
Convolutional
Neural Networks

QSB 2018: Learning and Artificial intelligence – Tutorial session 3

Giulio Matteucci

Neural network architectures for computer vision tasks

representing them with pixel intensity values input x ∈ 𝑹𝒏 where n = nx x ny x nc … is large!

fully connected networks do not scale well to
real world computer vision problems!

number of parameters (weights) grows quadratically with resolution

Can we exploit our prior knowledge about the the visual
world to design a better architecture for vision?

ny

nx

nc

Images are high dimensional!

Start from two considerations about natural visual input ….

1
natural images are made of sparse, local
independent components …

visual features are local

visual scenes are made of (often) repeated elementsbecause …

2 visual features can show up everywhere
natural image statistics is (approximately)
stationary across visual space

visual objects undergo identity preserving transformations (e.g. translation)because …

Hyvärinen et al. “Natural Image Statistics”, 2009

neurons as filters…. dot product measures similarity
neurons search for the pattern
stored in their weighs in input

… when input vector is similar enough to weight vector: response = preferred feature is detected

𝑖

𝑤𝑖 𝑥𝑖 + 𝑏

𝑓

𝑖

𝑤𝑖 𝑥𝑖 + 𝑏

𝑓
𝑤1𝑥1

𝑤2𝑥2

𝑤0𝑥0

𝑥0
𝑤0

input “axon”

output “axon”

“synapse”

“dendrite”

“soma”

learn small localized filters:1 … to do so let’s keep spatial structure (i.e. do not flatten input)

Eg: nx=ny=200 ---> 40000
parameters per unit

Costly and inefficient!

nx x ny parameters per hidden unit h x w parameters per hidden unit

Eg: h=w=4 ---> 16
parameters per unit

Cheap and efficient!

locally connected units

h

w

✓

fully connected units

learning global filters for local features learning local filters for local features

2

𝒚𝒊,𝒋 =

𝒌=−𝑲

𝑲

𝒍=−𝑳

𝑳

𝒙𝒊−𝒌,𝒋−𝒍𝒘𝒌,𝒍

convolution operationreuse localized filters unaltered across different part of image

applying convolution
output naturally shrinks

-2 2 1 2 1

0 1 2 -1 1 -3 0

1 0 -1

filter
2 1 2

1 2 -1 1 -3input

output

We can avoid this …

adding 0s at the
input border

nout = (nin – f) +1

nout = (nin + 2p – f) +1

p=0 | nin≠nout called: “valid” convolution p | nin=nout called: “same” convolution

padded
convolution

f

p

nin

nout

1 1 -1

filter

𝒇𝟒

unit of interest

𝒍𝒌 = 𝒍𝒌−𝟏 + 𝒇𝒌 − 𝟏

-2 2 1 2 -1

0 1 2 -1 1 -3

-2 2 1 1

1 2 -1 1 -3

2 3 -2 1 -2 2 -1

1 1 1 -3 2

1 -1 1

𝒍𝟒

input

layer k=1

layer k=2

layer k=3

layer k=4

for the kth one, recursively:

• grow as of f-1 each next layer

• equal to filter size in first layer

region of the input space from which a
given neuron receives information from

when cascading multiple convolution operations useful to introduce: receptive field (RF)

with: 𝒍𝟏 = 𝒇𝒌

1 0 -1

filter
change the

“step” of filter
displacement

-2 1 1

0 1 2 -1 1 -3 0

nout =
(nin + 2p – f) +1

𝑺

strided
convolution

…. considering stride (and padding)
the output size will be:

s = stride

p = padding

f = filter dimension

with

modern CNNs use very small filters (e.g. 3x3) to develop selectivity for meaningful pattern we need larger RF!

we may want to make them grow faster …

𝒍𝒌 = 𝒍𝒌−𝟏 + 𝒇𝒌 − 𝟏 ς𝒊=𝟏
𝒌−𝟏 𝒔𝒊in this way RF size can grow faster:

strided convolution also act as a downsampling
greatly reducing output size

s

convolutional layer

ncout

filter output will form a “feature map” we are learning multiple filters, acting on all input channels together…

with

nxout

nyout

stack different feature maps on the third dimension (as different channels):

size of output volume:

nxout =
(nxin + 2p – fx) +1

𝑺

nyout =
(nyin + 2p – fy) +1

𝑺

ncout = nf

nf = number of filters

fx,fy= filters size

nxin,nyin= input size

s = stride

p = padding

Karpathy 2016

example of convolution of an edge detecting filter:

1 2 1

0 0 0

-1 -2 -1

Sobel filter

from setosa.io

neuron connected to a small region of
input only (localized receptive field)

learning convolutional
filters to enforce …

sparsity of connections

parameter sharing
whole input space tiled with RF re-using
the same parameters (feature maps)

reminiscent of how visual information is represented across the brain surface

retinotopic maps localized feature detectors

1

2

solving FCN bad scaling:

2 ... we may want to hardwire some amount of translation tolerance in our network!

𝒑𝒐𝒐𝒍 𝒊,𝒋 = 𝒙𝒊−𝒌,𝒋−𝒍 with k=1,..fy and l=1,..fx𝒚𝒊,𝒋 = 𝒎𝒂𝒙 𝒑𝒐𝒐𝒍 𝒊,𝒋

3 2

1 2

1 0

3 4

1 1

5 6

2 4

7 8

3

6

4

8

nyin

nxin

max pool with
fx=fy=2 and s=2

nyout

nxout

pooling operation
convolutionally apply a
“max” filter to the input

usually done with stride
s=fx=fy to have non-

overlapping subregions

nonlinear blur and down
sampling “replacing” a

subregions with their max value

with

thinking to

pooling operation will be applied to convolutional layer volumes independently to each feature map …

individual feature map
dimension of output volume:

nxout =
(nxin + 2p – fy) +1

𝑆
nyout =

(nyin + 2p – fx) +1
𝑆

ncout = nf but since usually p=0, s=2 and fx=fy=2 …

nyout =
nyin
𝟐

nxout =
nxin
𝟐

also for RF size calculation old formula still holds

number of parameters reduced by 75%

• less computationally expansive

• less likely to overfit
Karpathy 2016

max-like pooling computation

max pooling

co
m

p
le

x
ce

ll
si

m
p

le
 c

e
llsposition selective

oriented edge
detector neuron

position tolerant
oriented edge

detector neuron

underlie transformation tolerance build up observed
through the primate shape processing stream …

a classical example …

V1 simple &
complex cells

input image output representation

fe
at

u
re

s
conv1 pool1 conv2 pool2 conv3 pool3 conv4

low level high level

combine simpler features to build more complex ones

… more and more abstract … categorial

global

trsf. invariant

noncategorical

local

trsf. sensitive

Lee et al. 2009

read out of task-
relevant information

we can consider stacks of convolutional layers as visual feature extractors …

Features learned in solving one supervised task can frequently be useful in different contexts.

... depends on how distant task domain involved are!

transfer learning re-use the first N-layers of a network with pre-trained weights (on different task)

No need to learn every feature from scratch for new tasks!

extends applicability of deep learning in the small data regime

close domains
face recognition & face recognition &

emotion recognition
far domains

common high-level features high N only low-level features in common low N

… how far in depth push N?

satellite image classification

input image
(face)

fe
at

u
re

s

conv1 pool1 conv2 pool2

imagine to start with a trained face recognition system

high level features will be poorly trasferable (too domain specific):

now you want a car model recognition one

strip away last layers!

conv3 pool3 conv4

so
ftm

ax laye
r

p(identity|face)

input image
(car)

fe
at

u
re

s

conv1 pool1 conv2 pool2 conv3 pool3 conv4

so
ftm

ax laye
r

p(model|car)

you are left with a general purpose middle-level feature extractor ontop of that stick some new conv
layers and a new softmax output

with training (much less) you will build new car-specific high-level features and a working classifier

• response latency increase

hierarchical structure of CNNs layers (and features)

reminiscent of anatomical and functional
hierarchy of visual pathways:

• RF size increase

• tuning complexity increase

• transformation tolerance increase

may be interpreted as reflecting the compositionality of the
visual world (objects are made of parts and subpart etc…)

ventral stream

• linear decodability increase

V1
V2

V4 PIT

CIT

AIT

Huberman et al. 2011

S1

C1

S2

C2

(Riesenhuber & Poggio 1999)

S: shape selectivity build-up (AND-like operations)

C: transformation tolerance build-up (OR-like operations)

this kind of hierarchical brain processing of visual shape information has been modelled throughout the years (80’, 90’) …

... from Fukushima’s Neocognitron to Poggio’s HMAX model

biologically-derived ideas instantiated by these models
inspired the birth of modern CNNs architectures …

Riesenhuber et al. 1999

… first of which was Yan LeCun’s LeNet (‘98)

• 𝟔𝟎 ∙ 𝟏𝟎𝟑 parameters (small)

• first applying stack of conv and pool layers followed by fc ones
• conv filter size 5x5 (p=0 ↔ “valid”, s=1)

first successful convnet (handwritten digit recognition)

• shallow: 2 conv layers interleaved with pooling
• pooling filter size 2x2 (p=0, s=2)

Ng. 2017

AlexNet

• deep: 5 conv layers (not always interleaved by pooling ones) followed by fc

• avoid vanishing gradients: first to use ReLU activations instead of sigmoid for conv layers

• improve training: used dropout, data augmentation and SGD with momentum

popularized CNNs significantly outperforming competitors in ILSVRC 2012 (top 5 error to 16% from 26%)

• 𝟔𝟎 ∙ 𝟏𝟎𝟔 parameters (bigger) • variable filter size, stride and padding

size 3x3 (p=0, s=2)“same” s=1

Ng. 2017

• 𝟏𝟑𝟖 ∙ 𝟏𝟎𝟔 parameters (big, but pretrained model available for plug and play use in Keras API)

showed that the depth of the network is a critical component performance (second place at ILSVRC 2014)

• deeper: 13 conv layers (5 “blocks” of conv layers + pooling) + 3 fc

• homogeneous: only 3x3 conv filters (p=1 ↔ “same”, s=1) + 2x2 pooling (p=0, s=2)

VGG16

• reducing filter size to increase depth pays off
feature map size ↓ (pool)
number of feature ↑ (conv)

11x11Ng. 2017

… however their behaviour is surprisingly brittle!

more recently

28.2

25.8

16.4

11.7

7.3
6.7

3.57

ILSVRC10ILSVRC11ILSVRC12
AlexNet

ILSVRC13ILSVRC14
VGG

ILSVRC14
GoogleNet

ILSVRC15
ResNet

5.1

human
performance

Im
ag

eN
et

 t
o

p
-5

 e
rr

o
r

(%
)

Deeper architectures matched or surpassed
human performance in many domains …

… from image classification to
face recognition and CAPTCHAs

still a lot to do to improve robustness/generalization capacity …

imperceptible (purposely crafted) perturbation of input may produce huge change in output class probability

adversarial attack
add small perturbation computed as a

function of parameters to fool the network

original example

correctly
classified image

confidently
misclassified image

𝜀 ∙ 𝑠𝑖𝑔𝑛 ∇𝑥𝐽 𝜃, 𝑥, 𝑦

panda with 57.7%
confidence

gibbon with 99.9%
confidence

𝑥 𝑥

adversarial example

structured attack
image

many other kinds of adversarial attacks exist (additive patterns, transformation/deformations)

fast gradient
sign method

e.g.

far from human in this sense!

Goodfellow. 2014

however ... you are sensitive to “adversarial attacks” too! (even if different kind) Pinna's Illusione.g.

enable to learn more from less data, faster, and at
a higher level of abstraction

assumptions may be wrong for at least some
portion of the data (better learn than hardwire)

necessary good
(C. Manning)

necessary evil
(Y. LeCun)

Neuroscience inspire new useful
architectural priors

to be incorporated into AI systems
(+ performance benchmark)

AI provide unparalleled functional
models for cognitive processes to be

tested experimentally

CNNs success all about a specific inductive bias (prior)
an image processing system should

be local and translationally invariant

enforced through an architectural choices (conv. weight sharing/pooling)

architectural priors

Thank you!

