
Vivado Design Flow for SoC

Crist ian Sisterna

Universidad Nacional de San Juan

Argent ina

Vivado ICTP 1

Larger FPGAs lead to more difficult design issues
◦ Users integrating more functionality into the FPGA

◦ Use of multiple hard logic objects (block RAMs, GTs, DSP slices, and microprocessors, for
example)

◦ I/O and clock planning critical to FPGA performance

◦ Higher routing and utilization density

◦ Complex timing constraints with designs that have multiple clock domains

ICTP 2

Why Vivado Design Suite?

Vivado

Vivado Design Suite provides solution to all of the above

FPGA designs are now looking like ASIC platform designs
◦ Assembled from IP cores—commercial or developed in-house

◦ Maintaining place and route solutions is very important (this is resolved with the use of
partitions)

◦ Bottom-up design methodology

◦ Team design flows becoming a necessity

Interactive design and analysis
o Timing analysis, connectivity, resource

utilization, timing constraint analysis

RTL development and analysis
o Elaboration of HDL
o Hierarchical exploration
o Schematic generation

XSIM simulator integration
o Synthesis, implementation and simulation in one

package

I/O pin planning
o Interactive rule-based I/O assignment

ICTP 3

Vivado IDE Solution

Hierarchical Design Analysis and
Implementation Environment

Vivado

ICTP 4

Embedded System Design – Vivado Flow

Spec

HDL

Elaborate

Behavioral

Verification

Synthesis

Implementation

Timing

Verification

Create Project

(Block Design)

Constraints

IPs

Bitstream

Generation /

Hardware Export

Vivado

Optional

Optional

Constraints

Constraints

Optional

Only PL

ICTP 5

Typical vs Vivado Design Flow

Vivado

Vivado Flow
Practical Steps

ICTP 6Vivado

ICTP 7

Creating a Project in Vivado

Vivado

Vivado ICTP 8

Creating a Project in Vivado

Vivado ICTP 9

Creating a Project in Vivado

Vivado ICTP 10

Creating a Project in Vivado

Vivado ICTP 11

ICTP 12

Project Navigator Main Components

1. Menu Bar: Vivado IDE commands

2. Main Toolbar: Access to the most commonly used Vivado IDE commands

3. Workspace: area for schematic panel, device panel, package panel, text editor panel.

4. Project Status Bar: displays the status of the currently active design

5. Flow Navigator: provide easy access to the tools and commands necessary to guide the
design from start to finish.

6. Project Manager Pane: by default displays information related to design data and sources,
such as Property Window, Netlist Window, and Source Window

7. Project Status Bar: displays information about menu bar and toolbar commands; task
progresses

8. Results Window Area: there are a set of windows, such as Messages, showing message
for each process, Tcl Console, Tcl commands of each activity, Reports, reports generated
throughout the design flow, Desing Runs, display the different run for the current project

Vivado

ICTP 13

Create a Block design

Vivado

ICTP 14

Adding IP Modules to the Design Canvas

Vivado

ICTP 15

Adding More IPs

Vivado

ICTP 16

PS Customization Options

Vivado

ICTP 17

PS-PL Configuration Options

Vivado

ICTP 18

MIO and EMIO Configuration

Vivado

ICTP 19

Running Block Automation

Vivado

ICTP 20

Run Connection Automation

Vivado

ICTP 21

Connecting IPs – Making Connections With the Tool

Vivado

ICTP 22

Connecting IPs – Making Connections With the Tool

Vivado

ICTP 23

Connecting IPs – Making Connections Manually

Vivado

ICTP 24

Options for External Connections

Vivado

ICTP 25

DRC (Desing Rule Check) Design Validation

Vivado

ICTP 26

DRC – Design Validation

Vivado

ICTP 27

Address Map

Vivado

ICTP 28

Generating Output Products

Vivado

ICTP 29

Creating an HDL Wrapper

Vivado

All project data is stored in a project_name directory containing the
following directories

◦ project_name.xpr file: Object that is selected to open a project (Vivado IDE
project file)

ICTP 30

Project Data and Directories

Vivado

◦ project_name.runs directory: Contains all run data

◦ project_name.srcs directory: Contains all imported local HDL source files,
netlists, and XDC files

◦ project_name.data directory: Stores floorplan and netlist data

Journal file (vivado.jou)
◦ Contains just the Tcl commands executed by the Vivado IDE

Log file (vivado.log)
◦ Contains all messages produced by the Vivado IDE, including Tcl commands and results,

info, warning, error messages, etc.

Location
◦ Linux: directory where the Vivado IDE is invoked
◦ Windows via icon: %APPDATA%\Xilinx\Vivado or

C:\Users\<user_name>\AppData\Roaming\Xilinx\Vivado
◦ Windows via command line: directory where the Vivado IDE is invoked
◦ From the GUI

◦ Select File > Open Log File

◦ Select File > Open Journal File

ICTP 31

Journal and Log Files

Vivado

Visualize and debug a design at any flow stage

◦ Cross-probing between netlist/schematic/RTL

ICTP 32

Vivado Visualization Features

Vivado

o Analyze multiple implementation results
o Highlight failing timing paths from post-route timing analysis

o Quickly identify and constrain critical logic path

ICTP 33

Gain Faster Timing Closure

Vivado

oHierarchical floorplanning
o Guide place & route toward better results

oUtilization estimates
o All resource types shown for each Pblock
o Clocks or carry chains

oConnectivity display
o I/Os, net bundles, clock domains

 Tcl Console enables the designer to actively query the design netlist

 Full Tcl scripting support in two design flows
 Project-based design flow provides easy project management by the Vivado IDE

 Non-project batch design flow enables entire flow to be executed in memory

 Journal and log files can be used for script construction

ICTP 34

Tool Command Line (.tcl) Features

Vivado

Vivado Design Suite
Elaboration Process

ICTP 35Vivado

ICTP 36

Embedded System Design – Vivado Flow

Spec

HDL

Elaborate

Behavioral

Verification

Synthesis

Implementation

Timing

Verification

Create Project

(Block Design)

Constraints

IPs

Bitstream

Generation

Vivado

o Elaboration is the RTL optimization to an FPGA technology

o Vivado IDE allows designers to import and manage RTL sources
o Verilog, System Verilog, VHDL, NGC, or testbenches

o Create and modify sources with the RTL Editor
o Cross-selection between all the views

o Sources view
o Hierarchy view: Display the modules in the design by hierarchy

o Libraries view: Display sources by category

ICTP 37

Elaboration

Vivado

Vivado Design Suite
Synthesis Process

ICTP 38Vivado

ICTP 39

Embedded System Design – Vivado Flow

Spec

HDL

Elaborate

Behavioral

Verification

Synthesis

Implementation

Timing

Verification

Create Project

(Block Design)

Constraints

IPs

Bitstream

Generation

Vivado

Constraints

Optional

o Applicable only for RTL (HDL) design flows

oEDIF is black boxed and linked after synthesis

o Synthesis tool uses XDC constraints to drive synthesis optimization

oDesign must first be synthesized without timing constraints for constraints editor usage

oXDC file must exist

o Synthesis settings provide access to additional options

ICTP 40

Vivado IDE Synthesis

Vivado

Synthesis of an RTL design not only optimizes the gate-level design
but also maps the netlist to Xilinx primitives (sometimes called

technology mapping)

ICTP 41

Logic Optimization and Mapping to Device Primitives

Vivado

Accessed through the Flow Navigator by selecting Open Synthesized Design

Representation of the design after synthesis
◦ Interconnected netlist of hierarchical and basic elements (BELs)

◦ Instances of modules/entities

◦ Basic elements

◦ LUTs, flip-flops, carry chain elements, wide MUXes

◦ Block RAMs, DSP cells

◦ Clocking elements (BUFG, BUFR, MMCM, …)

◦ I/O elements (IBUF, OBUF, I/O flip-flops)

Object names are the same as names in the elaborated netlist when possible

ICTP 42

Synthesized Design

Vivado

Vivado Design Suite
Implementacion Process

ICTP 43Vivado

ICTP 44

Embedded System Design – Vivado Flow

Spec

HDL

Elaborate

Behavioral

Verification

Synthesis

Implementation

Timing

Verification

Create Project

(Block Design)

Constraints

IPs

Bitstream

Generation

Vivado

Constraints

Optional

Vivado Design Suite Implementation process transform a logical netlist
(generated by the synthesis tool) into a placed and routed design ready for

bitstream generation

ICTP 45

Vivado Implementation Sub-Processes

• Opt design

• Optimizes the logical design to make it easier to fit onto the target FPGA

• Place design

• Places the design onto the FPGA’s logic cells

• Route design

• Routing of connections between the FPGA’s cells

Vivado

There are two types of design constraints, physical constraints and
timing constraints.

ICTP 46

Using Design Constraints for Guiding Implementation

Physical Constraints: define a relationship between logic design objects and device resources
• Package pin placement
• Absolute or relative placement of cells:

• Block RAM
• DSP
• LUTs
• Filp-Flops

• Floorplanning constraints that assign cells to general regions of an FPGA

Timing Constraints: define the frequency requirements for the design. Without
timing constraints, Vivado Design Suite optimizes the design solely for wire length and
routing congestion and makes no effort to asses or improve design performance

Vivado

o Sources and Netlist tabs do not change

o Now as each resources is selected, it will show
the exact placement of the resource on the die

o Timing results have to be generated with the
Report Timing Summary

o As each path is selected, the placement of the
logic and its connections is shown in the Device
view

o This is the cross-probing feature that helps
with static timing analysis

ICTP 47

After Implementation

Vivado

ICTP 48

Implementation Out-of-Date Message

Vivado

Software Development
Kit (SDK)

ICTP 49Vivado

ICTP 50

Embedded System Design – Vivado-SDK Flow

Spec

HDL

Elaborate

Behavioral

Verification

Synthesis

Implementation

Timing

Verification

Create Project

(Block Design)

Constraints

IPs

Hardware Export

Vivado

Vivado ICTP 51

Embedded System Design – Vivado-SDK Flow

Eclipse IDE-based Software Development Kit (SDK)
◦ Board support package creation : LibGen

◦ GNU software development tools

◦ C/C++ compiler for the ARM Cortex-A9 processor (gcc)

◦ Debugger for the ARM Cortex-A9 processor (gdb)

Board support packages (BSPs)
◦ Stand-alone BSP

◦ Free basic device drivers and utilities from Xilinx

◦ NOT an RTOS

ICTP 52

Embedded System Tools: Software

Vivado

SDK Workbench Views

C/C++ project outline displays the
elements of a project with file
decorators (icons) for easy
identification

C/C++ editor for integrated software
creation

Code outline displays elements of the
software file under development with
file decorators (icons) for easy
identification

Problems, Console, Properties views
list output information associated with
the software development flow

ICTP 53

1

2

3

4

Vivado

Software Management Settings
Software is managed in three
major areas

◦ Compiler/Linker Options

◦ Application program

ICTP 54Vivado

Software Management Settings
Software is managed in three
major areas

◦ Software Platform Settings

◦ Board support package

ICTP 55Vivado

Software Management Settings
Software is managed in three
major areas

◦ Software Platform Settings
◦ Board support package

ICTP 56Vivado

Xilinx additions to the Eclipse IDE
◦ BSP Settings
◦ Software Repositories
◦ Generate Linker Script
◦ Program the programmable logic

◦ Bitstream must be available

◦ Create Zynq Boot Image
◦ Program Flash Memory
◦ Launch XMD Console
◦ Launch Shell
◦ Configure JTAG Settings
◦ SysGen Co-Debug Settings

ICTP 57

Integrated Xilinx Tools in the SDK

Vivado

Vivado ICTP 58

Apendix

ICTP 59Vivado

Vivado Design Suite
Basic Static Timing Constraints

ICTP 60Vivado

There are three basic timing constraints applicable to a sequential
machine
◦ Period

◦ Paths between synchronous elements clocked by the reference clock net

◦ Synchronous elements include flip-flops, latches, synchronous RAM, and DSP slices

◦ Use create_clock to create the constraint

◦ Input Delay

◦ Paths between input pin and synchronous elements

◦ Use set_input_delay to create the constraint

◦ Output delay

◦ Paths between synchronous elements and output pin

◦ Use set_output_delay to create the constraint

ICTP 61

Basic Timing Constraints

Vivado

ICTP 62

Timing Paths Example

Vivado

1. Run Synthesis

2. Open the synthesized design

3. Invoke constraints editor

ICTP -63

Creating Basic Timing Constraints in Vivado IDE

Vivado

ICTP 64

Clock Constraint Setting

Vivado

ICTP 65

Clock Constraint Setting

Vivado

ICTP 66

Clock Network Report

Vivado

Vivado ICTP 67

Clock Network Report and Visualization

Up to 24 CMTs per device

One MMCM and one PLL per CMT

Two software primitives (instantiation)
◦ *_BASE has only the basic ports

◦ *_ADV provides access to all ports

PLL is primarily intended for use with the I/O phaser
for high-speed memory controllers

The MMCM is the primary clock resource for user clocks

ICTP 68

Clocking Resources: MMCM and PLL

Vivado

Clock networks are represented by nets in your RTL design
◦ The mapping of an RTL net to a clock network is managed by using the appropriate clock

buffer to generate that net

Certain resources can be inferred
◦ A primary input net (with or without an IBUF instantiated) will be mapped to a global clock

if it drives the clock inputs of clocked resources
◦ The BUFG will be inferred

◦ BUFH drivers will be inferred whenever a global clock (driven by a BUFG) is required in a
clock region
◦ BUFHs for each region required will be inferred

BUFIO, BUFR, and BUFMR cannot be inferred
◦ Instantiating these buffers tells the tools that you want to use the corresponding clock

networks

PLLs and MMCMs cannot be inferred

ICTP 69

Inference

Vivado

All clocking resources can be directly instantiated in your RTL code
◦ Simulation models exist for all resources

◦ Refer to the Library Guide for HDL Designs

◦ Use the Language Templates () tab

PLLs and MMCMs have many inputs and outputs, as well as many attributes
◦ Optimal dividers for obtaining the desired characteristics may be hard to derive

◦ The Clocking Wizard via the IP Catalog
◦ Only *_ADV available

ICTP 70

Instantiation

Vivado

Click on the IP Catalog

Expand FPGA Features and Design > Clocking

Double-click on Clocking Wizard

The Clocking Wizard walks you
through the generation of
complete clocking subsystems

ICTP 71

Invoking Clocking Wizard

Vivado

Select Primitives to be used

◦ MMCME2_ADV

◦ PLLE2_ADV

Specify the primary input frequency and
source type

◦ Optionally, select and specify secondary input clock

Select clocking features

◦ Frequency synthesis

◦ Phase alignment

◦ Dynamic phase shift
◦ …

ICTP 72

The Clocking Wizard: Clocking Options

Vivado

• Select the desired number of
output clocks

• Set the desired output
frequencies

• Select optional ports

ICTP 73

The Clocking Wizard: Output Clocks

Vivado

Change input/output port names

Change optional port names

ICTP 74

The Clocking Wizard: Port Renaming

Vivado

Shows the input, output frequencies

Other attributes depending on
the selections made

The Resource tab on the left provides
summary of type and number of
resources used

ICTP 75

The Clocking Wizard: Summary

Vivado

Reset and Clock Topology

ICTP

Embedded System Design Review 11-76

Vivado

ICTP 77

Enabling Clock for PL

Vivado

ICTP 78Vivado

SDK Compilers

ICTP

Embedded System Design Review 11-79

Vivado

GCC translates C source code into assembly language

GCC also functions as the user interface, passing options to the
GNU assembler and to the GNU linker, calling the assembler
and the linker with the appropriate parameters

Supported cross-compilers

ARM processor compiler
◦ GNU GCC (arm-xilinx-eabi-gcc)

◦ GNU Linux GCC (arm-xilinx-linux-eabi-gcc)

ICTP 80

GNU Tools: GCC

Vivado

Input: assembly language files
◦ File extension: .s

Output: object code
◦ File extension: .o

Contains
◦ Assembled piece of code
◦ Constant data
◦ External references
◦ Debugging information

Typically, the compiler automatically calls the assembler

Use the -Wa switch if the source files are assembly only and
use gcc

ICTP -81

GNU Tools: AS

Vivado

Inputs
◦ Several object files

◦ Archived object files (library)

◦ Linker script (*.ld)

Outputs
◦ Executable image (ELF)

◦ Map file

ICTP -82

GNU Tools: Linker (LD)

Vivado

Timing Reports

ICTP

Embedded System Design Review 11-83

Vivado

Tcl command: report_timing_summary
report_timing_summary -delay_type max -report_unconstrained -check_timing_verbose -max_paths 10 -input_pins -name timing_1

Vivado IDE

Options tab
◦ Maximum number of paths

Advanced tab
◦ Write to a file

Timer Settings
◦ Interconnect delay can be ignored

◦ Flight delays can be disabled

ICTP 84

Report Timing Summary

Vivado

Design Timing Summary
◦ WNS, TNS, total number

of endpoints are of
interest

Clock Summary
◦ Primary and derived clocks

Check Timing
◦ Number of unconstrained

internal endpoints

ICTP 85

Report Timing Summary

Vivado

