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The shell model potential

Nuclel are made up of protons and neutrons held
together by the strong interaction inside of a volume with
a radius of a few Fermi.

One might expect that the motions of these nucleons In
this closely packed system should be very complex
because of the large number of frequent collisions.
Due to these collisions nucleons could not maintain a
single-particle orbit.

But, because of Pauli exclusion the nucleons are
restricted to only a limited number of allowed orbits.



Nuclear Potentials

There are two approaches:

1. Anempirical form of the potential is assumed, e.g. square
well, harmonic oscillator, Woods-Saxon

2. The mean field is generated self-consistently from the
nucleon-nucleon interaction

N nucleons A nucleon in
' the Mean Field
in a nucleus ‘

of N-1 nucleons

- Assumption — ignore detailed two-body interactions
- Each particle moves in a state independent of the other particles
- The Mean Field is the average smoothed-out interaction
with all the other particles
- An individual nucleon only experiences a central force



The one-body potential

This is an independent particle model where the nucleus is described

In terms of non-interacting particles in the orbits of a spherical symmetric
(central) potential U(r) which is itself produced by all the nucleons.

Then, the resulting orbit energies are mass dependent.

This model is applicable to nuclei with one single nucleon outside closed
shell.

When more valence nucleons are considered, we have to include the
residual interaction between these nucleons.

The simplest potentials are the square well and the harmonic oscillator.



Wrong magic numbers
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The magic numbers: H.O. + 0.0 + €.s
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The nuclear shell model
with residual interactions



Global and local properties

3 orders of magnitude
of difference between
the two scales!

Binding Energy of the Elements
18 T T T T T

Binding energy (MeV)

Are we able to describe both
global and local properties
using the same, original
nucleon-nucleon interaction?
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The nucleon-nucleon potential

The bare nucleon-nucleon (or nucleon-nucleon-nucleon)
Interactions are inspired by meson exchange theories or more
recently by chiral perturbation theory, and must reproduce the

NN phase shifts, and the properties of the deuteron and other
few body systems
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Independent Particle Motion
and correlations

In the nucleus, due to the very strong short range
repulsion and the tensor force, the independent particle
motion or Hartree-Fock approximation, based upon the
bare nucleon-nucleon force, are impracticable.

However, at low energy, the nucleus do manifest itself as a
system of independent particles in many cases, and when it
does not, it is due to the medium range correlations that
produce strong configuration mixing and not to the short
range repulsion.



The unique interaction

To have a tractable problem, the critical point is the
choice of the model space and the “effective”
nucleon-nucleon interaction.

The starting point should be a realistic interaction that
reproduces the nucleon-nucleon scattering properties in
the energy region 0-500 MeV




Deriving a realistic effective interaction

All modern NN potentials fit equally well (x?/Ny,, ~ 1) the deuteron
properties and the NN scattering data up to the inelastic threshold:
CD-Bonn, Argonne V18, Nijm I, Nijm Il, N3LO potentials,...

o
3o

However, these potentials cannot be used directly in
the derivation of V4 due to the strong short-range
repulsion, but a renormalization procedure is needed.

Wan(r ) (MeV)
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Many-body methods:

* Brueckner G-matrix
* Viouk - SMooth low-momentum potential that is used in a perturbative

approach to derive V4



The full problem

The challenge is to find V(ry, 55, r3, . .. ra) such that
HLIJ—E‘JJ With

H= ZT +ZV2£: (7, 1) ‘|‘ZV3D (Fi, 15, Fic)

f.j.K
The knowledge of the eigenvectors ¥ and the eigenvalues
E make it possible to obtain electromagnetic moments,
transition rates, weak decays, cross sections,
spectroscopic factors, etc.

Only very recently and only for very light nuclei A<10 the
problem has been solved "exactly”,



Energy (MeV)

Ab initio and 3-body forces
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Approaches for heavy systems

For medium-heavy systems, ab initio calculations are not possible and one
IS obliged to resort to an effective force

We are simply forced to simplify the force (B.R. Mottelson)

Two main approaches:

Shell Model based on the bare forces, introduces correlations
In the many-body states, or in the associated matrix elements.
Spherically symmetric average potential + residual interaction in
a subspace of the Hilbert space.

Mean-field methods devise a complementary strategy: defines
an energy-density functional to produce directly the appropriate
single particle potential. Search for the ‘best’ mean-field potential
starting from a phenomenological energy functional +
correlations. Self-consistent potentials.




The V,,,, .

Inspired by the effective field theory and renormalization group
for low-energy systems

Realistic V, Construct V,,,, integrating out preserves the physics of Vy,

potential the high-momentum part of Vy, up to a cutoff momentum A

S. Bogner et al. Phys Rev. C 65 (2002) 05130(R)
T.T.S. Kuo and E. Osnes, Lecture Notes in Physics, vol 364 (1990)
L. Coraggio et al. Prog. Part. Nucl. Phys 62 (2009) 135

Features of V.«

- eliminates sources of non-perturbative behavior
- real potential in the k-space

- gives an approximately unique representation of the NN potentials
for A=z2fml = E =350 MeV

V ok IS Used to derive V4 in a perturbative approach:
folded diagrams expansion, in the framework of the
Q-box formalism
To what extent the nuclear structure results

depend on the choice of the starting potential?



V,w.x iN the 32Sn region: the 2p case
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The Interacting Shell Model

Is an approximation to the exact solution of the
nuclear A-body problem using effective interactions
In restricted spaces.

The effective interactions are obtained from the bare
nucleon-nucleon interaction by means of a
regularization procedure aimed to soften the short
range repulsion.

The only way to obtain a tractable problem is to
define a new reference “vacuum”.



Some hypothesis

The microscopic description of the nucleus we adopt is
that of a non-(explicitly)-relativistic guantum many
body system.

Therefore we assume:

* nucleon velocities small enough to justify the use of
non-relativistic kinematics

* hidden meson and quark-gluon degrees of freedom
* two body interactions



The many-body hamiltonian

We want to solve the Schrodinger equation

o) =| 7 30 Jo) =)

To treat this perturbatively, we express the Hamiltonian as

H|w)=(H, +H,)ly)=E|y)
with the unperturbed Hamiltonian

HO:ZhOi h0‘¢i>:(Ti+Ui)‘¢i>:gi‘¢i>

and the perturbation H, ZVIJ ZU

i<j

Where the auxiliary one-body potential U is chosen to make H, small



The interacting shell model

We want to solve the eigenvalue problem

H|y)=(H,+H)w)=E|y)

and E is the true energy of the system.

However we work in the model space, not in the full Hilbert space.
We thus need to construct an effective Hamiltonian H., acting in the
model space, such as

Heff‘wl>: E‘W'>




Reducing the model space (2)

To reduce the Schrédinger equation of the A-body system

to a secular equation acting only in the selected subspace, with the condition

<WI‘Heff‘WI>: E

We divide the full Hilbert space into a model space P
and an excluded space Q which is achieved using
projection operators

P = 2\%}(%\ Q= il%}(t//il

i=d+1

PZ=P, Q’=Q, PQ=QP=0




The model space

The success of the independent particle model strongly suggests that
the very singular free NN interaction can be regularized in the nuclear
medium.

For a given number of protons and neutrons the mean field orbitals can

be grouped in three blocks

* Inert core: orbits that are always fully occupied

« Valence space: orbits that contain the physical degrees of freedom
relevant to a given property. The distribution of the valence particles
among these orbitals is governed by the interaction

- External space: all the remaining orbits that are always empty



- Sl =1 E=10]10]00)=
Calculations Ab Initio

+ Fealistic MM interactions

+ J-body forces
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+ define valence space
+ Hegi Weit = EWeyy

~ |[NTERACTIONS (monopole corrections)

+ build and diagonalize Hamiltanian matrix

~ CODES
Weak processes: Collective excitations:
+ fi decays
+ Bf decays + deformation, superdeformation
[T1DI,-1‘5|:D+_}D+:|]_1 :GDvl'IwDPF':m'l":)E + superfluidity
iASTROPHYSICS + symmetries
i PARTICLE PHYSICS )

Shell evolution far from stability:
+ =hell quenching
+ Mew magic numbers

iASTROPHYSICS




Ingredients for the Shell Model calculations

|
the external | .. ds
space e
1) an inert core i L;———————g%z—'
2) a valence space f5))
3) an effective interaction that mocks P1/
G the valence |
up the general Hamiltonian in the P3r2
. . space

restricted basis N f),

Hett o = Ho +Veryy, = By, S
1/2
with H, =T +U | l

|
|
The choice of the valence : """""""""" P12
|
|
|

space is determined by the

degrees of freedom of the
system and limited by the
dimensions of the matrices
to be diagonalized




The effective interaction

Perturbation theory

Hilbert space — Valence space
VNN — \V/ eff
HIW)=ElY) = A, =B,
<‘{"CS“P> = <LPeff Oert LIIeff>

» microscopic effective interaction (realistic interaction)

V = G —= Ve
M. Hjorth-Jensen et al, Phys.Rep.261 (1995)

NN

= empirical interaction (fitted to the data)
B.A.Brown, B.H.Wildenthal, Ann. Rev. Nucl.Part.Sci. 38 (1988)

= schematic interaction (delta-force, etc)



A simple case: °0O

>.08 1ds, We will calculate some states of 180
as an example of ISM calculation

Two neutrons above a core of 160

0.87 251/ The lowest states have nucleons in the
0.0 1ds, 1d, orbit:
170

with (1dg/,)? : we can construct only 3 states
(J7 =0+, 2+ or 4+)

To construct other states, we have to consider a wider valence space:
we thus include the 2s,,, level.

The strength of the effective interaction V(1,2) depends on the valence space



The states in the model space

We can then construct the following states:

17205 ()% (25,)2

O+l

J7=2"> (1d5/2)§+; (1d5/2231/2)2+

J7=3" - (1d5/2251/2)3+
JF=4"> (1d5,2)121+

The energy values for these states will be the corresponding of the
eigenstates of the hamiltonian:

2
H=H,+H, =>h(i)+Vp,
i=1

where the core energy corresponding to the closed shell system (160) E,
Is taken as a reference value



eigenfunctions

The wave functions will be linear combinations of the possible basis functions.
For J=0+ we obtain two eigenfunctions

LPO+;1> = Zak,l‘l//l?;0+>

\P0+;2> - Zak,Z‘Wl(()’0+>
For the particular case of 180 we define
w10 ) =|(1ds,,)%:07)
w307 ) =|(2s,,)%07)




The general case

If the basis set is defined as ‘W;?>(k =1,...,n)

/401(?1) o (R) - of(f,) )

T, 1
l//li)(li1r2""’rA):ﬁdet 3 . 5
\@A(rl) ou() - ¢A(rA)/

n
The total wave function can be expanded as: “I’p> = Zakp‘WI? >
k=1

The coefficients g, have to be determined by solving the Schrodinger
equation

(Ho+ Hres)éakp‘l/jl(<)> = Epéakp‘Wl?>

or

H‘\Pp>:Ep‘\Pp> »

Zn:<';”|0 ‘HO + H res l//I?>akp — Epalp

k=1




the matrix to be diagonalized

0
Since ‘Wk> corresponds to eigenfunctions of H, with eigenvalues
(unperturbed energies) E, , calling

<W§‘HO T Hres WI?> = Hék

we obtain;

Ve )

L 0 0
ZHlkakp — Epalp Hlk = k§Ik +<WI ‘Hres
k=1

The eigenvalue equation becomes a matrix equation:

[HI[A]=[E][A]




The matrix equation

The eigenvalue equation becomes a matrix equation:

[HI[A]=[E][A]

This forms a secular equation for the eigenvalues E;:

H,—-E, Hy, .H,
H,. Hyp, —E, ...H,,

=0
H. .. . Hy—E,

This is a nth degree equation for the n-roots E, (p=1,2,...n)



The solutions

Once we have the energies E,, we can use

kz_ll EI?glk akp + kz_; <l//lo ‘H res

WIS >akp — E palp

n
to obtain the coefficients a,,. Using the orthonormalization: kz_lakpakp' =Opp

We can then write n n
> alp'EI?5lkakp + Zalp'<WI0 ‘Hres

I,k=1 I’k=1

z//£>akp =E,5,,

Which is a matrix equation of the form [A]'[H][A]=[E]

This equation indicates a similarity transformation to a new basis that
makes [H] diagonal

If n is large this process needs a high-speed computer



Configuration mixing

If the non-diagonal matrix elements are of the order of the
unperturbed energy differences

|Hij|z|Eio_E?|

large configuration mixing will result and the final
energy eigenvalues E; will be very different from the

unperturbed ones.

On the contrary, if the non-diagonal matrix elements are small,
these energy shifts will be small and we can use perturbation

theory to solve the problem

|Hij|<<|EiO_E?|




Back to the '®0 problem

We now consider the case of the
the 1d.,,, 2s,,, model space.

The Hamiltonian matrix is now

J=0* states in 180 in
wy:07) =|(1dg,,)%:07)
w307 )=(25,,,)%:0")

26, +{(d51,)0 V| (dg1,)07)

H =
[((512)"0° Vi |(d0) 07

<(ds/2)2;0+ |V12 ‘(51/2)2;0+>
2‘951/2 -|_<(51/2)2;OJr |V12 ‘(51/2)2;O+>_

These diagonal matrix elements yield the first
correction to the unperturbed single-particle

energies 2¢, = € 2¢&,_




The diagonalization

The secular equation can thus be written:

Hll_}L H12
H12 sz_i

We then get the quadratic equation:

h _/1(H11 + sz)_ H122 + H11H22 =0

With the roots: A, = Hy+Hy +1[(H,, - H22)2 +4|_|122]1/2

A=A -1 =[(H,—H,,)* +4H.]"?

Even if the unperturbed states are degenerate there is a repulsion
between them that separates the two solutions.



If:

in perturbation theory...

Hy +Hy
2

A, =

il[(Hll _ H22)2 _|_4H122]1/2

|H, |<<|H;; —H, | —>

We can write the series,

AL —|[H;; —H,, |

/1+:ﬂ1:H11+

2
H12

+ ...

H11 o H22




Final spectrum for the o0* in 0

full diagonalization
2E . - E(0;)

ds/»

26, +<V, 57 E(0))

diagonal matrix
elements



Eigenvalues and eigenvectors

The problem consists on diagonalizing a
matrix in the model space. The basis is

formed by the eigenfunctions of the mean field

For “normal” 0T states, one needs to

diagonalize the 44 matrix:

f 2 2 2
':%3' lip%} ﬂp%}
0.0 w2 —0.783 —0.714

+{—1.920)
2.0 w2 —1.465
+{—1.206)
4.0 w2
+({—0.243)

—2.788
—0.777
—0.352

B.5 w2
+{—1.667)

shell model

5292

4071

2384

1386

0
42

Ca

exp.

JM7

2752
2424

1837
1524




Basic Shell Model

The hamiltonian (only two-body forces)

spherical mean field

A —*_2 1 A o
H=) 1)),'” +5 D Vii(P U(r) is a central (1-body) potential
i=1“ —itg=1
52 A \ 40 Centrifugal
H=Y (5=+U))+ 3 Vil ri—r; ) = X U(rs) = Ho+ Hres .
= o - EZO Coulomb
2 T ra) = Eydlry, - .., 1 <9 UL I I
o@(ry \ 0@(ry 1) 3 20 40 R (fm)
Eo=>Y ¢ -20
-40 Nuclear
,. -60
| (T ) U (ra) .
o = —— det
v Al ,
halry) Yalra)




Shell model basis

Shell-model basis states

The basis states have good angular momentum (coupling all j values to J),
good parity and good isospin.

The slater determinants can also be constructed with good M and Tz
e.g., 4 particles in the sd shell with M=0:

1d;,~ 3115~ $:1dgy, +§ 1d , + )

The number of basis states can be estimated Qp Qn
approximately as (Q: shell degeneracy, N, =
n: valence particles) np n,

For example for 9Zn with 10 valence 20\ ( 20 10
protons and 10 valence neutrons N, = 10 ~3.4-10

in the fp shell 10




Configuration mixing

| ( Pi(r1) - Pi(ra) )
¢ = —==det : :
A Ya(ry) ... va(ra)

(01|H|d1) (@1|H|p2) ... E,
H=| ($2|H|p1) (92|H|p2) ... | = Es
(da|H 1)
Mixing of
higher shells configurations
valence shell <:>
due to the
closed shell residual interaction
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An example

sd MODEL SPACE

B — =
r = — = 28 ..
B = = = Si
i 7 =— = = 14°"14
2 2 3 = =
- 0 0 = = =
e 3 =0 —
[ E = = =
L : &~ 4 I =
C ! 2 o 03
- v 0 o 7z 4
C 2 2
C o O
Order O 1 2 3 4 "
Dim. 1 13 261 2345 11398 93710
m v 20
2s1/, ZT
8




What can be achieved
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Accessible regions
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Algorithms and codes

Algorithms include Direct Diagonalisation, Lanczos, Monte
Carlo Shell Model, Quantum Monte Carlo Diagonalization,

DMRG etc. There are also a number of different extrapolation
ansatzs

The Strasbourg-Madrid codes (Antoine, Nathan), can deal with
problems involving basis of 10’V Slater determinants, using
relatively modest computational resources. Other competitive
ones in the market are OXBACH, NUSHELL and MSHELL



Can shell model
describe
collective states?



Example: the f,, shell

The 1f,,, shell is isolated in energy from the rest of fp orbitals

Wave functions are dominated by (1f,,)" configurations

High-spin states experimentally reachable
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Shell model and collective phenomena
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Shell model calculations in the full fp
shell give an excellent description
of the structure of collective rotations

in nuclei of the f,,, shell
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Proton-neutron pairing correlations
in the odd-odd N = Z nucleus
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How well shell
model describes
the nuclear
structure far from
stability?
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