
Control theory
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The sensori-motor problem

Brain is a sensori-motor machine:

• perception

• action

• perception causes action, action causes perception

• much of this is learned
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The sensori-motor problem

Brain is a sensori-motor machine:

• perception

• action

• perception causes action, action causes perception

• much of this is learned

Separately, we understand perception and action (somewhat):

• Perception is (Bayesian) statistics, information theory, max entropy

• Learning is parameter estimation

• Action is control theory?
– limited use of adaptive control theory
– intractability of optimal control theory
∗ computing ’backward in time’.
∗ representing control policies
∗ model based vs. model free
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The sensori-motor problem

Brain is a sensori-motor machine:

• perception

• action

• perception causes action, action causes perception

• much of this is learned

We seem to have no good theories for the combined sensori-motor problem.

• Sensing depends on actions

• Features depend on task(s)

• Action hierarchies, multiple tasks
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The two realities of the brain

The neural activity of the brain simulates two realities:

• the physical world that enters through our senses
– ’world’ is everything outside the brain
– neural activity depends on stimuli and internal model (perception, Bayesian inference, ...)

• the inner world that the brain simulates through its own activity
– ’spontaneous activity’, planning, thinking, ’what if...’, etc.
– neural activity is autonomous, depends on internal model
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Integrating control, inference and learning

The inner world computation serves three purposes:

• the spontaneous activity is a type of Monte Carlo sampling

• Planning: compute actions for the current situation x from these samples

• Learning: improves the sampler using these samples
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Optimal control theory

Given a current state and a future desired state, what is the best/cheapest/fastest way to get there.
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Why stochastic optimal control?
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Why stochastic optimal control?

Exploration
Learning
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Optimal control theory

Hard problems:
- a learning and exploration problem
- a stochastic optimal control computation
- a representation problem u(x, t)
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The idea: Control, Inference and Learning

Path integral control theory
Express a control computation as an inference computation.
Compute optimal control using MC sampling
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The idea: Control, Inference and Learning

Path integral control theory
Express a control computation as an inference computation.
Compute optimal control using MC sampling

Importance sampling
Accellerate with importance sampling (=a state-feedback controller)
Optimal importance sampler is optimal control
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The idea: Control, Inference and Learning

Path integral control theory
Express a control computation as an inference computation.
Compute optimal control using MC sampling

Importance sampling
Accellerate with importance sampling (=a state-feedback controller)
Optimal importance sampler is optimal control

Learning
Learn the controller from self-generated data
Use Cross Entropy method for parametrized controller
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Outline

Optimal control theory, discrete time
- Introduction of delayed reward problem in discrete time;
- Dynamic programming solution

Optimal control theory, continuous time
- Pontryagin maximum principle;

Stochastic optimal control theory
- Stochastic differential equations
- Kolmogorov and Fokker-Plack equations
- Hamilton-Jacobi-Bellman equation
- LQ control, Ricatti equation;
- Portfolio selection

Path integral/KL control theory
- Importance sampling
- KL control theory
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Material

• H.J. Kappen. Optimal control theory and the linear Bellman Equation. In Inference and Learning
in Dynamical Models (Cambridge University Press 2010), edited by David Barber, Taylan Cemgil
and Sylvia Chiappa
http://www.snn.ru.nl/˜bertk/control/timeseriesbook.pdf

• Dimitri Bertsekas, Dynamic programming and optimal control

• http://www.snn.ru.nl/˜bertk/machinelearning/
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Introduction

Optimal control theory: Optimize sum of a path cost and end cost. Result is optimal control
sequence and optimal trajectory.

Input: Cost function.
Output: Optimal trajectory and controls.
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Introduction

Control problems are delayed reward problems:

• Motor control: devise a sequece of motor commands to reach a goal

• finance: devise a sequence of buy/sell commands to maximize profit

• Learning, exploration vs. exploitation
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Types of optimal control problems

Finite horizon (fixed horizon time):

• Dynamics and environment may depend explicitly on time.

• Optimal control depends explicitly on time.

Finite horizon (moving horizon):

• Dynamics and environment are static.

• Optimal control is time independent.

Infinite horizon:

• discounted reward, Reinforcement learning

• total reward, absorbing states

• average reward

Other issues:

• discrete vs. continuous state

• discrete vs. continuous time

• observable vs. partial observable

• noise
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Discrete time control

Consider the control of a discrete time deterministic dynamical system:

xt+1 = xt + f (t, xt, ut), t = 0, 1, . . . ,T − 1

xt describes the state and ut specifies the control or action at time t.

Given xt=0 = x0 and u0:T−1 = u0, u1, . . . , uT − 1, we can compute x1:T .

Define a cost for each sequence of controls:

C(x0, u0:T−1) = φ(xT ) +

T−1∑
t=0

R(t, xt, ut)

The problem of optimal control is to find the sequence u0:T−1 that minimizes C(x0, u0:T−1).
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Dynamic programming

Find the minimal cost path from A to J.

C(J) = 0,C(H) = 3,C(I) = 4

C(F) = min(6 + C(H), 3 + C(I))
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Discrete time control

The optimal control problem can be solved by dynamic programming. Introduce the optimal cost-
to-go:

J(t, xt) = min
ut:T−1

φ(xT ) +

T−1∑
s=t

R(s, xs, us)


which solves the optimal control problem from an intermediate time t until the fixed end time T , for
all intermediate states xt.

Then,

J(T, x) = φ(x)

J(0, x) = min
u0:T−1

C(x, u0:T−1)
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Discrete time control

One can recursively compute J(t, x) from J(t + 1, x) for all x in the following way:

J(t, xt) = min
ut:T−1

φ(xT ) +

T−1∑
s=t

R(s, xs, us)


= min

ut

R(t, xt, ut) + min
ut+1:T−1

φ(xT ) +

T−1∑
s=t+1

R(s, xs, us)




= min
ut

(R(t, xt, ut) + J(t + 1, xt+1))

= min
ut

(R(t, xt, ut) + J(t + 1, xt + f (t, xt, ut)))

This is called the Bellman Equation.

Computes u as a function of x, t for all intermediate t and all x.
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Discrete time control

The algorithm to compute the optimal control u∗0:T−1, the optimal trajectory x∗1:T and the optimal cost
is given by

1. Initialization: J(T, x) = φ(x)
2. Backwards: For t = T − 1, . . . , 0 and for all x compute

u∗t (x) = arg min
u
{R(t, x, u) + J(t + 1, x + f (t, x, u))}

J(t, x) = R(t, x, u∗t ) + J(t + 1, x + f (t, x, u∗t ))

3. Forwards: For t = 0, . . . ,T − 1 compute

x∗t+1 = x∗t + f (t, x∗t , u
∗
t (x∗t ))

NB: the backward computation requires u∗t (x) for all x.
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Stochastic case

xt+1 = xt + f (t, xt, ut,wt) t = 0, . . . ,T − 1

At time t, wt is a random value drawn from a probability distribution p(w).

For instance,

xt+1 = xt + wt, x0 = 0

wt = ±1, p(wt = 1) = p(wt = −1) = 1/2

xt =

t−1∑
s=0

ws

Thus, xt random variable and so is the cost

C(x0) = φ(xT ) +

T−1∑
t=0

R(t, xt, ut, ξt)
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Stochastic case

C(x0) =

〈
φ(xT ) +

T−1∑
t=0

R(t, xt, ut, ξt)
〉

=
∑

w0:T−1

∑
ξ0:T−1

p(w0:T−1)p(ξ0:T−1)

φ(xT ) +

T−1∑
t=0

R(t, xt, ut, ξt)


with ξt, xt,wt random. Closed loop control: find functions ut(xt) that minimizes the remaining ex-
pected cost when in state x at time t. π = {u0(·), . . . , uT−1(·)} is called a policy.

xt+1 = xt + f (t, xt, ut(xt),wt)

Cπ(x0) =

〈
φ(xT ) +

T−1∑
t=0

R(t, xt, ut(xt), ξt)
〉

π∗ = argminπCπ(x0) is optimal policy.
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Stochastic Bellman Equation

J(t, xt) = min
ut
〈R(t, xt, ut, ξt) + J(t + 1, xt + f (t, xt, ut,wt))〉

J(T, x) = φ(x)

ut is optimized for each xt separately. π = {u0, . . . , uT−1} is optimal a policy.
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Inventory problem

• xt = 0, 1, 2 stock available at the beginning of period t.

• ut stock ordered at the beginning of period t. Maximum storage is 2: ut ≤ 2 − xt.

• wt = 0, 1, 2 demand during period t with p(w = 0, 1, 2) = (0.1, 0.7, 0.2); excess demand is lost.

• ut is the cost of purchasing ut units. (xt + ut − wt)2 is cost of stock at end of period t.

xt+1 = max(0, xt + ut − wt)

C(x0, u0:T−1) =

〈 t=2∑
t=0

ut + (xt + ut − wt)2
〉

Planning horizon T = 3.
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Inventory problem
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Apply Bellman Equation

Jt(xt) = min
ut
〈R(xt, ut,wt) + Jt+1( f (xt, ut,wt))〉

R(x, u,w) = u + (x + u − w)2

f (x, u,w) = max(0, x + u − w)

Start with J3(x3) = 0,∀x3.
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Dynamic programming in action

Assume we are at stage t = 2 and the stock is x2. The cost-to-go is what we order u2 and how
much we have left at the end of period t = 2.

J2(x2) = min
0≤u2≤2−x2

u2 +
〈
(x2 + u2 − w2)2

〉
= min

0≤u2≤2−x2

(
u2 + 0.1 ∗ (x2 + u2)2 + 0.7 ∗ (x2 + u2 − 1)2

+ 0.2 ∗ (x2 + u2 − 2)2
)

J2(0) = min
0≤u2≤2

(
u2 + 0.1 ∗ u2

2 + 0.7 ∗ (u2 − 1)2 + 0.2 ∗ (u2 − 2)2
)

u2 = 0 : rhs = 0 + 0.7 ∗ 1 + 0.2 ∗ 4 = 1.5

u2 = 1 : rhs = 1 + 0.1 ∗ 1 + 0.2 ∗ 1 = 1.3

u2 = 2 : rhs = 2 + 0.1 ∗ 4 + 0.7 ∗ 1 = 3.1

Thus, u2(x2 = 0) = 1 and J2(x2 = 0) = 1.3
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Inventory problem

The computation can be repeated for x2 = 1 and x2 = 2, completing stage 2 and subsequently for
stage 1 and stage 0.
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Exercise: Two ovens

A certain material is passed through a sequence of two ovens. Aim is to reach pre-specified final
product temperature x∗ with minimal oven energy.

x0,1,2 are the product temperatures initially, after pasing through oven 1 and after passing through
oven 2. u0,1 are the oven temperatures. The dynamics is

xt+1 = (1 − a)xt + aut t = 0, 1

C = r(x2 − x∗)2 + u2
0 + u2

1

• Find the optimal control solution u0, u1.

• Show that adding mean zero noise to the dynamics (xt+1 = (1 − a)xt + aut + wt with 〈wt〉 = 0),
does not change the optimal control solution.
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Example: Two ovens

End cost-to-go is J(2, x2) = r(x2 − x∗)2.

J(1, x1) = min
u1

(
u2

1 + J(2, x2)
)

= min
u1

(
u2

1 + r((1 − a)x1 + au1 − x∗)2
)

u1 = µ1(x1) =
ra(x∗ − (1 − a)x1)

1 + ra2

J(1, x1) =
r((1 − a)x1 − x∗)2

1 + ra2

J(0, x0) = min
u0

(
u2

0 + J(1, x1)
)

= min
u0

(
u2

0 +
r((1 − a)x1 − x∗)2

1 + ra2

)
= min

u0

(
u2

0 +
r((1 − a)((1 − a)x0 + au0) − x∗)2

1 + ra2

)
u0 = µ0(x0) =

r(1 − a)a(x∗ − (1 − a)2x0)
1 + ra2(1 + (1 − a)2)

J(0, x0) =
r((1 − a)2x0 − x∗)2

1 + ra2(1 + (1 − a)2)
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Comments

• Linear Quadratic Control: Solution can be obtained in closed form because problem is linear
quadratic.

• Certainty equivalence: Optimal control solution is unaffected by noise:

xt+1 = (1 − a)xt + aut + wt t = 0, 1

C = r(x2 − x∗)2 + u2
0 + u2

1

with 〈wt〉 = 0.Then

J(1, x1) = min
u1

(
u2

1 +
〈
r((1 − a)x1 + au1 + w1 − x∗)2

〉)
= min

u1

(
u2

1 + r((1 − a)x1 + au1 − x∗)2 + r 〈w1〉
2
)
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Continuous limit

Replace t + 1 by t + dt with dt → 0.

xt+dt = xt + f (xt, ut, t)dt

C(x0, u0→T ) = φ(xT ) +

∫ ′

0
dτR(τ, x(τ), u(τ))

Assume J(x, t) is smooth.

J(t, x) = min
u

(R(t, x, u)dt + J(t + dt, x + f (x, u, t)dt))

≈ min
u

(R(t, x, u)dt + J(t, x) + ∂tJ(t, x)dt + ∂xJ(t, x) f (x, u, t)dt)

−∂tJ(t, x) = min
u

(R(t, x, u) + f (x, u, t)∂xJ(x, t))

with boundary condition J(x,T ) = φ(x).
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Continuous limit

−∂tJ(t, x) = min
u

(R(t, x, u) + f (x, u, t)∂xJ(x, t))

with boundary condition J(x,T ) = φ(x).

This is called the Hamilton-Jacobi-Bellman Equation.

Computes the anticipated potential J(t, x) from the future potential φ(x).
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Example: Mass on a spring

The spring force Fz = −z towards the rest position and control force Fu = u.

Newton’s Law
F = −z + u = mz̈

with m = 1.

Control problem: Given initial position and velocity z(0) = ż(0) = 0 at time t = 0, find the control
path −1 < u(0→ T ) < 1 such that z(T ) is maximal.
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Example: Mass on a spring

Introduce x1 = z, x2 = ż, then

ẋ1 = x2

ẋ2 = −x1 + u

The end cost is φ(x) = −x1; path cost R(x, u, t) = 0.

The HJB takes the form:

−∂tJ = min
u

(
x2
∂J
∂x1
− x1

∂J
∂x2

+
∂J
∂x2

u
)

= x2
∂J
∂x1
− x1

∂J
∂x2
−

∣∣∣∣∣ ∂J
∂x2

∣∣∣∣∣ , u = −sign
(
∂J
∂x2

)
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Example: Mass on a spring

We try J(t, x) = ψ1(t)x1 + ψ2(t)x2 + α(t). The HJBE reduces to the ordinary differential equations

ψ̇1 = ψ2

ψ̇2 = −ψ1

α̇ = −|ψ2|

These equations must be solved for all t, with final boundary conditions ψ1(T ) = −1, ψ2(T ) = 0 and
α(T ) = 0.

Note, that the optimal control only requires ∂xJ(x, t), which in this case is ψ(t) and thus we do not
need to solve α. The solution for ψ is

ψ1(t) = − cos(t − T )

ψ2(t) = sin(t − T )
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Example: Mass on a spring

The optimal control is
u(x, t) = −sign(ψ2(t)) = −sign(sin(t − T ))

As an example consider T = 2π. Then, the optimal control is

u = −1, 0 < t < π

u = 1, π < t < 2π
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Pontryagin minimum principle

The HJB equation is a PDE with boundary condition at future time. The PDE is solved using
discretization of space and time.

The solution is an optimal cost-to-go for all x and t. From this we compute the optimal trajectory
and optimal control.

An alternative approach is a variational approach that directly finds the optimal trajectory and opti-
mal control.
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Pontryagin minimum principle

We can write the optimal control problem as a constrained optimization problem with independent
variables u(0→ T ) and x(0→ T )

min
u(0→T ),x(0→T )

φ(x(T )) +

∫ T

0
dtR(x(t), u(t), t)

subject to the constraint
ẋ = f (x, u, t)

and boundary condition x(0) = x0.

Introduce the Lagrange multiplier function λ(t):

C = φ(x(T )) +

∫ T

0
dt

[
R(t, x(t), u(t)) − λ(t)( f (t, x(t), u(t)) − ẋ(t))

]
= φ(x(T )) +

∫ T

0
dt[−H(t, x(t), u(t), λ(t)) + λ(t)ẋ(t))]

−H(t, x, u, λ) = R(t, x, u) − λ f (t, x, u)
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Derivation PMP

The solution is found by extremizing C. This gives a necessary but not sufficient condition for a
solution.

If we vary the action wrt to the trajectory x, the control u and the Lagrange multiplier λ, we get:

δC = φx(x(T ))δx(T )

+

∫ T

0
dt[−Hxδx(t) − Huδu(t) + (−Hλ + ẋ(t))δλ(t) + λ(t)δẋ(t)]

= (φx(x(T )) + λ(T )) δx(T )

+

∫ T

0
dt

[
(−Hx − λ̇(t))δx(t) − Huδu(t) + (−Hλ + ẋ(t))δλ(t)

]
For instance, Hx =

∂H(t,x(t),u(t),λ(t))
∂x(t) .

We can solve Hu(t, x, u, λ) = 0 for u and denote the solution as

u∗(t, x, λ)

Assumes H convex in u.
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The remaining equations are

ẋ = Hλ(t, x, u∗(t, x, λ), λ)

λ̇ = −Hx(t, x, u∗(t, x, λ), λ)

with boundary conditions
x(0) = x0 λ(T ) = −φx(x(T ))

Mixed boundary value problem.
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Again mass on a spring

Problem

ẋ1 = x2, ẋ2 = −x1 + u

R(x, u, t) = 0 φ(x) = −x1

Hamiltonian

H(t, x, u, λ) = −R(t, x, u) + λ′ f (t, x, u) = λ1x2 + λ2(−x1 + u)

H∗(t, x, λ) = λ1x2 − λ2x1 − |λ2| u∗ = −sign(λ2)

The Hamilton equations

ẋ =
∂H∗

∂λ
⇒ ẋ1 = x2, ẋ2 = −x1 − sign(λ2)

λ̇ = −
∂H∗

∂x
⇒ λ̇1 = λ2, λ̇2 = −λ1

with x(t = 0) = x0 and λ(t = T ) = (1, 0).
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Example

Consider the control problem:

dx = udt

C =
α

2
x(T )2 +

∫ ′

t0

dt
1
2

u(t)2

with initial condition x(t0).

Solve the control problem using the PMP formalism.
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Solution

The PMP recipe is

1. Construct the Hamiltonian

H(t, x, u, λ) = −R(t, x, u) + λ f (t, u, x) = −
1
2

u2 + λu

2. Construct the optimized Hamiltonian

H∗(t, x, λ) = H(t, x, u∗, λ) =
1
2
λ2 u∗ = λ

3. Solve the Hamilton equations of motion

dx
dt

=
∂H∗

∂λ
= λ

dλ
dt

= −
∂H∗

∂x
= 0

with boundary conditions x(t0) and λ(t = T ) = −αx(T )6. The solution for λ is constant λ(t) = λ =

−αx(T ). The solution for x(t) is

x(t) = x(t0) + λ(t − t0)
6Note, that φ(x) = α

2 x2 so that φx = αx.
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Combining these two results, we get λ = −αx(T ) = −α(x(t0) + λ(T − t0)), or

λ =
−αx(t0)

1 + α(T − t0)

Since u∗ = λ, this is the optimal control law.
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Relation to classical mechanics

The equations look like classical mechanics

ẋ = Hλ(t, x, u∗(t, x, λ), λ) x(0) = x0

λ̇ = −Hx(t, x, u∗(t, x, λ), λ) λ(T ) = −φx(x(T ))

In classical mechanics H is called the Hamiltonian. Consider the time evolution of H:

Ḣ = Ht + Huu̇ + Hx ẋ + Hλλ̇ = Ht

H(t, x, u, λ) = −R(t, x, u) + λ f (t, u, x)

So, for problems where R, f do not explicitly depend on time, H is a constant of the motion.
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Example

Consider the control problem:

dx = udt

C =

∫ ′

t0

dt
1
2

u(t)2 + V(x(t))

with initial condition x(t0).

1. H(x, u, λ) = −1
2u2 − V(x) + λu

2. u∗ = λ, H∗(x, λ) = 1
2λ

2 − V(x)
3.

ẋ =
∂H∗

∂λ
= λ λ̇ = −

∂H∗

∂λ
=
∂V(x)
∂x

Control cost V play role of minus potential energy.
Control solution has constant difference of kinetic energy and state cost
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Comments

The solution of the HJB PDE is expensive.

The PMP method is computationally less complicated than the HJB method because it does not
require discretisation of the state space.

HJB generalizes to the stochastic case, PMP does not (at least not easy).
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Stochastic control
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Stochastic differential equations

Consider the random walk on the line:

Xt+1 = Xt + ξt ξt = ±1

with x0 = 0. We can compute

Xt =

′∑
i=1

ξi

Since xt is a sum of random variables, xt becomes Gaussian distributed with

Ext =

′∑
i=1

Eξi = 0

Vxt =

′∑
i, j=1

Vξi = t

Note, that the fluctuations ∝
√

t.
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Stochastic differential equations

In the continuous time limit we define

dXt = Xt+dt − Xt = dWt

with dWt an infinitesimal mean zero Gaussian variable: EdWt = 0,VdWt = νdt.

Then with initial condition x1 at t1

Xt = x1 +

∫ ′

t1

dWs EXt = x0 VXt = νt

is called a Wiener process or Brownian motion.

Since the increments are independent, Xt is Gaussian distributed

p(x2, t2|x1, t1) =
1

√
2πν(t2 − t1)

exp
(
−

(x2 − x1)2

2ν(t2 − t1)

)
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Stochastic differential equations

Consider the stochastic differential equation

dXt = f (Xt, t)dt + dWt

Wt is a Wiener process.

In this case ρ(x2, t2|x1, t1) may be very complex and is generally not known.

Define ρ(x, t) = p(x, t|x0, 0). Then (Fokker-Planck forward equation)

∂tρ(x, t) = −∇( f (x, t)ρ(x, t)) +
1
2
ν∇2ρ(x, t), ρ(x, 0) = δ(x − x0)

Define ψ(x, t) = p(z,T |x, t). Then (Kolmogorov backward equation)

−∂tψ(x, t) = f (x, t)∇ψ(x, t) +
1
2
ν∇2ψ(x, t) ψ(x,T ) = δ(z − x)
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Example: Brownian motion

Xt = x0 +

∫ ′

0
dWs

ρ(x, t) = p(x, t|x0, 0) =
1
√

2πνt
exp

(
−

(x − x0)2

2νt

)
ψ(x, t) = p(z,T |x, t) =

1
√

2πν(T − t)
exp

(
−

(x − z)2

2ν(T − t)

)
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Stochastic optimal control

Consider a stochastic dynamical system

dXt = f (t, Xt, u)dt + dWt

Wt is a Wiener process with EdW2
t = ν(t, x, u)dt. 7

The cost becomes an expectation:

C(t, x, u) = E

(
φ(XT ) +

∫ T

t
dτR(t, Xt, u(Xt, t))

)
over all stochastic trajectories starting at x with control function u(·, t).

Optimize with respect to the set of functions u(·, t).

7Our notation is for one dimensional X, but the theory generalizes trivially to higher dimension.
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Stochastic optimal control

We obtain the Bellman recursion

J(t, xt) = min
ut

R(t, xt, ut)dt + EJ(t + dt, Xt+dt)

J(t + dt, xt + dXt) = J(t, xt) + dt∂tJ(t, xt) + dXt∂xJ(t, xt) +
1
2

dX2
t ∂

2
xJ(t, xt)

EJ(t + dt, xt + dXt) = J(t, xt) + dt∂tJ(t, xt) + f dt∂xJ(t, xt) +
1
2
νdt∂2

xJ(t, xt)

because EdXt = f dt and EdX2
t = νdt + ( f dt)2 = νdt + O(dt2).

Thus (Stochastic Hamilton-Jacobi-Bellman equation)

−∂tJ(t, x) = min
u

(
R(t, x, u) + f (x, u, t)∂xJ(x, t) +

1
2
ν(t, x, u)∂2

xJ(x, t)
)

with boundary condition J(x,T ) = φ(x).
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Linear Quadratic control

The dynamics is linear

dXt = [A(t)Xt + B(t)ut + b(t)]dt +

m∑
j=1

(C j(t)Xt + D j(t)ut + σ j(t))dW j,
〈
dW jdW j′

〉
= δ j j′dt

The cost function is quadratic

φ(x) =
1
2

x′Gx

R(x, u, t) =
1
2

x′Q(t)x + u′S (t)x +
1
2

u′R(t)u

In this case the optimal cost-to-go is quadratic in x:

J(t, x) =
1
2

x′P(t)x + α′(t)x + β(t)

ut = −Ψ(t)xt − ψ(t)
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Substitution in the HJB equation yields ODEs for P, α, β:

−Ṗ = PA + A′P +

m∑
j=1

C′jPC j + Q − Ŝ ′R̂−1Ŝ

−α̇ = [A − BR̂−1Ŝ ]′α +

m∑
j=1

[C j − D jR̂−1Ŝ ]′Pσ j + Pb

β̇ =
1
2

∣∣∣∣∣ √R̂ψ
∣∣∣∣∣2 − α′b − 1

2

m∑
j=1

σ′jPσ j

R̂ = R +

m∑
j=1

D′jPD j

Ŝ = B′P + S +

m∑
j=1

D′jPC j

Ψ = R̂−1Ŝ

ψ = R̂−1(B′α +

m∑
j=1

D′jPσ j)

with P(t f ) = G and α(t f ) = β(t f ) = 0.
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Example

Find the optimal control for the dynamics

dXt = udt + dWt,
〈
dW2

t

〉
= νdt

C =

〈
1
2

Gx(T )2 +

∫ ′

0
dt

1
2

u(x, t)2
〉

with end cost φ(x) = 1
2Gx2 and path cost R(x, u) = 1

2u2.
(A = 0, B = 1, b = 0,C = D = 0, σ j =

√
ν,m = 1, R̂ = 1, Ŝ = P,Ψ = P, ψ = α)

The Ricatti equations reduce to

Ṗ = P2 P(T ) = G

α̇ = Pα α(T ) = 0

β̇ =
1
2
α2 −

1
2
νP

The solution is α(t) = 0 and

P(t) =
1

c − t
1

c − T
= G

and β not relevant.
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u(x, t) = −P(t)x − α(t) = −
Gx

1 + G(T − t)

Compare with deterministic case considered earlier, is identical due to certainty equivalence.
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When G → ∞ we obtain the Brownian bridge The control law and dynamics becomes

dx = udt + dξ

u =
−x(t0)
T − t0

x(T )→ 0 w.p. 1.
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Example

Find the optimal control for the dynamics

dXt = udt + dWt,
〈
dW2

t

〉
= νdt

with end cost φ(x) = 0 and path cost R(x, u) = 1
2(Qx2 + Ru2).

The Ricatti equations reduce to

−Ṗ = Q − R−1P2

−α̇ = −R−1Pα = 0

β̇ = −
1
2
νP

with P(T ) = α(T ) = β(T ) = 0 and

u(x, t) = −R−1P(t)x
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The solution is

P(t) =
√

RQ tanh

√Q
R

(T − t)


α(t) = 0

β(t) =
1
2
νR log cosh

√Q
R

(T − t)


Ψ(t) = R−1P(t) ψ(t) = 0

The control is given by Eq. ??:

u(x, t) = −R−1P(t)x (2)
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Comments

Note, that in the last example the optimal control is independent of ν, i.e. optimal stochastic control
equals optimal deterministic control.

In general:

• If C j = D j = 0 (only ’additive noise’) Ṗ, α̇ independent of noise σ, β̇ depends on σ, but control
independent of β. Thus control independent of σ (certainty equivalence)

• If C j , 0 or D j , 0, control depends on C j,D j, σ j (no certainty equivalence)
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Example: Portfolio selection
8 Consider a market with p stocks and one bond. The bond price process is subject ot the following
deterministic ordinary differential equation:

dP0(t) = r(t)P0(t)dt, P0(0) = p0 > 0 (3)

The other assets have price processes Pi(t), i = 1, . . . , p satisfying stochastic differential equations

dPi(t) = Pi(t)

bi(t)dt +

m∑
j=1

σi j(t)dξ j(t)

 , Pi(0) = pi > 0 (4)

Consider an investor whose total wealth at time t is denoted by x(t)

x(t) =

p∑
i=0

Ni(t)Pi(t) (5)

with Ni the number of stocks/bond of type i. For given Ni(t),

dx(t) =

p∑
i=0

Ni(t)dPi(t) =

r(t)x(t) +

p∑
i=1

(bi(t) − r(t))ui(t)

 dt +

p∑
i=1

m∑
j=1

σi j(t)ui(t)dξ j(t) (6)

with ui(t) = Ni(t)Pi(t), i = 1, . . . , p the rescaled control variable.
8 This section is from [Yong and Zhou, 1999] section 6.8 (pg. 335).
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The objective of the investor is to maximize the mean terminal wealth
〈
x(t f )

〉
and minimize at the

same time the variance
Σ2 =

〈
x(t f )2

〉
−

〈
x(t f )

〉2

This is a multi-objective optimization problem with an efficient frontier of optimal solutions: for each
given mean there is a minimial variance.

These pairs can be found by minimizing the single objective criterion

µΣ2 −
〈
x(t f )

〉
(7)

for different values of the weighting factor µ.

This objective, however, is not an expectation value of some stochastic quantity due to the 〈·〉2 term.
Consider a slightly different problem, minimizing the objective〈

µx(t f )2 − λx(t f )
〉

(8)

which is of the standard stochastic optimization form. One can show that one can construct a
solution of Problem 7 by solving problem 8 for suitable λ(µ). 9

Our goal is thus to minimize eq. 8 subject to the stochastic dynamics eq. 6.
9 and finding λ from

λ = 1 + 2µ
〈
x(t f )

〉
(λ, µ)

([Yong and Zhou, 1999] Theorem 8.2 pg. 338)
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This is an LQ problem. The solution is computed from the Ricatti equations

ui(x, t) = ψi(t)x + φi(t)

As an example we consider the simplest possible case: p = m = 1 and r, b, σ independent of time.
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Efficient boundary
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Parameter values are: p = m = 1. Trading period is one year weekly. annual bond rate 5 %
(r = 0.0009758), annual expected stock rate is 10 % (b = 0.0019), volatility σ = 2b. x0 = 2. Shows
var x versus 〈x〉 scatter plot for various values of µ. Small µ corresponds to risky investments with
high expected return and large fluctuation. µ→ ∞ corresponds to riskless investment in bond only
and a return of 5 %.

µ = 10 corresponds to 〈x〉 = 3 and
√

var = 0.2.
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Making money
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Simulation of optimal control with µ = 10, The optimal strategy is to borrow many stocks and sell
them as soon as the objective is achieved.

Indeed, 〈x〉 = 3 as expected. The strategy to get at this 50 % increase in wealth is to buy many
stocks and hope they will give the expected wealth increase. As soon as this occurs, all stocks are
sold and the money is put in the bank. 10

10 When? Say borrow 50, find t such that

(2 + 50)(1 + bt) − 50(1 + rt) = 3 50(b − r)t ≈ 1
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Path integral control

The n-dimensional path integral control problem is defined as

dXt = f (Xt, t)dt + g(x, t)(u(Xt, t)dt + dWt)

C(t, x, u) = E

(
φ(XT ) +

∫ T

t
dsV(Xs, s) +

1
2

u′(Xs, s)Ru(Xs, s)
)

with EdWtdW ′
t = νdt. g is n × m matrix, ν is m × m matrix and u, dWt are m dimensional.

The cost is an expectation over all stochastic trajectories starting at x with control function u(x, t).

The stochastic HJB equation becomes

−∂tJ = min
u

(
1
2

u′Ru + V + (∇J)′( f + gu) +
1
2

Tr
(
gνg′∇2J

))
which we need to solve with end boundary condition J(x, t f ) = φ(x) for all x.
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