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The shell model potential

Nuclei are made up of protons and neutrons held 

together by the strong interaction inside of a volume with 

a radius of a few Fermi.

One might expect that the motions of these nucleons in 

this closely packed system should be very complex 

because of the large number of frequent collisions. 

Due to these collisions nucleons could not maintain a 

single-particle orbit. 

But, because of Pauli exclusion the nucleons are 

restricted to only a limited number of allowed orbits.



Nuclear Potentials

There are two approaches:

1. An empirical form of the potential is assumed, e.g. square 

well, harmonic oscillator, Woods-Saxon

2.    The mean field is generated self-consistently from the    

nucleon-nucleon interaction

A nucleon in 

the Mean Field 

of N-1 nucleons

N nucleons

in a nucleus

- Assumption – ignore detailed two-body interactions

- Each particle moves in a state independent of the other particles

- The Mean Field is the average smoothed-out interaction

with all the other particles

- An individual nucleon only experiences a central force



The one-body potential

This is an independent particle model where the nucleus is described 

in terms of non-interacting particles in the orbits of a spherical symmetric 

(central) potential U(r) which is itself produced by all the nucleons.

Then, the resulting orbit energies are mass dependent.

This model is applicable to nuclei with one single nucleon outside closed 

shell.

When more valence nucleons are considered, we have to include the 

residual interaction between these nucleons.

The simplest potentials are the square well and the harmonic oscillator.



Wrong magic numbers



The magic numbers: H.O. + ℓ.ℓ + ℓ.s

6



The nuclear shell model 
with residual interactions 



Global and local properties
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3 orders of magnitude

of difference between 

the two scales! 

Are we able to describe both 

global and local properties 

using the same, original 

nucleon-nucleon interaction?



The nucleon-nucleon potential

The bare nucleon-nucleon (or nucleon-nucleon-nucleon) 

interactions are inspired by meson exchange theories or more 

recently by chiral perturbation theory, and must reproduce the 

NN phase shifts, and the properties of the deuteron and other 

few body systems



Independent Particle Motion 
and correlations

In the nucleus, due to the very strong short range 

repulsion and the tensor force, the independent particle 

motion or Hartree-Fock approximation, based upon the 

bare nucleon-nucleon force, are impracticable.

However, at low energy, the nucleus do manifest itself as a

system of independent particles in many cases, and when it

does not, it is due to the medium range correlations that

produce strong configuration mixing and not to the short 

range repulsion.



The unique interaction

To have a tractable problem, the critical point is the 

choice of the model space and the “effective” 

nucleon-nucleon interaction. 

The starting point should be a realistic interaction that 

reproduces the nucleon-nucleon scattering properties in 

the energy region 0-500 MeV



Deriving a realistic effective interaction

All modern NN potentials fit equally well (χ2/Ndata ~ 1 )  the deuteron 

properties and the NN scattering data up to the inelastic threshold:

CD-Bonn, Argonne V18 , Nijm I, Nijm II, N3LO potentials,…

However, these potentials cannot be used directly in 

the derivation of Veff due to the strong short-range 

repulsion, but a renormalization procedure is needed.

Many-body methods:

• Brueckner G-matrix

• Vlow-K : smooth low-momentum potential that is used in a perturbative 

approach to derive Veff



The full problem



Ab initio and 3-body forces



Approaches for heavy systems

For medium-heavy systems, ab initio calculations are not possible and one

is obliged to resort to an effective force

Two main approaches:

• Shell Model: based on the bare forces, introduces correlations

in the many-body states, or in the associated matrix elements.

Spherically symmetric average potential + residual interaction in

a subspace of the Hilbert space.

• Mean-field methods devise a complementary strategy: defines

an energy-density functional to produce directly the appropriate

single particle potential. Search for the ‘best’ mean-field potential

starting from a phenomenological energy functional +

correlations. Self-consistent potentials.

We are simply forced to simplify the force (B.R. Mottelson)



The Vlow-k

Realistic VNN

potential
Construct Vlow-k integrating out

the high-momentum part of VNN

preserves the physics of VNN

up to a cutoff momentum Λ

Inspired by the effective field theory and renormalization group 

for low-energy systems

S. Bogner et al. Phys Rev. C 65 (2002) 05130(R)

T.T.S. Kuo and E. Osnes, Lecture Notes in Physics, vol 364 (1990) 

L. Coraggio et al. Prog. Part. Nucl. Phys 62 (2009) 135

To what extent the nuclear structure results 

depend on the choice of the starting potential? 

Features of Vlow-k

 - eliminates sources of non-perturbative behavior

 - real potential in the k-space

 - gives an approximately unique representation of the NN potentials

 for   2 fm-1  
 ELab 350 MeV

 Vlow-k is used to derive Veff in a perturbative approach: 

folded diagrams expansion, in the framework of the 

Q-box formalism



Vlow-k in the 132Sn region: the 2p case

134Te

σ(keV)=115 σ(keV)=143 σ(keV)=128

B(E2) values (in W.u.)

Calc.    Expt.

0+  2+ 20 24±3

4+  2+ 4.3 4.3±0.30

6+  4+ 1.9  2.05±0.03

CD-Bonn

2 protons above 132Sn

model space:

50≤Z≤82, 82≤N≤126

potentials renormalized with the Vlow-k procedure with cutoff Λ=2.2 fm-1

A. Covello, L. Coraggio, A. Gargano, N. Itaco

PPNP 59 (2007) 401

Universality

50

82



The Interacting Shell Model

Is an approximation to the exact solution of the 

nuclear A-body problem using effective interactions 

in restricted spaces.

The effective interactions are obtained from the bare

nucleon-nucleon interaction by means of a 

regularization procedure aimed to soften the short 

range repulsion.

The only way to obtain a tractable problem is to 

define a new reference “vacuum”.



Some hypothesis

The microscopic description of the nucleus we adopt is 

that of a non-(explicitly)-relativistic quantum many 

body system.

Therefore we assume:

• nucleon velocities small enough to justify the use of

non-relativistic kinematics

• hidden meson and quark-gluon degrees of freedom

• two body interactions



The many-body hamiltonian

We want to solve the Schrödinger equation
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To treat this perturbatively, we express the Hamiltonian as
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Where the auxiliary one-body potential U is chosen to make H1 small



The interacting shell model

We want to solve the eigenvalue problem

 EHHH  )( 10

and E is the true energy of the system.

However we work in the model space, not in the full Hilbert space.

We thus need to construct an effective Hamiltonian Heff acting in the 

model space, such as

''  EHeff 



Reducing the model space (2)

To reduce the Schrödinger equation of the A-body system

to a secular equation acting only in the selected subspace, with the condition

EHeff '' 

We divide the full Hilbert space into a model space P 

and an excluded space Q which is achieved using 

projection operators 





d

i

iiP
1

 





1di

iiQ 

0,, 22  QPPQQQPP
P

Q



The model space

The success of the independent particle model strongly suggests that 

the very singular free NN interaction can be regularized in the nuclear 

medium.

For a given number of protons and neutrons the mean field orbitals can 

be grouped in three blocks

• Inert core: orbits that are always fully occupied

• Valence space: orbits that contain the physical degrees of freedom 

relevant to a given property. The distribution of the valence particles 

among these orbitals is governed by the interaction

• External space: all the remaining orbits that are always empty





Ingredients for the Shell Model calculations

1) an inert core

2) a valence space

3) an effective interaction that mocks 

up the general Hamiltonian in the 

restricted basis

s1/2

p1/2
p3/2

d3/2

d5/2

f7/2

s1/2

f5/2

p3/2

p1/2

8

20

28

2

N or Z

the valence 

space

inert core

The choice of the valence 

space is determined by the 

degrees of freedom of the 

system and limited by the 

dimensions of the matrices 

to be diagonalized
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with

 

d5/2

g9/2

the external 

space



The effective interaction


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          ˆ

          | ˆ

O

EH

effeffeff

effeff

eff
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EH
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Hilbert space Valence space

eff
NN

VV                 

Perturbation theory

 microscopic effective interaction (realistic interaction)

 empirical interaction (fitted to the data)

 schematic interaction (delta-force, etc)

eff
NN

VV     G            

M. Hjorth-Jensen et al, Phys.Rep.261 (1995)

B.A.Brown, B.H.Wildenthal, Ann. Rev. Nucl.Part.Sci. 38 (1988)



A simple case: 18O

1d5/2

2s1/2

1d3/2

0.0

0.87

5.08

17O

The lowest states have nucleons in the 

1d5/2 orbit:

Two neutrons above a core of 16O

with (1d5/2)
2 : we can construct only 3 states 

(Jπ = 0+, 2+ or 4+)

To construct other states, we have to consider a wider valence space: 

we thus include the 2s1/2 level.

The strength of the effective interaction V(1,2) depends on the valence space

We will calculate some states of 18O

as an example of ISM calculation



The states in the model space

We can then construct the following states:
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The energy values for these states will be the corresponding of the 

eigenstates of the hamiltonian:
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where the core energy corresponding to the closed shell system (16O) E0

is taken as a reference value



eigenfunctions

The wave functions will be linear combinations of the possible basis functions.

For J=0+ we obtain two eigenfunctions





















0;

0;

0

1
2,2;0

0

1
1,1;0

k

n

k
k

k

n

k
k

a

a





For the particular case of 18O we define









0;)2(0;

0;)1(0;

2

2/1

0

2

2

2/5

0

1

s

d







The general case

If the basis set is defined as ),...,1(0 nkk 

The total wave function can be expanded as:
0
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the matrix to be diagonalized

0 0
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Since             corresponds to eigenfunctions of H0 with eigenvalues

(unperturbed energies) E0, , calling
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The eigenvalue equation  becomes a matrix equation:



The matrix equation

This is a nth degree equation for the n-roots Ep (p=1,2,…n)

]][[]][[ AEAH 

This forms a secular equation for the eigenvalues Ep:
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The eigenvalue equation  becomes a matrix equation:



The solutions

Once we have the energies Ep, we can use

to obtain the coefficients akp. Using the orthonormalization: 
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Which is a matrix equation of the form ][]][[][ 1 EAHA 

This equation indicates a similarity transformation to a new basis that 

makes [H] diagonal

If n is large this process needs a high-speed computer 



Configuration mixing

If the non-diagonal matrix elements are of the order of the 

unperturbed energy differences 

|||| 00

jiij EEH 

large configuration mixing will result and the final 

energy eigenvalues Ep will be very different from the 

unperturbed ones.

On the contrary, if the non-diagonal matrix elements are small, 

these energy shifts will be small and we can use perturbation 

theory to solve the problem

|||| 00

jiij EEH 



Back to the 18O problem

We now consider the case of the J=0+ states in 18O in 

the 1d5/2, 2s1/2 model space. 
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These diagonal matrix elements yield the first 

correction to the unperturbed single-particle 

energies           e
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The diagonalization

The secular equation can thus be written:

0
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We then get the quadratic equation:
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Even if the unperturbed states are degenerate there is a repulsion 

between them that separates the two solutions.



in perturbation theory…
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We can write the series, 



Final spectrum for the 0+ in 18O
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Eigenvalues and eigenvectors

The problem consists on diagonalizing a 

matrix in the model space. The basis is 

formed by the eigenfunctions of the mean field 



Basic Shell Model

The hamiltonian (only two-body forces)

U(r) is a central (1-body) potential

-60

-40

-20

0

20

40

20 40

Centrifugal

Coulomb

Nuclear

R (fm)

spherical mean field

Configuration



Shell model basis

Shell-model basis states

The basis states have good angular momentum (coupling all j values to J),

good parity and good isospin.

The slater determinants can also be constructed with good M and Tz

e.g., 4 particles in the sd shell with M=0: 

2
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3
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2/5 1;,1;,1;,1  dddd

The number of basis states can be estimated 

approximately as (Ω: shell degeneracy, 

n: valence particles)
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For example for 60Zn with 10 valence 

protons and 10 valence neutrons

in the fp shell 
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Configuration mixing

Mixing of 

configurations

due to the 

residual interaction



An example



What can be achieved



Accessible regions



Algorithms and codes



Can shell model 
describe 

collective states?



Example: the f7/2 shell

41Ca40Ca

43Sc42Sc41Sc

45Ti44Ti43Ti42Ti

47V46V45V44V

49Cr48Cr47Cr46Cr

51Mn50Mn49Mn48Mn

53Fe52Fe51Fe50Fe

55Co54Co53Co52Co

56Ni55Ni54Ni

44Ca43Ca42Ca

45Sc44Sc

47Ti46Ti

49V48V

51Cr50Cr

54Fe

53Mn52Mn

N=Z

20

21

22

23

24

25

26

27

28

20 21 22 23 24 25 26 27 28

proton 

number

neutron 

number

f7/2

f5/2

d5/2

d3/2
s1/2

p3/2

p1/2

28

20

The 1f7/2 shell  is isolated in energy from the rest of fp orbitals

Wave functions are dominated by (1f7/2)
n configurations

High-spin states experimentally reachable 



Shell model and collective phenomena 

Shell model calculations in the full fp

shell give an excellent description 

of the structure of collective rotations 

in nuclei of the f7/2 shell





How well shell 
model describes 

the nuclear 
structure far from 

stability?
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