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Complex Environment
A SUPCh

S - Set of states mnnln nnns
o]

A - Set of actions
p(S’|S, A) - Transition probability
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Agent
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« AnMDPisatuple M = (S, A,R,P)
e Actions lead to state transitions

« Rewards are released on state transitions
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No actions: No states:

e (Classical conditioning  Bandits!
(Markov Reward Process)

e Multiple actions a € A

e Each action aleads to a reward rwith
probability P(R;:|A¢)

One-armed bandit:
1899 "Liberty Bell" machine
[Wikimedia Commons]

Winter School on Quantitative Systems Biology November 20, 2018 4/16
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Which of the £ arms should I play?

Compute value of arms: Select an action:
* Simplest algorithm: e Greedy:
“Averaging” a; = argmax,Q¢(a)
e g e Purely exploitative,
Qula) = —Fx 1 -
t(a) — no exploration

o Iterative algorithm:

Qit1(a) = Qi(a) + (RN, (a) — Qt(a)]

Ni(a)
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e Epsilon greedy
argmax,(¢(a), with probability 1 — e
a+ —
! random a, with probability e
e Usually the greedy action is chosen

* But with probability € choose a random action

 — Stochastic exploration
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 Upper Confidence Bound

B In(t)
a; = argmax, <Qt(a) +c N (a))

* On top of quality of action
uncertainty is also considered

 — Deterministic exploration
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 Bayesian approach

Plikelihood
Pposterior — Pprior
Pevidence

p(OD) = P 00D ) < Qlai)

 Thompson Sampling:
Sample from the posterior distribution.

éa ~ p(eau)t)
a; = argmaX(Ep(Ttl éa)fr‘t)

 — Stochastic exploration
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Hands-on Session!
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e Back to actions and states!

» Table values of state-action pairs

Qr(s,a) = Ex (Z Y Ri41]S0 = 5, Ag = a)

t=0

Qr(s,a) =E; (R1|So=s,40=a)+

+ E; (Z V' Riy1|S1 =5, A1 = CL’)

t=1
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Qir1(8,a) = Qi(s,a) + at5t+1(Qt)H{St=s,At=a}

SARSA: 5t—|—1 = Rt_|_1 -+ ’)/Q(SH_l, At_|_1) — Q(St, At)
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Qir1(8,a) = Qi(s,a) + at5t+1(Qt)H{St=s,At=a}

Q-learning: ;11 = Ry1 + ymaxy e aQ(S;11,a") — Q(S, Ar)
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Qi+1(8,a) = Qi(s,a) + a011(Qt)fs,—5, 4, =a)
SARSA: Otr1 = Rip1 +7Q(St41, Ary1) — Q(St, Ay)
Qqlearning: 8,1 = Fyy1 + maxyeaQ(S)y1, ) — Q(Si, Ay

SARSA (on-policy) Q-learning (off-policy)

 Regular TD learning for action- Q-learning is an instance of TD
value functions learning

e Policy iteration through sampling < S’ can be S but doesn’t need to.
the quintuplet

{St7 At7 Rt—|—17 St—|—17 At—i—l}

e Allows for sampling
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 So far we had discrete state space S.
What if it is continuous? Or just too large to handle?

* Function approximation!

Qs,a) = Z 0ifi(s; a)

f z(S ; a) ... basis functions

0; ... weights

« Artificial Neural Networks for function approximation?
Sure!
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Deep Q-learning
L D -
.

e Use DNNs to represent Advantages:
the value function

[Minh et al. 2013]

 Consecutive samples have
« “Experience replay” to strong correlations (little
train value network new information)

* Better convergence behavior
when using function
approximation

 Epsilon-greedy for action
selection
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a Self-play s, s,
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[Silver et al. 2017]

Only one DNN for both,
value and policy model

Self-play is a MC tree
search guided by the policy
model

After self-play DNN is
trained.

Winter School on Quantitative Systems Biology

November 20, 2018 VAL



Reinforcement Learning David Hofmann, Emory University

e Reinforcement Learning: An Introduction. Sutton R. and
Barto A., 2nd Edition, 2018

e Algorithms for Reinforcement Learning. Szepesvari C. 2012

e A Tutorial on Thompson Sampling. Russo et al. Foundations
and Trends in Machine Learning 2018.

e Mastering the game of Go without human knowledge. Silver et
al. Nature 2017

 Playing Atari with Deep Reinforcement Learning Mnih et al.
arXiv:1312.5602 [cs] 2013

Winter School on Quantitative Systems Biology November 20, 2018



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

