they are not related

Fitting data: uncertainty propagation

•
$$\sigma = f(x_1, x_2, \dots, x_N)$$

•
$$\alpha_i = \frac{\vartheta f}{\vartheta x_i} \to \mathsf{A}$$

• Mean
$$\overline{\sigma} = f(\mu, \nu, ...)$$

• Uncertainty propagation:

$$V_{\sigma} = AV_{x} A^{T}$$

Total σ uncertainty

variance-covariance matrix

Uncertainties

ex: energies, angles

• Multivariate data: $\sigma = f(p_1, p_2, ..., p_N)$

Need to calculate mean vector (mean values) and variance-covariance matrix (diagonal – off diagonal)

Experimental : statistical errors (diagonal) and systematic errors (off diagonal)

Parameter uncertainties when adjusting model parameters (α_i , α_j , ...) to data: $\vartheta^2/\vartheta p_i \theta p_j$

Cross section uncertainties when adjusting cross sections to data: $cov(\delta\sigma_i,\delta\sigma_j)$

Experimental covariance matrix: EXFOR

Var	(X) :1	0	0	(AY)1		(AY)2		(ΔY))		(ΔY)+		(AY)5		{ 4Y}6		{ Δ Y}7	
Header	EN EN	• 0	JATA *	ERR-TC	T *	MONIT-ERR	٠	ERR-1	•	ERR-2	٠	ERR-7	1	ERR-8	٠	ERR-3	•
Units	· MeV	• 1	nb 🔻	per-cent		per-cent V		per-cent V		per-cent V		per-cent V		per-cent V		per-cent V	
Type	Table	•	able *	Table *	12.	Table *		Table *		Table *		Table *		Table *		Const *	
Value	Sec. 1						12									1.2	
8.24	26.8 1	- 5	1.9	5	1	-9	-			- Al							
8.34	96.6 4	.5	1.9	5	1	.9	-3			A							
7.15	104-7 1				2		100										
7.15 17.33 16.1	162-9 3 241.8 4 152.4 4	-9	1.6	2.5	1	.4	.3										
7.15 17.33 16.1 17.16	241.0 4 152.4 4 116.1 4	.9 .6	1.6	2.5 2.1 1.5	1	.4 .6	.1										
7.15 17.33 16.1 17.16 17.9	162.9 241.8 152.4 116.1 105.7 4	-9	1.4 2 2.2	2.5 2.1 1.5 1.3	1	.4 .6 .7	.1										
7.15 17.33 16.1 17.16 17.9 19.36	241.0 4 152.4 4 116.1 4 105.7 4 89.5 1	-6	1.6 2 2.2 3.1	2.5 2.1 1.5 1.3 6.3	1 1 .7 2	.4.6.7.6.	.7 .7 .7 .7 .7 .7 .7 .7 .7 .7 .7 .7 .7 .			ļ							

#ENDF /	4m-24	1 MT1	6:2n									
	2	(10x1	10): Z	i.j = C	or(ox	, σ _{Yj})*	100					
	X (MeV)											
Y (MeV)	8.34	9.15	13.33	16.1	17.16	17.9	19.36	19.95	20.61	20.61	1	
8.34	100	48.36	41.72	38.39	37,26	36.52	35.13	34.6	34.03	34.03	1	
9.15	48.36	100	43.36	40.03	38.9	38.15	36.77	36.24	35.67	35.67	2	
13.33	41.72	43.36	100	46,67	45.54	44.8	43.41	42.88	42.31	42.31	3	
16.1	38.39	40.03	46.67	100	48.87	48.13	46.74	46.22	45.64	45.64	4	
17.16	37.26	38.9	45.54	48.87	100	49.25	47.87	47.34	46.77	45.77	5	
17.9	36.52	38.15	44.8	48.13	49.25	100	48.62	48.09	47.51	47.51	6	
19.36	35.13	36.77	43.41	46.74	47.87	48.62	100	49,47	48.9	48.9	7	
19.95	34.6	36.24	42.88	46.22	47.34	48.09	49,47	100	49,43	49,43	8	
20.61	34.03	35.67	42.31	45.64	46.77	47.51	48.9	49,43	100	49.43	9	
20.61	34.03	35.67	42.31	45.64	46.77	47.51	48.9	49,43	49.43	100	10	
1	1	2	3	4	5	6	7	8	9	10		

inpu unce stati

input all possible uncertainties statistical & systematic

estimate correlations among uncertainties i and j (where diagonal i=j means statistical and i≠j means off-diagonal i.e. systematic uncertainties)

from correlation matrix calculate covariance

See V. Zerkin's lecture

Example: R-matrix fit

Uncertainty for ${}^{6}Li(p,\alpha){}^{3}He$

Example cont'd

Correlation matrix for ${}^{6}Li(p,\alpha){}^{3}He$

Posterior

- Off-diagonal correlations are reduced
- Strong correlations at lower and higher energies

c/o: S. Kunieda

Thank you!