
Application-specific arithmetic
with FloPoCo

Florent de Dinechin
e

x

√
x2 +y2 +z2

πx

sin
e x+

y

n∑
i=

0
x i

√
x log x

Outline

FloPoCo, the user point of view

Example: Multiplication by rational constants

Example: The exponential

Example: Sin/Cos

The universal bit heap

Example: Floating-point sums and sums of products

Example: DSP Filters

Conclusion

F. de Dinechin Computing Just Right: Application-specific arithmetic 2

FloPoCo, the user point of view

FloPoCo, the user point of view

Example: Multiplication by rational constants

Example: The exponential

Example: Sin/Cos

The universal bit heap

Example: Floating-point sums and sums of products

Example: DSP Filters

Conclusion

F. de Dinechin Computing Just Right: Application-specific arithmetic 3

Here should come a demo

FloPoCo is freely available from

http://flopoco.gforge.inria.fr/

Command line syntax: a sequence of operator specifications

many parameters, plus options: target frequency, target hardware,
...

Output: synthesizable VHDL.

F. de Dinechin Computing Just Right: Application-specific arithmetic 4

http://flopoco.gforge.inria.fr/

First something classical

A single precision floating-point adder
(8-bit exponent and 23-bit mantissa)

./flopoco pipeline=no FPAdd wE=8 wF=23

Final report:

|---Entity FPAdder_8_23_uid2_RightShifter

|---Entity IntAdder_27_f400_uid7

|---Entity LZCShifter_28_to_28_counting_32_uid14

|---Entity IntAdder_34_f400_uid17

Entity FPAdder_8_23_uid2

Output file: flopoco.vhdl

To probe further:

./flopoco pipeline=no FPAdd wE=11 wF=51 double precision

./flopoco pipeline=no FPAdd wE=9 wF=36 just right for you

F. de Dinechin Computing Just Right: Application-specific arithmetic 5

Actually there are two variants

To get a larger but shorter-latency architectural variant:
./flopoco pipeline=no FPAdd wE=8 wF=23 dualpath=true

F. de Dinechin Computing Just Right: Application-specific arithmetic 6

Classical floating-point, continued

A complete single-precision FPU in a single VHDL file:
./flopoco pipeline=no FPAdd wE=8 wF=23 FPMult wE=8 wF=23

FPDiv wE=8 wF=23 FPSqrt wE=8 wF=23

Final report:

|---Entity FPAdder_8_23_uid2_RightShifter

|---Entity IntAdder_27_f400_uid7

|---Entity LZCShifter_28_to_28_counting_32_uid14

|---Entity IntAdder_34_f400_uid17

Entity FPAdder_8_23_uid2

Entity Compressor_2_2

Entity Compressor_3_2

| |---Entity IntAdder_49_f400_uid39

|---Entity IntMultiplier_UsingDSP_24_24_48_unsigned_uid26

|---Entity IntAdder_33_f400_uid47

Entity FPMultiplier_8_23_8_23_8_23_uid24

Entity FPDiv_8_23

Entity FPSqrt_8_23

Output file: flopoco.vhdl

F. de Dinechin Computing Just Right: Application-specific arithmetic 7

Damn lies

It was not a classical single-precision FPU

s exn E F

1 2 wE wF

FloPoCo floating-point format

Inspired and compatible with IEEE-754, except that

exponent size and mantissa size can take arbitrary values

0, ∞ and NaN flagged in explicit exception bits

not as special exponent values
(as a consequence, two more exponent values available in FloPoCo)

subnormal numbers are not supported

Adding 1 more exponent bit provides them all,
and is much more area-efficient

However we lose a-b==0 ⇐⇒ a==b
I HLS compiler writers, beware!

Conversions operators from/to IEEE floating point available

F. de Dinechin Computing Just Right: Application-specific arithmetic 8

Damn lies

It was not a classical single-precision FPU

s exn E F

1 2 wE wF

FloPoCo floating-point format

Inspired and compatible with IEEE-754, except that

exponent size and mantissa size can take arbitrary values

0, ∞ and NaN flagged in explicit exception bits

not as special exponent values
(as a consequence, two more exponent values available in FloPoCo)

subnormal numbers are not supported

Adding 1 more exponent bit provides them all,
and is much more area-efficient

However we lose a-b==0 ⇐⇒ a==b
I HLS compiler writers, beware!

Conversions operators from/to IEEE floating point available

F. de Dinechin Computing Just Right: Application-specific arithmetic 8

Damn lies

It was not a classical single-precision FPU

s exn E F

1 2 wE wF

FloPoCo floating-point format

Inspired and compatible with IEEE-754, except that

exponent size and mantissa size can take arbitrary values

0, ∞ and NaN flagged in explicit exception bits

not as special exponent values
(as a consequence, two more exponent values available in FloPoCo)

subnormal numbers are not supported

Adding 1 more exponent bit provides them all,
and is much more area-efficient

However we lose a-b==0 ⇐⇒ a==b
I HLS compiler writers, beware!

Conversions operators from/to IEEE floating point available
F. de Dinechin Computing Just Right: Application-specific arithmetic 8

Number formats in FloPoCo

The previous floating-point format

Logarithm Number System (LNS) in older versions

One Obscure Branch contains decimal arithmetic

Residue Number System (RNS) and other modular arithmetic
should come some day

... Plus good old binary fixed-point (integer) for quite a few operators

F. de Dinechin Computing Just Right: Application-specific arithmetic 9

Fixed-point format

Two’s complement fixed-point format

s

bit position -4-3-2-1012345
`m

bit weight −2m 2m−1
20 2`

X = −2mxm +
∑̀
i=l

2ixi

m is the MSB (most significant bit) position,
and determines the range

` is the LSB (least significant bit) position,
and determines the precision

Integers have ` = 0,m > 0.

F. de Dinechin Computing Just Right: Application-specific arithmetic 10

Typical interface to a FloPoCo operator

architecture
generator

function f on interval [0, 1)

input precision `in

output precision `out

mout

.vhdl

./flopoco FixFunctionByPiecewisePoly f="exp(x*x)"

lsbIn=-24 lsbOut=-24 msbOut=3 d=3

Output precision `out also specifies the accuracy of the architecture

Difference between computed value and f (x) never larger than 2`out

× + × + × +
σ2 σ1

a0a1a2a3

Polynomial Coefficient Table

xin

i

address

α

w

xw − α
x̃3 x̃2

x̃3 = x

p̃(x)

fi
n

a
l

ro
u

n
d

y

F. de Dinechin Computing Just Right: Application-specific arithmetic 11

Typical interface to a FloPoCo operator

architecture
generator

function f on interval [0, 1)

input precision `in

output precision `out

mout

.vhdl

./flopoco FixFunctionByPiecewisePoly f="exp(x*x)"

lsbIn=-24 lsbOut=-24 msbOut=3 d=3

Output precision `out also specifies the accuracy of the architecture

Difference between computed value and f (x) never larger than 2`out

× + × + × +
σ2 σ1

a0a1a2a3

Polynomial Coefficient Table

xin

i

address

α

w

xw − α
x̃3 x̃2

x̃3 = x

p̃(x)

fi
n

a
l

ro
u

n
d

y

F. de Dinechin Computing Just Right: Application-specific arithmetic 11

Typical interface to a FloPoCo operator

architecture
generator

function f on interval [0, 1)

input precision `in

output precision `out

mout

.vhdl

./flopoco FixFunctionByPiecewisePoly f="exp(x*x)"

lsbIn=-24 lsbOut=-24 msbOut=3 d=3

Output precision `out also specifies the accuracy of the architecture

Difference between computed value and f (x) never larger than 2`out

× + × + × +
σ2 σ1

a0a1a2a3

Polynomial Coefficient Table

xin

i

address

α

w

xw − α
x̃3 x̃2

x̃3 = x

p̃(x)

fi
n

a
l

ro
u

n
d

y

F. de Dinechin Computing Just Right: Application-specific arithmetic 11

Binary for theoretical physicists

210 ≈ 103 (kBytes are actually 1024 bytes).

Another point of view : 10 log10(2) ≈ 3

In other words, 1 bit ≈ 3 dB

I don’t count signal/noise ratio in dB, I count accuracy in bits.

F. de Dinechin Computing Just Right: Application-specific arithmetic 12

Frequency-directed pipelining

The same FPAdder, pipelined for 300MHz:
./flopoco pipeline=yes frequency=300 FPAdd wE=8 wF=23

FloPoCo interface to pipeline construction

“Please pipeline this operator to work at 200MHz”

Not the choice made by other core generators...

... but better because compositional

When you assemble components working at frequency f ,
you obtain a component working at frequency f .

Remark: automatic pipeline framework improved from version 4 to
(future) version 5, but all the operators need to be ported.

F. de Dinechin Computing Just Right: Application-specific arithmetic 13

Frequency-directed pipelining

The same FPAdder, pipelined for 300MHz:
./flopoco pipeline=yes frequency=300 FPAdd wE=8 wF=23

FloPoCo interface to pipeline construction

“Please pipeline this operator to work at 200MHz”

Not the choice made by other core generators...

... but better because compositional

When you assemble components working at frequency f ,
you obtain a component working at frequency f .

Remark: automatic pipeline framework improved from version 4 to
(future) version 5, but all the operators need to be ported.

F. de Dinechin Computing Just Right: Application-specific arithmetic 13

Frequency-directed pipelining

The same FPAdder, pipelined for 300MHz:
./flopoco pipeline=yes frequency=300 FPAdd wE=8 wF=23

FloPoCo interface to pipeline construction

“Please pipeline this operator to work at 200MHz”

Not the choice made by other core generators...

... but better because compositional

When you assemble components working at frequency f ,
you obtain a component working at frequency f .

Remark: automatic pipeline framework improved from version 4 to
(future) version 5, but all the operators need to be ported.

F. de Dinechin Computing Just Right: Application-specific arithmetic 13

Frequency-directed pipelining

The same FPAdder, pipelined for 300MHz:
./flopoco pipeline=yes frequency=300 FPAdd wE=8 wF=23

FloPoCo interface to pipeline construction

“Please pipeline this operator to work at 200MHz”

Not the choice made by other core generators...

... but better because compositional

When you assemble components working at frequency f ,
you obtain a component working at frequency f .

Remark: automatic pipeline framework improved from version 4 to
(future) version 5, but all the operators need to be ported.

F. de Dinechin Computing Just Right: Application-specific arithmetic 13

Frequency-directed pipelining

The same FPAdder, pipelined for 300MHz:
./flopoco pipeline=yes frequency=300 FPAdd wE=8 wF=23

FloPoCo interface to pipeline construction

“Please pipeline this operator to work at 200MHz”

Not the choice made by other core generators...

... but better because compositional

When you assemble components working at frequency f ,
you obtain a component working at frequency f .

Remark: automatic pipeline framework improved from version 4 to
(future) version 5, but all the operators need to be ported.

F. de Dinechin Computing Just Right: Application-specific arithmetic 13

Examples of pipeline

./flopoco pipeline=yes frequency=400 FPAdd wE=8 wF=23

Final report:

|---Entity FPAdder_8_23_uid2_RightShifter

| Pipeline depth = 1

|---Entity IntAdder_27_f400_uid7

| Pipeline depth = 1

|---Entity LZCShifter_28_to_28_counting_32_uid14

| Pipeline depth = 4

|---Entity IntAdder_34_f400_uid17

| Pipeline depth = 1

Entity FPAdder_8_23_uid2

Pipeline depth = 10

./flopoco pipeline=yes frequency=200 FPAdd wE=8 wF=23

Final report:

(...)

Pipeline depth = 4

F. de Dinechin Computing Just Right: Application-specific arithmetic 14

Of course the frequency depends on the target FPGA

./flopoco target=spartan3 frequency=200 FPAdd wE=8 wF=23

Final report:

(...)

Pipeline depth = 11

./flopoco target=virtex6 frequency=200 FPAdd wE=8 wF=23

Final report:

(...)

Pipeline depth = 2

Altera and Xilinx target currently supported in the stable 4.2 branch (at
various levels of accuracy): Spartan3, Virtex4, Virtex5, Virtex6,
StratixII, StratixIII, StratixIV, StratixV, CycloneII, CycloneIII,
CycloneIV, CycloneV.

F. de Dinechin Computing Just Right: Application-specific arithmetic 15

Frequency-directed pipelining in practice

We do our best but we know it’s hopeless

The actual frequency obtained will depend on the whole application
(placement, routing pressure etc)...

best-effort philosophy,

aiming to be accurate to 10% for an operator synthesized alone

asking a higher frequency provides a deeper pipeline

And a big TODO: VLSI targets.

F. de Dinechin Computing Just Right: Application-specific arithmetic 16

Frequency-directed pipelining in practice

We do our best but we know it’s hopeless

The actual frequency obtained will depend on the whole application
(placement, routing pressure etc)...

best-effort philosophy,

aiming to be accurate to 10% for an operator synthesized alone

asking a higher frequency provides a deeper pipeline

And a big TODO: VLSI targets.

F. de Dinechin Computing Just Right: Application-specific arithmetic 16

Also match the architecture to the target FPGA

Compare the VHDL produced with
flopoco pipeline=no target=Virtex4 IntConstDiv wIn=16 d=3

flopoco pipeline=no target=Virtex6 IntConstDiv wIn=16 d=3

LUT LUTLUTLUT

q0q1q2q3

2 2 2 2

4444

4 4 4x3 x2 x1 x0
r3 r2 r1

r0 = r

4

r4 = 0

Architecture specificities

LUTs

DSP blocks

memory blocks

F. de Dinechin Computing Just Right: Application-specific arithmetic 17

Also match the architecture to the target FPGA

Compare the VHDL produced with
flopoco pipeline=no target=Virtex4 IntConstDiv wIn=16 d=3

flopoco pipeline=no target=Virtex6 IntConstDiv wIn=16 d=3

LUT LUTLUTLUT

q0q1q2q3

2 2 2 2

4444

4 4 4x3 x2 x1 x0
r3 r2 r1

r0 = r

4

r4 = 0

Architecture specificities

LUTs

DSP blocks

memory blocks

F. de Dinechin Computing Just Right: Application-specific arithmetic 17

Also match the architecture to the target FPGA

Compare the VHDL produced with
flopoco pipeline=no target=Virtex4 IntConstDiv wIn=16 d=3

flopoco pipeline=no target=Virtex6 IntConstDiv wIn=16 d=3

LUT LUTLUTLUT

q0q1q2q3

2 2 2 2

4444

4 4 4x3 x2 x1 x0
r3 r2 r1

r0 = r

4

r4 = 0

Architecture specificities

LUTs

DSP blocks

memory blocks

F. de Dinechin Computing Just Right: Application-specific arithmetic 17

Parenthesis: minimalist interfaces

In the previous example (an integer divider by 3) we didn’t specify
output size: FloPoCo computes it, too.

More importantly,

When lsbOut is given, it also specifies the accuracy of the operator

Compute just right!

No need to compute more accurately than 2lsbOut,
we couldn’t output it

No sense in computing less accurately than 2lsbOut,
we don’t want to output garbage bits

F. de Dinechin Computing Just Right: Application-specific arithmetic 18

Parenthesis: minimalist interfaces

In the previous example (an integer divider by 3) we didn’t specify
output size: FloPoCo computes it, too.

More importantly,

When lsbOut is given, it also specifies the accuracy of the operator

Compute just right!

No need to compute more accurately than 2lsbOut,
we couldn’t output it

No sense in computing less accurately than 2lsbOut,
we don’t want to output garbage bits

F. de Dinechin Computing Just Right: Application-specific arithmetic 18

Non-standard operators

Correctly rounded divider by 3: flopoco FPConstDiv wE=8

wF=23 d=3

Floating-point exponential: flopoco FPExp wE=8 wF=23

Multiplication of a 32-bit signed integer by the constant 1234567
(two algorithms, your mileage may vary):
flopoco IntIntKCM

flopoco IntConstMult

Full list in the documentation, or by typing just flopoco.
Sorry for the sometimes incomplete or inconsistent interface.

F. de Dinechin Computing Just Right: Application-specific arithmetic 19

Don’t trust us

Two operators, TestBench and TestBenchFile, generate test benchs for
the operator preceding them on the command line

flopoco FPExp wE=8 wF=23 TestBench n=10000 generates
10000 random tests

flopoco IntConstDiv wIn=16 d=3 TestBench generates an
exhaustive test

Specification-based test bench generation

Not by simulation of the generated architecture!

Helper functions for encoding/decoding FP format, if you want to check
the testbench...

fp2bin 9 36 3.1415926

bin2fp 9 36

010100000000100100100001111110110100110100010011

F. de Dinechin Computing Just Right: Application-specific arithmetic 20

Don’t trust us

Two operators, TestBench and TestBenchFile, generate test benchs for
the operator preceding them on the command line

flopoco FPExp wE=8 wF=23 TestBench n=10000 generates
10000 random tests

flopoco IntConstDiv wIn=16 d=3 TestBench generates an
exhaustive test

Specification-based test bench generation

Not by simulation of the generated architecture!

Helper functions for encoding/decoding FP format, if you want to check
the testbench...

fp2bin 9 36 3.1415926

bin2fp 9 36

010100000000100100100001111110110100110100010011

F. de Dinechin Computing Just Right: Application-specific arithmetic 20

Don’t trust us

Two operators, TestBench and TestBenchFile, generate test benchs for
the operator preceding them on the command line

flopoco FPExp wE=8 wF=23 TestBench n=10000 generates
10000 random tests

flopoco IntConstDiv wIn=16 d=3 TestBench generates an
exhaustive test

Specification-based test bench generation

Not by simulation of the generated architecture!

Helper functions for encoding/decoding FP format, if you want to check
the testbench...

fp2bin 9 36 3.1415926

bin2fp 9 36

010100000000100100100001111110110100110100010011

F. de Dinechin Computing Just Right: Application-specific arithmetic 20

Open-ended operators: the good

A polynomial evaluator for arbitrary functions

Example:
flopoco FunctionEvaluator "(sin(x*Pi/2))^ 2" 32 32 4

The string is a mathematical function

32-bit in, 32-bit out

Last-bit accurate (all returned bits hold useful information)

4 is the degree of the polynomial, allows to express a
memory/multiplier trade-off

Works for the set of functions for which it works

Also Multipartite, and HOTBM in an Obscure Branch.
Still work in progress...

F. de Dinechin Computing Just Right: Application-specific arithmetic 21

Example: Multiplication by
rational constants

FloPoCo, the user point of view

Example: Multiplication by rational constants

Example: The exponential

Example: Sin/Cos

The universal bit heap

Example: Floating-point sums and sums of products

Example: DSP Filters

Conclusion

F. de Dinechin Computing Just Right: Application-specific arithmetic 22

Multiplication by a constant, 1

FPGA-specific LUT-based methods

Write x in radix 2α: x =
n∑

i=0

2αixi with 0 ≤ xi < 2α

Ex: good old hexadecimal is α = 4 : x2 x1 x0

then Cx =
n∑

i=0

2αi (Cxi)

and tabulate the products Cxi in α-input LUTs

(also works if C is a real number like, say, 1/ log(2))

Extremely efficient for small n (input size) on LUT-based FPGAs.

F. de Dinechin Computing Just Right: Application-specific arithmetic 23

X = x0x1x2x3x4x5x6x7x8x9x10x11x12x13x14x15x16x17

α bits

+

Look-Up Table

X0

/α

/α+ wC

CX0

Look-Up Table

X1

/α

/α+ wC

CX1
α

Look-Up Table

X2

/α

/α+ wC

CX2

2α

/wC + wX

CX

F. de Dinechin Computing Just Right: Application-specific arithmetic 24

Multiplication by a constant, 2

Shift-and-add methods for integer constants

17x = 16x + x = (x � 4) + x

15x = 16x − x (Booth recoding)

7697x = 15x � 9 + 17x (open problem here)

very good recent ILP-based heuristics

In FPGAs, take into account the size of each addition

(demo?)

Extremely efficient for some constants such as 17.

FloPoCo offers both methods (and the exponential uses both).

F. de Dinechin Computing Just Right: Application-specific arithmetic 25

Multiplication by a constant, 2

Shift-and-add methods for integer constants

17x = 16x + x = (x � 4) + x

15x = 16x − x (Booth recoding)

7697x = 15x � 9 + 17x (open problem here)

very good recent ILP-based heuristics

In FPGAs, take into account the size of each addition

(demo?)

Extremely efficient for some constants such as 17.

FloPoCo offers both methods (and the exponential uses both).

F. de Dinechin Computing Just Right: Application-specific arithmetic 25

Floating-point multiplication by a rational constant

Motivation

divisions by 3 and by 9 in stencil applications

1/3 = 0.0101010101010101010101010101010 · · ·
1/9 = 0.000111000111000111000111000111 · · ·

Two specificities

The binary representation of the constant is periodic
−→ specific optimisation of the shift-and-add approach

Precision required for correct rounding

F. de Dinechin Computing Just Right: Application-specific arithmetic 26

Floating-point multiplication by a rational constant

Motivation

divisions by 3 and by 9 in stencil applications

1/3 = 0.0101010101010101010101010101010 · · ·
1/9 = 0.000111000111000111000111000111 · · ·

Two specificities

The binary representation of the constant is periodic
−→ specific optimisation of the shift-and-add approach

Precision required for correct rounding

F. de Dinechin Computing Just Right: Application-specific arithmetic 26

Computing periodicity

A lemma adapted from 19th century number theory

Let a/b be an irreductible rational such that

a < b

2 divides neither a nor b (powers of two are a matter of exponent)

Then

a/b has a purely periodic binary representation

The period size s is the multiplicative order of 2 modulo b

(the smallest integer such that 2s mod b = 1)

The periodic pattern is the integer p = b2sa/bc

Example: 1/9

b = 9; period size is s = 6 because 26 mod 9 = 1.
The periodic pattern is b1× 26/9c = 7, which we write on 6 bits
000111, and we obtain that

1/9 = 0.(0001112)∞ .

F. de Dinechin Computing Just Right: Application-specific arithmetic 27

Computing periodicity

A lemma adapted from 19th century number theory

Let a/b be an irreductible rational such that

a < b

2 divides neither a nor b (powers of two are a matter of exponent)

Then

a/b has a purely periodic binary representation

The period size s is the multiplicative order of 2 modulo b

(the smallest integer such that 2s mod b = 1)

The periodic pattern is the integer p = b2sa/bc

Example: 1/9

b = 9; period size is s = 6 because 26 mod 9 = 1.
The periodic pattern is b1× 26/9c = 7, which we write on 6 bits
000111, and we obtain that

1/9 = 0.(0001112)∞ .
F. de Dinechin Computing Just Right: Application-specific arithmetic 27

Optimal architecture for precision pc

x

n

π3 = x × p p p p p p p p

π0 = x × p

π1 = x × p p

π2 = x × p p p p

x × p p p p p p p p p p

n + 2s

n + s

n + 4s

n + 8s

n + 10s

×p

� s

� 2s

� 4s

F. de Dinechin Computing Just Right: Application-specific arithmetic 28

Correct rounding of a floating-point x by a rational a/b

A lemma adapted from the exclusion lemma of FP division

Correct rounding on n bits needs n + 1 + dlog2 be bits of the
constant

In practice, it is for free if b is small.

F. de Dinechin Computing Just Right: Application-specific arithmetic 29

This work was motivated by divisions by 3 and by 9

constant p
This work previous SotA
pc #FA pc #FA depth

1/3 24 32 118 27 190 4
53 64 317 56 368 5

p = 012 113 128 792 116 1026 6

1/9 24 30 132 29 131 5
53 60 356 58 408 6

p = 0001112 113 120 885 118 1116 7
(The precisions chosen here are those of the IEEE754-2008 formats)

... But the FloPoCo code manages arbitrary a/b (including a > b).

F. de Dinechin Computing Just Right: Application-specific arithmetic 30

And now for something completely different

Instead of specializing multiplication, let us try and specialize division.

F. de Dinechin Computing Just Right: Application-specific arithmetic 31

Anybody here remembers how we compute divisions?

7 7 6

1 7

2 6

2

2 5 8

3

iteration body: Euclidean division of a 2-digit decimal number by 3

The first digit is a remainder from previous iteration:
its value is 0, 1 or 2

Possible implementation as a look-up table that, for each value
from 00 to 29, gives the quotient and the remainder of its division
by 3.

F. de Dinechin Computing Just Right: Application-specific arithmetic 32

Anybody here remembers how we compute divisions?

7 7 6

1 7

2 6

2

2 5 8

3

iteration body: Euclidean division of a 2-digit decimal number by 3

The first digit is a remainder from previous iteration:
its value is 0, 1 or 2

Possible implementation as a look-up table that, for each value
from 00 to 29, gives the quotient and the remainder of its division
by 3.

F. de Dinechin Computing Just Right: Application-specific arithmetic 32

The same, but in binary-friendly radix

Writing an integer x in radix 2α

x =
n∑

i=0

2αixi (split of the bits of x into chunks of α bits)

Example: good old hexadecimal is α = 4

x2 x1 x0

F. de Dinechin Computing Just Right: Application-specific arithmetic 33

The same, but in binary-friendly radix

Writing an integer x in radix 2α

x =
n∑

i=0

2αixi (split of the bits of x into chunks of α bits)

Example: good old hexadecimal is α = 4

x2 x1 x0

3F 2 D

F. de Dinechin Computing Just Right: Application-specific arithmetic 33

The same, but in binary-friendly radix

Writing an integer x in radix 2α

x =
n∑

i=0

2αixi (split of the bits of x into chunks of α bits)

Example: good old hexadecimal is α = 4

x2 x1 x0

0 5

3F 2 D

F. de Dinechin Computing Just Right: Application-specific arithmetic 33

The same, but in binary-friendly radix

Writing an integer x in radix 2α

x =
n∑

i=0

2αixi (split of the bits of x into chunks of α bits)

Example: good old hexadecimal is α = 4

x2 x1 x0

20 5

3F 2 D

F. de Dinechin Computing Just Right: Application-specific arithmetic 33

The same, but in binary-friendly radix

Writing an integer x in radix 2α

x =
n∑

i=0

2αixi (split of the bits of x into chunks of α bits)

Example: good old hexadecimal is α = 4

x2 x1 x0

2

020 5

3F 2 D

F. de Dinechin Computing Just Right: Application-specific arithmetic 33

The same, but in binary-friendly radix

Writing an integer x in radix 2α

x =
n∑

i=0

2αixi (split of the bits of x into chunks of α bits)

Example: good old hexadecimal is α = 4

x2 x1 x0

D2

020 5

3F 2 D

F. de Dinechin Computing Just Right: Application-specific arithmetic 33

The same, but in binary-friendly radix

Writing an integer x in radix 2α

x =
n∑

i=0

2αixi (split of the bits of x into chunks of α bits)

Example: good old hexadecimal is α = 4

x2 x1 x0

F

0

D2

020 5

3F 2 D

F. de Dinechin Computing Just Right: Application-specific arithmetic 33

And now for some mathematical obfuscation

procedure ConstantDiv(x , d)
rk ← 0
for i = k − 1 down to 0 do

yi ← xi + 2αri+1 (this + is a concatenation)
(qi , ri)← (byi/dc, yi mod d) (read from a table)

end for
return q =

∑k
i=0 qi .2

−αi , r0
end procedure

Each iteration

consumes α bits of x , and a remainder of size γ = dlog2 de
produces α bits of q, and a remainder of size γ

implemented as a table with α + γ bits in, α + γ bits out

F. de Dinechin Computing Just Right: Application-specific arithmetic 34

And now for some mathematical obfuscation

procedure ConstantDiv(x , d)
rk ← 0
for i = k − 1 down to 0 do

yi ← xi + 2αri+1 (this + is a concatenation)
(qi , ri)← (byi/dc, yi mod d) (read from a table)

end for
return q =

∑k
i=0 qi .2

−αi , r0
end procedure

Each iteration

consumes α bits of x , and a remainder of size γ = dlog2 de
produces α bits of q, and a remainder of size γ

implemented as a table with α + γ bits in, α + γ bits out

F. de Dinechin Computing Just Right: Application-specific arithmetic 34

At this point nobody wants to see the proof

(if you’re convinced the decimal version works...)

prove that we indeed compute the Euclidean division

prove that the result is indeed a radix-2α number

F. de Dinechin Computing Just Right: Application-specific arithmetic 35

Sequential implementation

LUT

clk

reset

α

α

xi

γγ

qi

ri+1 ri

F. de Dinechin Computing Just Right: Application-specific arithmetic 36

Unrolled implementation

LUT LUTLUTLUT

q0q1q2q3

2 2 2 2

4444

4 4 4x3 x2 x1 x0
r3 r2 r1

r0 = r

4

r4 = 0

F. de Dinechin Computing Just Right: Application-specific arithmetic 37

Logic-based version

LUT LUTLUTLUT

q0q1q2q3

2 2 2 2

4444

4 4 4x3 x2 x1 x0
r3 r2 r1

r0 = r

4

r4 = 0

For instance, assuming a 6-input LUTs (e.g. LUT6)

A 6-bit in, 6-bit out consumes 6 LUT6

Size of remainder is γ = log2 d

If d < 25, very efficient architecture: α = 6− γ
The smaller d , the better

Easy to pipeline (one register behind each LUT)

F. de Dinechin Computing Just Right: Application-specific arithmetic 38

Dual-port RAM-based version?

For larger d?

LUT LUTLUT LUT

x3 x2 x1 x0

q0q1q2q3 r

(not really studied, waiting for the demand)

F. de Dinechin Computing Just Right: Application-specific arithmetic 39

Synthesis results on Virtex-5
for combinatorial Euclidean division

n = 32 bits
constant LUT6 (predicted) latency

d = 3 (α = 4) 47 (6*8=48) 7.14ns
d = 5 (α = 3) 60 (6*11=66) 6.79ns
d = 7 (α = 3) 60 (6*11=66) 7.30ns

n = 64 bits
constant LUT6 (predicted) latency

d = 3 (α = 4) 95 (6*16=96) 14.8ns
d = 5 (α = 3) 125 (6*22=132) 13.8ns
d = 7 (α = 3) 125 (6*22=132) 15.0ns

Logic optimizer even finds something to chew: don’t care lines in the tables.

F. de Dinechin Computing Just Right: Application-specific arithmetic 40

Synthesis results on Virtex-5
for combinatorial Euclidean division

n = 32 bits
constant LUT6 (predicted) latency

d = 3 (α = 4) 47 (6*8=48) 7.14ns
d = 5 (α = 3) 60 (6*11=66) 6.79ns
d = 7 (α = 3) 60 (6*11=66) 7.30ns

n = 64 bits
constant LUT6 (predicted) latency

d = 3 (α = 4) 95 (6*16=96) 14.8ns
d = 5 (α = 3) 125 (6*22=132) 13.8ns
d = 7 (α = 3) 125 (6*22=132) 15.0ns

Logic optimizer even finds something to chew: don’t care lines in the tables.

F. de Dinechin Computing Just Right: Application-specific arithmetic 40

Synthesis results on Virtex-5
for pipelined Euclidean division by 3

n = 32 bits
FF + LUT6 performance

33 Reg + 47 LUT 1 cycle @ 230 MHz
58 Reg + 62 LUT 2 cycles @ 410 MHz
68 Reg + 72 LUT 3 cycles @ 527 MHz

n = 64 bits
FF + LUT6 performance

122 Reg + 112 LUT 2 cycles @217 MHz
168 Reg + 198 LUT 5 cycles @ 410 MHz
172 Reg + 188 LUT 7 cycles @ 527 MHz

F. de Dinechin Computing Just Right: Application-specific arithmetic 41

Floating-point version is cheap, too

01

m < d ′?

+1 h

div by d

1

me

−s − 1
ovftz

Exn

e m

� s � s + 1

ξ

ξ

pre-normalisation and pre-rounding:

◦
(

2s+εm

d

)
=

⌊
2s+εm

d
+

1

2

⌋
=

⌊
2s+εm + d/2

d

⌋
F. de Dinechin Computing Just Right: Application-specific arithmetic 42

Synthesis results on Virtex-5
for pipelined floating-point division by 3

single precision

FF + LUT6 performance

35 Reg + 69 LUT 1 cycle @ 217 MHz
105 Reg + 83 LUT 3 cycles @ 411 MHz

standard correctly rounded divider
1122 Reg + 945 LUT 17 cycles @ 290 MHz

double precision

FF + LUT6 performance

122 Reg + 166 LUT 2 cycles @ 217 MHz
245 Reg + 250 LUT 6 cycles @ 410 MHz

using shift-and-add
282 Reg + 470 LUT 5 cycles @ 307 MHz

F. de Dinechin Computing Just Right: Application-specific arithmetic 43

Was it worth to spend so much time on division by 3?

(this slide intentionally left blank)

(three years later, Ugurdag et al spent more time on a parallel version)

F. de Dinechin Computing Just Right: Application-specific arithmetic 44

Was it worth to spend so much time on division by 3?

(this slide intentionally left blank)

(three years later, Ugurdag et al spent more time on a parallel version)

F. de Dinechin Computing Just Right: Application-specific arithmetic 44

Was it worth to spend so much time on division by 3?

(this slide intentionally left blank)

(three years later, Ugurdag et al spent more time on a parallel version)

F. de Dinechin Computing Just Right: Application-specific arithmetic 44

My personal record

Two weeks from the first intuition of the algorithm
to complete pipelined FloPoCo implementation + paper submission.

Implementation time

10 minutes to obtain a testbench generator

1/2 day for the integer Euclidean division

20 mn for its flexible pipeline

1/2 day for the FP divider by 3

and again 20 mn

This was advertising for the FloPoCo framework.

F. de Dinechin Computing Just Right: Application-specific arithmetic 45

Example: The exponential

FloPoCo, the user point of view

Example: Multiplication by rational constants

Example: The exponential

Example: Sin/Cos

The universal bit heap

Example: Floating-point sums and sums of products

Example: DSP Filters

Conclusion

F. de Dinechin Computing Just Right: Application-specific arithmetic 46

How do we compute a floating-point exponential?

First, you have to pass a math proficiency test:

Three identities to remember from our happy school days

2X = eX log(2) (1)

eA+B = eA × eB (2)

eZ ≈ 1 + Z +
Z 2

2
if Z is small (3)

F. de Dinechin Computing Just Right: Application-specific arithmetic 47

Shift to fixed−point

normalize / round

Fixed-point X

SX EX FX

A Z

E

E
×1/ log(2)

× log(2)

eA eZ − Z − 1

Y

R

1 + wF + g

wF + g − k

wF + g + 2 − kMSB wF + g + 2 − k

wF + g + 1 − k

MSB wF + g + 1 − 2k

1 + wF + g

wE + wF + g + 1

wE + 1

wE + wF + g + 1

wE + wF + g + 1

k

We want to obtain eX as

eX = 2E · 1.F

F. de Dinechin Computing Just Right: Application-specific arithmetic 48

Shift to fixed−point

normalize / round

Fixed-point X

SX EX FX

A Z

E

E
×1/ log(2)

× log(2)

eA eZ − Z − 1

Y

R

1 + wF + g

wF + g − k

wF + g + 2 − kMSB wF + g + 2 − k

wF + g + 1 − k

MSB wF + g + 1 − 2k

1 + wF + g

wE + wF + g + 1

wE + 1

wE + wF + g + 1

wE + wF + g + 1

k

We want to obtain eX as

eX = 2E · 1.F

Compute

E ≈
⌊

X

log 2

⌉

F. de Dinechin Computing Just Right: Application-specific arithmetic 48

Shift to fixed−point

normalize / round

Fixed-point X

SX EX FX

A Z

E

E
×1/ log(2)

× log(2)

eA eZ − Z − 1

Y

R

1 + wF + g

wF + g − k

wF + g + 2 − kMSB wF + g + 2 − k

wF + g + 1 − k

MSB wF + g + 1 − 2k

1 + wF + g

wE + wF + g + 1

wE + 1

wE + wF + g + 1

wE + wF + g + 1

k

We want to obtain eX as

eX = 2E · 1.F

Compute

E ≈
⌊

X

log 2

⌉

Y ≈ X − E × log 2.

F. de Dinechin Computing Just Right: Application-specific arithmetic 48

Shift to fixed−point

normalize / round

Fixed-point X

SX EX FX

A Z

E

E
×1/ log(2)

× log(2)

eA eZ − Z − 1

Y

R

1 + wF + g

wF + g − k

wF + g + 2 − kMSB wF + g + 2 − k

wF + g + 1 − k

MSB wF + g + 1 − 2k

1 + wF + g

wE + wF + g + 1

wE + 1

wE + wF + g + 1

wE + wF + g + 1

k

We want to obtain eX as

eX = 2E · 1.F

Compute

E ≈
⌊

X

log 2

⌉

Y ≈ X − E × log 2.

Now

eX = eE log 2+Y

= eE log 2 · eY

= 2E · eY

F. de Dinechin Computing Just Right: Application-specific arithmetic 48

Shift to fixed−point

normalize / round

Fixed-point X

SX EX FX

A Z

E

E
×1/ log(2)

× log(2)

eA eZ − Z − 1

Y

R

1 + wF + g

wF + g − k

wF + g + 2 − kMSB wF + g + 2 − k

wF + g + 1 − k

MSB wF + g + 1 − 2k

1 + wF + g

wE + wF + g + 1

wE + 1

wE + wF + g + 1

wE + wF + g + 1

k

We want to obtain eX as

eX = 2E · eY

Now we have to compute eY

with Y ∈ (−1/2, 1/2).

F. de Dinechin Computing Just Right: Application-specific arithmetic 48

Shift to fixed−point

normalize / round

Fixed-point X

SX EX FX

A Z

E

E
×1/ log(2)

× log(2)

eA eZ − Z − 1

Y

R

1 + wF + g

wF + g − k

wF + g + 2 − kMSB wF + g + 2 − k

wF + g + 1 − k

MSB wF + g + 1 − 2k

1 + wF + g

wE + wF + g + 1

wE + 1

wE + wF + g + 1

wE + wF + g + 1

k

We want to obtain eX as

eX = 2E · eY

Now we have to compute eY

with Y ∈ (−1/2, 1/2).
Split Y , i.e. write

Y = A + Z

with Z < 2−k

F. de Dinechin Computing Just Right: Application-specific arithmetic 48

Shift to fixed−point

normalize / round

Fixed-point X

SX EX FX

A Z

E

E
×1/ log(2)

× log(2)

eA eZ − Z − 1

Y

R

1 + wF + g

wF + g − k

wF + g + 2 − kMSB wF + g + 2 − k

wF + g + 1 − k

MSB wF + g + 1 − 2k

1 + wF + g

wE + wF + g + 1

wE + 1

wE + wF + g + 1

wE + wF + g + 1

k

We want to obtain eX as

eX = 2E · eY

Now we have to compute eY

with Y ∈ (−1/2, 1/2).
Split Y , i.e. write

Y = A + Z

with Z < 2−k

so
eY = eA × eZ

F. de Dinechin Computing Just Right: Application-specific arithmetic 48

Shift to fixed−point

normalize / round

Fixed-point X

SX EX FX

A Z

E

E
×1/ log(2)

× log(2)

eA eZ − Z − 1

Y

R

1 + wF + g

wF + g − k

wF + g + 2 − kMSB wF + g + 2 − k

wF + g + 1 − k

MSB wF + g + 1 − 2k

1 + wF + g

wE + wF + g + 1

wE + 1

wE + wF + g + 1

wE + wF + g + 1

k

We want to obtain eX as

eX = 2E · eY

eY = eA × eZ

Tabulate eA in a ROM

F. de Dinechin Computing Just Right: Application-specific arithmetic 48

Shift to fixed−point

normalize / round

Fixed-point X

SX EX FX

A Z

E

E
×1/ log(2)

× log(2)

eA eZ − Z − 1

Y

R

1 + wF + g

wF + g − k

wF + g + 2 − kMSB wF + g + 2 − k

wF + g + 1 − k

MSB wF + g + 1 − 2k

1 + wF + g

wE + wF + g + 1

wE + 1

wE + wF + g + 1

wE + wF + g + 1

k

We want to obtain eX as

eX = 2E · eY

eY = eA × eZ

Evaluation of eZ :
Z < 2−k , so

eZ ≈ 1 + Z + Z 2/2

F. de Dinechin Computing Just Right: Application-specific arithmetic 48

Shift to fixed−point

normalize / round

Fixed-point X

SX EX FX

A Z

E

E
×1/ log(2)

× log(2)

eA eZ − Z − 1

Y

R

1 + wF + g

wF + g − k

wF + g + 2 − kMSB wF + g + 2 − k

wF + g + 1 − k

MSB wF + g + 1 − 2k

1 + wF + g

wE + wF + g + 1

wE + 1

wE + wF + g + 1

wE + wF + g + 1

k

We want to obtain eX as

eX = 2E · eY

eY = eA × eZ

Evaluation of eZ :
Z < 2−k , so

eZ ≈ 1 + Z + Z 2/2

Trick: eZ −1−Z ≈ Z 2/2 < 2−2k

F. de Dinechin Computing Just Right: Application-specific arithmetic 48

Shift to fixed−point

normalize / round

Fixed-point X

SX EX FX

A Z

E

E
×1/ log(2)

× log(2)

eA eZ − Z − 1

Y

R

1 + wF + g

wF + g − k

wF + g + 2 − kMSB wF + g + 2 − k

wF + g + 1 − k

MSB wF + g + 1 − 2k

1 + wF + g

wE + wF + g + 1

wE + 1

wE + wF + g + 1

wE + wF + g + 1

k

We want to obtain eX as

eX = 2E · eY

eY = eA × eZ

Evaluation of eZ :
Z < 2−k , so

eZ ≈ 1 + Z + Z 2/2

Trick: eZ −1−Z ≈ Z 2/2 < 2−2k

Polynomial approximation of
eZ − Z − 1

(truncating Z as much as possible)

F. de Dinechin Computing Just Right: Application-specific arithmetic 48

Shift to fixed−point

normalize / round

Fixed-point X

SX EX FX

A Z

E

E
×1/ log(2)

× log(2)

eA eZ − Z − 1

Y

R

1 + wF + g

wF + g − k

wF + g + 2 − kMSB wF + g + 2 − k

wF + g + 1 − k

MSB wF + g + 1 − 2k

1 + wF + g

wE + wF + g + 1

wE + 1

wE + wF + g + 1

wE + wF + g + 1

k

We want to obtain eX as

eX = 2E · eY

eY = eA × eZ

Evaluation of eZ :
Z < 2−k , so

eZ ≈ 1 + Z + Z 2/2

Trick: eZ −1−Z ≈ Z 2/2 < 2−2k

Polynomial approximation of
eZ − Z − 1

(truncating Z as much as possible)
then add Z to obtain eZ − 1

F. de Dinechin Computing Just Right: Application-specific arithmetic 48

Shift to fixed−point

normalize / round

Fixed-point X

SX EX FX

A Z

E

E
×1/ log(2)

× log(2)

eA eZ − Z − 1

Y

R

1 + wF + g

wF + g − k

wF + g + 2 − kMSB wF + g + 2 − k

wF + g + 1 − k

MSB wF + g + 1 − 2k

1 + wF + g

wE + wF + g + 1

wE + 1

wE + wF + g + 1

wE + wF + g + 1

k

We want to obtain eX as

eX = 2E · eY

eY = eA × eZ

Another trick:

eZ = 1.00...00zzzz

Evaluate eA × eZ as

eA + eA × (eZ − 1)

F. de Dinechin Computing Just Right: Application-specific arithmetic 48

Shift to fixed−point

normalize / round

Fixed-point X

SX EX FX

A Z

E

E
×1/ log(2)

× log(2)

eA eZ − Z − 1

Y

R

1 + wF + g

wF + g − k

wF + g + 2 − kMSB wF + g + 2 − k

wF + g + 1 − k

MSB wF + g + 1 − 2k

1 + wF + g

wE + wF + g + 1

wE + 1

wE + wF + g + 1

wE + wF + g + 1

k

We want to obtain eX as

eX = 2E · eY

eY = eA × eZ

Another trick:

eZ = 1.00...00zzzz

Evaluate eA × eZ as

eA + eA × (eZ − 1)

(before the product, truncate eA to
precision of eZ − 1)

F. de Dinechin Computing Just Right: Application-specific arithmetic 48

Shift to fixed−point

normalize / round

Fixed-point X

SX EX FX

A Z

E

E
×1/ log(2)

× log(2)

eA eZ − Z − 1

Y

R

1 + wF + g

wF + g − k

wF + g + 2 − kMSB wF + g + 2 − k

wF + g + 1 − k

MSB wF + g + 1 − 2k

1 + wF + g

wE + wF + g + 1

wE + 1

wE + wF + g + 1

wE + wF + g + 1

k

We want to obtain eX as

eX = 2E · eY

eY = eA × eZ

And that’s it, we have E and eY

F. de Dinechin Computing Just Right: Application-specific arithmetic 48

The magic for single precision

Shift to fixed−point

normalize / round

Fixed-point X

SX EX FX

A Z

E

E
×1/ log(2)

× log(2)

eA eZ − Z − 1

Y

R

1 + wF + g

wF + g − k

wF + g + 2 − kMSB wF + g + 2 − k

wF + g + 1 − k

MSB wF + g + 1 − 2k

1 + wF + g

wE + wF + g + 1

wE + 1

wE + wF + g + 1

wE + wF + g + 1

k

F. de Dinechin Computing Just Right: Application-specific arithmetic 49

The magic for single precision

Shift to fixed−point

normalize / round

27

17

99

17

9

Fixed-point X

SX EX FX

A Z

E

E
×1/ log(2)

× log(2)

eA eZ − Z − 1

Y

R

F. de Dinechin Computing Just Right: Application-specific arithmetic 49

The magic for single precision

Shift to fixed−point

normalize / round

27

17

99

17

9

18 Kbit ROM
(dual−port)

DSP

Fixed-point X

SX EX FX

A Z

E

E
×1/ log(2)

× log(2)

eA eZ − Z − 1

Y

R

F. de Dinechin Computing Just Right: Application-specific arithmetic 49

The magic for single precision

Shift to fixed−point

normalize / round

27

17

99

17

9

18 Kbit ROM
(dual−port)

DSP

Fixed-point X

SX EX FX

A Z

E

E
×1/ log(2)

× log(2)

eA eZ − Z − 1

Y

R

Virtex-4 consumption

1 BlockRAM,

1 DSP,

and <400 slices

F. de Dinechin Computing Just Right: Application-specific arithmetic 49

Example: Sin/Cos

FloPoCo, the user point of view

Example: Multiplication by rational constants

Example: The exponential

Example: Sin/Cos

The universal bit heap

Example: Floating-point sums and sums of products

Example: DSP Filters

Conclusion

F. de Dinechin Computing Just Right: Application-specific arithmetic 50

Introduction

Why compute the trigonometric functions sine and cosine?
fundamental in signal processing and signal processing applications
like FFT, modulation/demodulation, frequency synthesizers, ...

How to compute them ? In this work:
1. the classical CORDIC algorithm, based on additions and shifts
2. a method based on tables and multipliers, suited for modern FPGAs
3. a generic polynomial approximation

Which is best on FPGAs?

What is the cost of w bits of sine and cosine?

F. de Dinechin Computing Just Right: Application-specific arithmetic 51

Which method is best on FPGAs?

A fair comparison of methods computing sine and cosine:

same specification (the best possible
one)

Fixed-point inputs and outputs
compute sin(πx) and cos(πx) for
x ∈ [−1, 1)
Faithful rounding:
all the produced bits are useful, no
wasted resources

same effort (the best possible one)

open-source implementations in
FloPoCo
state-of-the-art?

Computing just one, or both?

some applications need both sine and cosine (e.g. rotation)

some methods compute both

F. de Dinechin Computing Just Right: Application-specific arithmetic 52

Textbook Stuff

Decomposition of the exponential in
two exponentials

e i(a+b) = e ia × e ib

From complex to real

e iϕ = cos(ϕ) + i sin(ϕ)

Decompose a rotation in smaller
sub-rotations{

sin(a + b) = sin(a) cos(b) + cos(a) sin(b)

cos(a + b) = cos(a) cos(b)− sin(a) sin(b)
F. de Dinechin Computing Just Right: Application-specific arithmetic 53

Argument Reduction

based on the 3 MSBs of the
input angle x

s - sign
q - quadrant
o - octant

remaining argument
y ∈ [0, 1/4)

y ′ =

{
1
4 − y if o = 1
y otherwise.

compute cos(πy ′) and sin(πy ′)

reconstruction:

000

001010

011

100

101 110

111

sqo Reconstruction

000

{
sin(πx) = sin(πy ′)
cos(πx) = cos(πy ′)

001

{
sin(πx) = cos(πy ′)
cos(πx) = sin(πy ′)

010

{
sin(πx) = cos(πy ′)
cos(πx) = − sin(πy ′)

011

{
sin(πx) = sin(πy ′)
cos(πx) = − cos(πy ′)

F. de Dinechin Computing Just Right: Application-specific arithmetic 54

CORDIC Architecture


c0 = 1

Πn
i=1

√
1+2−i

s0 = 0
α0 = y (the reduced argument)


di = +1 if αi > 0, otherwise − 1

ci+1 = ci − 2−idi si

si+1 = si + 2−idici

αi+1 = αi − di arctan(2−i)
cn→inf = cos(y)
sn→inf = sin(y)
αn→inf = 0

c0 s0

>>0 >>0

c1 s1

>>1 >>1

c2 s2

>>2 >>2

cn−1 sn−1

xn yn zn

>>n−1 >>n−1

d0

d1

d2

dn−1

F. de Dinechin Computing Just Right: Application-specific arithmetic 55

CORDIC Improvements

Reduced α-Datapath

αi < 2−i

decrement the α-datapath
by 1 bit per iteration

benefits

saves space
saves latency

α2

c0 s0 z0

>>0 >>0 α0

c1 s1 z1

>>1 >>1 α1

c2 s2 z2

>>2 >>2

cn−1 sn−1 zn−1

xn yn zn

>>n−1 αn−1>>n−1

d0

d1

d2

dn−1

F. de Dinechin Computing Just Right: Application-specific arithmetic 56

CORDIC Improvements

Reduced Iterations

stop iterations when they can
be replaced by a single
rotation, with enough accuracy{

sin(α) ' α
cos(α) ' 1

half the iterations replaced by{
xi+1 = xi + α · yi

yi+1 = yi − α · xi

only 2 multiplications

2 DSPs for up to 32 bits
truncated multiplications for
larger sizes

c0 s0

>>0 >>0

c1 s1

>>1 >>1

c2 s2

>>2 >>2

cn−1 sn−1

xn yn zn

>>n−1 >>n−1

d0

d1

d2

dn−1

F. de Dinechin Computing Just Right: Application-specific arithmetic 57

CORDIC Improvements

Reduced Iterations

stop iterations when they can
be replaced by a single
rotation, with enough accuracy{

sin(α) ' α
cos(α) ' 1

half the iterations replaced by{
xi+1 = xi + α · yi

yi+1 = yi − α · xi

only 2 multiplications

2 DSPs for up to 32 bits
truncated multiplications for
larger sizes xn yn zn

c0 s0

>>0 >>0

c1 s1

>>1 >>1

c2 s2

>>2 >>2

cn/2+1 sn/2+1

d0

d1

d2

F. de Dinechin Computing Just Right: Application-specific arithmetic 57

CORDIC Error Analysis

Goal: last-bit accuracy of the result

the result is within 1ulp of the
mathematical result

ulp = weight of least significant
bit

Intermediate precision

approximations and roundings
→ computations on w+g bits
internally

guard bits g

Error budget: total of 1ulp
1
2ulp for the final rounding error

1
4ulp for the method error

1
4ulp for the rounding errors

c0 s0

>>0 >>0

c1 s1

>>1 >>1

c2 s2

>>2 >>2

cn−1 sn−1

xn yn zn

>>n−1 >>n−1

d0

d1

d2

dn−1

F. de Dinechin Computing Just Right: Application-specific arithmetic 58

CORDIC Error Analysis (1)

Analysis: method error (εmethod)

εmethod of the order of the value of
αfinal

αfinal can be bounded numerically

→ number of iterations:
smallest number for which
εmethod < 2−w−2

c0 s0

>>0 >>0

c1 s1

>>1 >>1

c2 s2

>>2 >>2

cn−1 sn−1

xn yn zn

>>n−1 >>n−1

d0

d1

d2

dn−1

F. de Dinechin Computing Just Right: Application-specific arithmetic 59

CORDIC Error Analysis (2)

Analysis: rounding errors (εround)
on the α datapath

correct rounding of arctan(2−i)
error bounded by 2−w−g−1

total error on the α-datapath:
nb iter × 2−w−g−1

on the sin() and cos() datapath

for each shift operation, error
bounded by 2−w−g

total error larger than on the
α-datapath

must be smaller than 2−w−2:
ε× 2−w−g < 2−w−2

this gives g

εmethod + εround < 2−w−1

Final rounding of sin and cos has error
of the order 2−w−1

c0 s0

>>0 >>0

c1 s1

>>1 >>1

c2 s2

>>2 >>2

cn−1 sn−1

xn yn zn

>>n−1 >>n−1

d0

d1

d2

dn−1

F. de Dinechin Computing Just Right: Application-specific arithmetic 60

CORDIC Error Analysis (2)

Analysis: rounding errors (εround)
on the α datapath

correct rounding of arctan(2−i)
error bounded by 2−w−g−1

total error on the α-datapath:
nb iter × 2−w−g−1

on the sin() and cos() datapath

for each shift operation, error
bounded by 2−w−g

total error larger than on the
α-datapath

must be smaller than 2−w−2:
ε× 2−w−g < 2−w−2

this gives g

εmethod + εround < 2−w−1

Final rounding of sin and cos has error
of the order 2−w−1

c0 s0

>>0 >>0

c1 s1

>>1 >>1

c2 s2

>>2 >>2

cn−1 sn−1

xn yn zn

>>n−1 >>n−1

d0

d1

d2

dn−1

F. de Dinechin Computing Just Right: Application-specific arithmetic 60

CORDIC Error Analysis (2)

Analysis: rounding errors (εround)
on the α datapath

correct rounding of arctan(2−i)
error bounded by 2−w−g−1

total error on the α-datapath:
nb iter × 2−w−g−1

on the sin() and cos() datapath

for each shift operation, error
bounded by 2−w−g

total error larger than on the
α-datapath

must be smaller than 2−w−2:
ε× 2−w−g < 2−w−2

this gives g

εmethod + εround < 2−w−1

Final rounding of sin and cos has error
of the order 2−w−1

c0 s0

>>0 >>0

c1 s1

>>1 >>1

c2 s2

>>2 >>2

cn−1 sn−1

xn yn zn

>>n−1 >>n−1

d0

d1

d2

dn−1

F. de Dinechin Computing Just Right: Application-specific arithmetic 60

Table- and DSP-based method

Algorithm

angle split:
y (the reduced angle) = t + yred

t on a bits
yred such that yred < 2−(a+2)

store sin(πt) and cos(πt) in tables

evaluate sin(πyred) and cos(πyred)
using a Taylor polynomial
approximation

need to compute first z = yred × π
sin(z) ≈ z − z3/6
cos(z) ≈ 1− z2/2

reconstruct the values of sin(πy) and
cos(πy) using{

sin(π(t + yred)) = sin(πt) cos(πyred) + cos(πt) sin(πyred)

cos(π(t + yred)) = cos(πt) cos(πyred)− sin(πt) sin(πyred)

F. de Dinechin Computing Just Right: Application-specific arithmetic 61

Table- and DSP-based method

Algorithm

angle split:
y (the reduced angle) = t + yred

t on a bits
yred such that yred < 2−(a+2)

store sin(πt) and cos(πt) in tables

evaluate sin(πyred) and cos(πyred)
using a Taylor polynomial
approximation

need to compute first z = yred × π
sin(z) ≈ z − z3/6
cos(z) ≈ 1− z2/2

reconstruct the values of sin(πy) and
cos(πy) using{

sin(π(t + yred)) = sin(πt) cos(πyred) + cos(πt) sin(πyred)

cos(π(t + yred)) = cos(πt) cos(πyred)− sin(πt) sin(πyred)

F. de Dinechin Computing Just Right: Application-specific arithmetic 61

Table- and DSP-based method

Algorithm

angle split:
y (the reduced angle) = t + yred

t on a bits
yred such that yred < 2−(a+2)

store sin(πt) and cos(πt) in tables

evaluate sin(πyred) and cos(πyred)
using a Taylor polynomial
approximation

need to compute first z = yred × π
sin(z) ≈ z − z3/6
cos(z) ≈ 1− z2/2

reconstruct the values of sin(πy) and
cos(πy) using{

sin(π(t + yred)) = sin(πt) cos(πyred) + cos(πt) sin(πyred)

cos(π(t + yred)) = cos(πt) cos(πyred)− sin(πt) sin(πyred)

F. de Dinechin Computing Just Right: Application-specific arithmetic 61

Table- and DSP-based method

Algorithm

angle split:
y (the reduced angle) = t + yred

t on a bits
yred such that yred < 2−(a+2)

store sin(πt) and cos(πt) in tables

evaluate sin(πyred) and cos(πyred)
using a Taylor polynomial
approximation

need to compute first z = yred × π
sin(z) ≈ z − z3/6
cos(z) ≈ 1− z2/2

reconstruct the values of sin(πy) and
cos(πy) using{

sin(π(t + yred)) = sin(πt) cos(πyred) + cos(πt) sin(πyred)

cos(π(t + yred)) = cos(πt) cos(πyred)− sin(πt) sin(πyred)

F. de Dinechin Computing Just Right: Application-specific arithmetic 61

Table- and DSP-based method

Algorithm

angle split:
y (the reduced angle) = t + yred

t on a bits
yred such that yred < 2−(a+2)

store sin(πt) and cos(πt) in tables

evaluate sin(πyred) and cos(πyred)
using a Taylor polynomial
approximation

need to compute first z = yred × π
sin(z) ≈ z − z3/6
cos(z) ≈ 1− z2/2

reconstruct the values of sin(πy) and
cos(πy) using{

sin(π(t + yred)) = sin(πt) cos(πyred) + cos(πt) sin(πyred)

cos(π(t + yred)) = cos(πt) cos(πyred)− sin(πt) sin(πyred)

F. de Dinechin Computing Just Right: Application-specific arithmetic 61

Table- and DSP-based method

Algorithm

angle split:
y (the reduced angle) = t + yred

t on a bits
yred such that yred < 2−(a+2)

store sin(πt) and cos(πt) in tables

evaluate sin(πyred) and cos(πyred)
using a Taylor polynomial
approximation

need to compute first z = yred × π
sin(z) ≈ z − z3/6
cos(z) ≈ 1− z2/2

reconstruct the values of sin(πy) and
cos(πy) using{

sin(π(t + yred)) = sin(πt) cos(πyred) + cos(πt) sin(πyred)

cos(π(t + yred)) = cos(πt) cos(πyred)− sin(πt) sin(πyred)

F. de Dinechin Computing Just Right: Application-specific arithmetic 61

Table- and DSP-based method: Details

approximating y ′ = 1
4 − yred as ¬yred

choose a such that z4

24 ≤ 2−w−g

so that a degree-3 Taylor polynomial
may be used
means that 4(a + 2)− 2 ≥ w + g

truncated multiplications

constant multiplication by π

z2/2

computed using a squarer

z3/6

read from a table for small precisions
computed with a dedicated
architecture for larger precisions
(based on a bit heap and divider by
3, see paper)

T T

T

T T
T

T
TZ

F. de Dinechin Computing Just Right: Application-specific arithmetic 62

Table- and DSP-based method: Error Analysis

Error Analysis
1
2ulp lost per table

1ulp per truncation and
truncated multiplier/squarer

1ulp for computing 1
4 − yred

(as ¬yred)

total of 15ulp, independent of
the input width

→ gives g=4

T T

T

T T
T

T
TZ

F. de Dinechin Computing Just Right: Application-specific arithmetic 63

Polynomial-based method

using existing software (more
details in the reference)

based on polynomial
approximation

computes only one of the
functions, depending on an
input

T

T

mult.
trunc.

mult.
trunc.

y

D

ROM
Coef.

A

a0

an−1

an

ỹ2

y

+

i

ỹ1

+

R

round

F. de Dinechin Computing Just Right: Application-specific arithmetic 64

Results – 16−bit Precision

Approach latency frequency Reg. + LUTs BRAM DSP

CORDIC 18 478 969 + 1131 0 0
CORDIC 14 277 776 + 1086 0 0
CORDIC 7 194 418 + 1099 0 0
CORDIC 3 97 262 + 1221 0 0

Red. CORDIC 16 273 657 + 761 0 2
Red. CORDIC 13 368 625 + 719 0 2
Red. CORDIC 7 238 327 + 695 0 2
Red. CORDIC 4 238 106 + 713 0 2

SinAndCos 4 298 107 + 297 0 5
SinAndCos 3 114 168 + 650 0 2

SinOrCos (d=2) 9 251 136 + 183 1 2
SinOrCos (d=2) 5 115.3 87 + 164 1 2

Synthesis Results on Virtex5 FPGA, Using ISE 12.1

F. de Dinechin Computing Just Right: Application-specific arithmetic 65

Results – Highest Frequency

Approach latency frequency Reg. + LUTs BRAM DSP

precision = 16 bits

CORDIC 18 478 969 + 1131 0 0

Red. CORDIC 13 368 625 + 719 0 2

SinAndCos 4 298 107 + 297 0 5

SinOrCos (d=2) 9 251 136 + 183 1 2

precision = 24 bits

CORDIC 28 439.9 1996 + 2144 0 0

Red. CORDIC 20 273.4 1401 + 1446 0 4

SinAndCos 5 262 197 + 441 3 7

SinOrCos (d=2) 9 251 202 + 279 2 2

precision = 32 bits

CORDIC 37 403.5 3495 + 3591 0 0

Red. CORDIC 24 256.8 2160 + 2234 0 4

SinAndCos 10 253 535 + 789 3 9

SinOrCos (d=3) 14 251 444 + 536 4 5

precision = 40 bits

CORDIC 45 375 5070 + 5289 0 0

Red. CORDIC 37 252 3695 + 3768 0 8

SinAndCos (bit heap) 11 266 895 + 1644 3 12
SinAndCos (table z3/6) 8 232 500 + 949 4 12

SinOrCos (d=3) 15 251 628 +725 4 8

precision = 48 bits

SinAndCos (bit heap) 13 232 1322 + 2369 12 17

SinOrCos 15 250 734 + 879 17 10

F. de Dinechin Computing Just Right: Application-specific arithmetic 66

Results – Options for Z 3

6

Approach latency frequency Reg. + LUTs BRAM DSP

precision = 40 bits

CORDIC 45 375 5070 + 5289 0 0
CORDIC 25 149 2948 + 5245 0 0

Red. CORDIC 37 252 3695 + 3768 0 8
Red. CORDIC 9 123 931 + 3339 0 8

SinAndCos (bit heap) 11 266 895 + 1644 3 12
SinAndCos (table z3/6) 8 232 500 + 949 4 12
SinAndCos (bit heap) 4 154 612 + 2826 0 12

SinAndCos (table z3/6) 4 156 395 + 2268 2 12

SinOrCos (d=3) 15 251 628 +725 4 8
SinOrCos (d=3) 9 132 376 +675 4 8

precision = 48 bits

SinAndCos (bit heap) 13 232 1322 + 2369 12 17
SinAndCos (bit heap) 6 132 972 + 2133 12 17

SinOrCos 15 250 734 + 879 17 10
SinOrCos 9 124 431 + 823 17 10

F. de Dinechin Computing Just Right: Application-specific arithmetic 67

Conclusions

A wide range of open-source accurate implementations
CORDIC implementation on par with vendor-provided solutions
some tuning still needed on DSP-based methods

SinAndCos method overall best

Little point in using unrolled CORDIC for FPGAs

Approach latency area

CORDIC 16 bits 30.3 ns 1034 LUTs
SinAndCos 16 bits 15.0 ns 1211 LUTs

CORDIC 24 bits 44.6 ns 2079 LUTs
SinAndCos 24 bits 17.0 ns 2183 LUTs

CORDIC 32 bits 62.1 ns 3513 LUTs
SinAndCos 32 bits 19.4 ns 3539 LUTs

Synthesis results for logic-only implementations

What is the cost of computing w bits of sine/cosine?

F. de Dinechin Computing Just Right: Application-specific arithmetic 68

The universal bit heap

FloPoCo, the user point of view

Example: Multiplication by rational constants

Example: The exponential

Example: Sin/Cos

The universal bit heap

Example: Floating-point sums and sums of products

Example: DSP Filters

Conclusion

F. de Dinechin Computing Just Right: Application-specific arithmetic 69

Introduction and motivation

So much VHDL to write, so few slaves to write it

FPGA arithmetic the way it should be:

An infinite number of application-specific operators

Each heavily parameterized (bit-size, performance, etc)

Portable to any FPGA, and even ASIC

How to ensure performance across all this range?

object-oriented abstraction of vendor-specific features

... not enough

F. de Dinechin Computing Just Right: Application-specific arithmetic 70

Portable versus optimized

Adder

Multi-adder

Multiplier

Constant multiplier

Complex product
......

Polynomial
Elem. function

Spartan-4Spartan-5Spartan-6
Virtex-4Virtex-5Virtex-6

......
StratixIIIStratixIVStratixV

MultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplier

MultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplier

MultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplier

size frequency DSP ratio

I know how to optimize by hand each operator on each target
... But I don’t want to do it.

F. de Dinechin Computing Just Right: Application-specific arithmetic 71

Portable versus optimized

Adder

Multi-adder

Multiplier

Constant multiplier

Complex product
......

Polynomial
Elem. function

Spartan-4Spartan-5Spartan-6
Virtex-4Virtex-5Virtex-6

......
StratixIIIStratixIVStratixV

MultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplier

MultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplier

MultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplier

size

frequency DSP ratio

I know how to optimize by hand each operator on each target
... But I don’t want to do it.

F. de Dinechin Computing Just Right: Application-specific arithmetic 71

Portable versus optimized

Adder

Multi-adder

Multiplier

Constant multiplier

Complex product
......

Polynomial
Elem. function

Spartan-4Spartan-5Spartan-6
Virtex-4Virtex-5Virtex-6

......
StratixIIIStratixIVStratixV

MultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplier

MultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplier

MultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplier

size frequency

DSP ratio

I know how to optimize by hand each operator on each target
... But I don’t want to do it.

F. de Dinechin Computing Just Right: Application-specific arithmetic 71

Portable versus optimized

Adder

Multi-adder

Multiplier

Constant multiplier

Complex product
......

Polynomial
Elem. function

Spartan-4Spartan-5Spartan-6
Virtex-4Virtex-5Virtex-6

......
StratixIIIStratixIVStratixV

MultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplier

MultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplier

MultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplier

size frequency DSP ratio

I know how to optimize by hand each operator on each target
... But I don’t want to do it.

F. de Dinechin Computing Just Right: Application-specific arithmetic 71

Portable versus optimized

Adder

Multi-adder

Multiplier

Constant multiplier

Complex product
......

Polynomial
Elem. function

Spartan-4Spartan-5Spartan-6
Virtex-4Virtex-5Virtex-6

......
StratixIIIStratixIVStratixV

MultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplier

MultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplier

MultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplier

size frequency DSP ratio

I know how to optimize by hand each operator on each target

... But I don’t want to do it.

F. de Dinechin Computing Just Right: Application-specific arithmetic 71

Portable versus optimized

Adder

Multi-adder

Multiplier

Constant multiplier

Complex product
......

Polynomial
Elem. function

Spartan-4Spartan-5Spartan-6
Virtex-4Virtex-5Virtex-6

......
StratixIIIStratixIVStratixV

MultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplier

MultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplier

MultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplier

size frequency DSP ratio

I know how to optimize by hand each operator on each target
... But I don’t want to do it.

F. de Dinechin Computing Just Right: Application-specific arithmetic 71

Reducing the combinatorics

Adder

Multi-adder

Multiplier

Constant multiplier

Complex product
......

Polynomial
Elem. function

Algorithmic descriptionAlgorithmic descriptionAlgorithmic descriptionAlgorithmic descriptionAlgorithmic description

Bit heap

Architecture generation

Spartan-4Spartan-5Spartan-6
Virtex-4Virtex-5Virtex-6

......
StratixIIIStratixIVStratixV

What is a bit heap?

A data-structure
capturing bit-level descriptions of a wide class of operators
exposing bit-level parallelism and optimization opportunities

An associated architecture generator
which can be optimized for each target

F. de Dinechin Computing Just Right: Application-specific arithmetic 72

Reducing the combinatorics

Adder

Multi-adder

Multiplier

Constant multiplier

Complex product
......

Polynomial
Elem. function

Algorithmic descriptionAlgorithmic descriptionAlgorithmic descriptionAlgorithmic descriptionAlgorithmic description

Bit heap

Architecture generation

Spartan-4Spartan-5Spartan-6
Virtex-4Virtex-5Virtex-6

......
StratixIIIStratixIVStratixV

What is a bit heap?

A data-structure
capturing bit-level descriptions of a wide class of operators
exposing bit-level parallelism and optimization opportunities

An associated architecture generator
which can be optimized for each target

F. de Dinechin Computing Just Right: Application-specific arithmetic 72

Reducing the combinatorics

Adder

Multi-adder

Multiplier

Constant multiplier

Complex product
......

Polynomial
Elem. function

Algorithmic descriptionAlgorithmic descriptionAlgorithmic descriptionAlgorithmic descriptionAlgorithmic description

Bit heap

Architecture generation

Spartan-4Spartan-5Spartan-6
Virtex-4Virtex-5Virtex-6

......
StratixIIIStratixIVStratixV

What is a bit heap?

A data-structure
capturing bit-level descriptions of a wide class of operators

exposing bit-level parallelism and optimization opportunities

An associated architecture generator
which can be optimized for each target

F. de Dinechin Computing Just Right: Application-specific arithmetic 72

Reducing the combinatorics

Adder

Multi-adder

Multiplier

Constant multiplier

Complex product
......

Polynomial
Elem. function

Algorithmic descriptionAlgorithmic descriptionAlgorithmic descriptionAlgorithmic descriptionAlgorithmic description

Bit heap

Architecture generation

Spartan-4Spartan-5Spartan-6
Virtex-4Virtex-5Virtex-6

......
StratixIIIStratixIVStratixV

What is a bit heap?

A data-structure
capturing bit-level descriptions of a wide class of operators
exposing bit-level parallelism and optimization opportunities

An associated architecture generator
which can be optimized for each target

F. de Dinechin Computing Just Right: Application-specific arithmetic 72

Reducing the combinatorics

Adder

Multi-adder

Multiplier

Constant multiplier

Complex product
......

Polynomial
Elem. function

Algorithmic descriptionAlgorithmic descriptionAlgorithmic descriptionAlgorithmic descriptionAlgorithmic description

Bit heap

Architecture generation

Spartan-4Spartan-5Spartan-6
Virtex-4Virtex-5Virtex-6

......
StratixIIIStratixIVStratixV

What is a bit heap?

A data-structure
capturing bit-level descriptions of a wide class of operators
exposing bit-level parallelism and optimization opportunities

An associated architecture generator
which can be optimized for each target

F. de Dinechin Computing Just Right: Application-specific arithmetic 72

Operations as bit heaps

Adder

Multi-adder

Multiplier

Constant multiplier

Complex product
......

Polynomial
Elem. function

Algorithmic descriptionAlgorithmic descriptionAlgorithmic descriptionAlgorithmic descriptionAlgorithmic description

Bit heap

Architecture generation

Spartan-4Spartan-5Spartan-6
Virtex-4Virtex-5Virtex-6

......
StratixIIIStratixIVStratixV

F. de Dinechin Computing Just Right: Application-specific arithmetic 73

Weighted bits

Integers or real numbers represented in binary fixed-point

X =
imax∑

i=imin

2ixi

2i : “weight” =⇒ X “sum of weighted bits”

Representation as a dot diagrams

x0x1x2x3x4x5x6x7

weight 2021222324252627

F. de Dinechin Computing Just Right: Application-specific arithmetic 74

Integer or fixed-point

Example: 42 written in binary

01010100

weight 2021222324252627

Example: 17.42 written in binary

111010110001

weight 2−72−62−52−42−32−22−12021222324

F. de Dinechin Computing Just Right: Application-specific arithmetic 75

The historical bit heap

XY = (
∑imax

i=imin
2ixi)× (

∑jmax

j=jmin
2jyj)

=
∑
i ,j

2i+jxiyj

A multiplier is an architecture that computes this sum.

Historical motivation for bit heaps∑
i ,j

2i+jxiyj expresses the bit-level parallelism of the problem

(freedom thanks to addition associativity and commutativity)

F. de Dinechin Computing Just Right: Application-specific arithmetic 76

The historical bit heap

XY = (
∑imax

i=imin
2ixi)× (

∑jmax

j=jmin
2jyj)

=
∑
i ,j

2i+jxiyj

weight 2021222324252627

x0y0

x0y1

x0y2

x0y3

x1y0

x1y1

x1y2

x1y3

x2y0

x2y1

x2y2

x2y3

x3y0

x3y1

x3y2

x3y3

A multiplier is an architecture that computes this sum.

Historical motivation for bit heaps∑
i ,j

2i+jxiyj expresses the bit-level parallelism of the problem

(freedom thanks to addition associativity and commutativity)

F. de Dinechin Computing Just Right: Application-specific arithmetic 76

The historical bit heap

XY = (
∑imax

i=imin
2ixi)× (

∑jmax

j=jmin
2jyj)

=
∑
i ,j

2i+jxiyj

weight 2021222324252627

x0y0

x0y1

x0y2

x0y3

x1y0

x1y1

x1y2

x1y3

x2y0

x2y1

x2y2

x2y3

x3y0

x3y1

x3y2

x3y3

A multiplier is an architecture that computes this sum.

Historical motivation for bit heaps∑
i ,j

2i+jxiyj expresses the bit-level parallelism of the problem

(freedom thanks to addition associativity and commutativity)

F. de Dinechin Computing Just Right: Application-specific arithmetic 76

The historical bit heap

XY = (
∑imax

i=imin
2ixi)× (

∑jmax

j=jmin
2jyj)

=
∑
i ,j

2i+jxiyj

weight 2021222324252627

x3y0

x2y1x3y1

x1y2x2y2x3y2

x0y3x1y3x2y3x3y3 x0y0

x1y0

x2y0

x0y1

x1y1

x0y2

A multiplier is an architecture that computes this sum.

Historical motivation for bit heaps∑
i ,j

2i+jxiyj expresses the bit-level parallelism of the problem

(freedom thanks to addition associativity and commutativity)

F. de Dinechin Computing Just Right: Application-specific arithmetic 76

Beyond product

A +

XY =
∑
i ,j

2i+jxiyj

x3y0

x2y1x3y1

x1y2x2y2x3y2

x0y3x1y3x2y3x3y3 x0y0

x1y0

x2y0

x0y1

x1y1

x0y2

a0a1a2a3a4a5a6a7a8a9

When generating an architecture

consider only one big sum of weighted bits

get rid of artificial sequentiality
inside operators, and between operators

focus on true timing information
e.g. critical path delay of each weighted bit

A global optimization instead of several local ones

F. de Dinechin Computing Just Right: Application-specific arithmetic 77

Beyond product

A + XY =
∑

i

2iai +
∑
i ,j

2i+jxiyj

x3y0

x2y1x3y1

x1y2x2y2x3y2

x0y3x1y3x2y3x3y3 x0y0

x1y0

x2y0

x0y1

x1y1

x0y2

a0a1a2a3a4a5a6a7a8a9

When generating an architecture

consider only one big sum of weighted bits

get rid of artificial sequentiality
inside operators, and between operators

focus on true timing information
e.g. critical path delay of each weighted bit

A global optimization instead of several local ones

F. de Dinechin Computing Just Right: Application-specific arithmetic 77

Beyond product

A + XY =
∑
w ,h

2wbw ,h

x3y0

x2y1x3y1

x1y2x2y2x3y2

x0y3x1y3x2y3x3y3 x0y0

x1y0

x2y0

x0y1

x1y1

x0y2

a0a1a2a3a4a5a6a7a8a9

When generating an architecture

consider only one big sum of weighted bits

get rid of artificial sequentiality
inside operators, and between operators

focus on true timing information
e.g. critical path delay of each weighted bit

A global optimization instead of several local ones

F. de Dinechin Computing Just Right: Application-specific arithmetic 77

Beyond product

A + XY =
∑
w ,h

2wbw ,h

x3y0

x2y1x3y1

x1y2x2y2x3y2

x0y3x1y3x2y3x3y3 x0y0

x1y0

x2y0

x0y1

x1y1

x0y2

a0a1a2a3a4a5a6a7a8a9

When generating an architecture

consider only one big sum of weighted bits

get rid of artificial sequentiality
inside operators, and between operators

focus on true timing information
e.g. critical path delay of each weighted bit

A global optimization instead of several local ones

F. de Dinechin Computing Just Right: Application-specific arithmetic 77

Well beyond product

A bit heap is anything that can be developed as
∑
w ,h

2wbw ,h

the sum of two bit heaps is obviously a bit heap

the product of two bit heaps is also a bit heap

Any polynomial of multiple variables is a bit heap

... where each bw ,h is the AND of a few input bits.
This includes sums of squares, FIR filters, etc

And then more

A huge class of function may be approximated by polynomials

The bw ,h may be read from arbitrary look-up tables

An operator may include several bit heaps

F. de Dinechin Computing Just Right: Application-specific arithmetic 78

Well beyond product

A bit heap is anything that can be developed as
∑
w ,h

2wbw ,h

the sum of two bit heaps is obviously a bit heap

the product of two bit heaps is also a bit heap

Any polynomial of multiple variables is a bit heap

... where each bw ,h is the AND of a few input bits.
This includes sums of squares, FIR filters, etc

And then more

A huge class of function may be approximated by polynomials

The bw ,h may be read from arbitrary look-up tables

An operator may include several bit heaps

F. de Dinechin Computing Just Right: Application-specific arithmetic 78

Well beyond product

A bit heap is anything that can be developed as
∑
w ,h

2wbw ,h

the sum of two bit heaps is obviously a bit heap

the product of two bit heaps is also a bit heap

Any polynomial of multiple variables is a bit heap

... where each bw ,h is the AND of a few input bits.
This includes sums of squares, FIR filters, etc

And then more

A huge class of function may be approximated by polynomials

The bw ,h may be read from arbitrary look-up tables

An operator may include several bit heaps

F. de Dinechin Computing Just Right: Application-specific arithmetic 78

When you have a good hammer,
you see nails everywhere

A sine/cosine architecture (HEART 2013)

s q o A Yred

T T

T

T T

T

T

T

Z 3/6Z 2/2

×π
Sin/Cos table

sinPiX cosPiX

Swap/negate

sinZ

cosPiA
sinPiA

Z

sinAcosZ cosAcosZ
sinAsinZ cosAsinZ

F. de Dinechin Computing Just Right: Application-specific arithmetic 79

When you have a good hammer,
you see nails everywhere

A sine/cosine architecture (HEART 2013) with 5 bit heaps

s q o A Yred

T T

T

T T

T

T

T

Z 3/6Z 2/2

×π
Sin/Cos table

sinPiX cosPiX

Swap/negate

sinZ

cosPiA
sinPiA

Z

sinAcosZ cosAcosZ
sinAsinZ cosAsinZ

F. de Dinechin Computing Just Right: Application-specific arithmetic 79

A bit heap for Z − Z 3/6 in the previous architecture

Full bit heap

w=16 bits

Bit heap truncated just right

F. de Dinechin Computing Just Right: Application-specific arithmetic 80

The constant vector

Quite often you need to add a constant to a bit heap:

Rounding bit

Constant coefficient

Sign extension for two’s complement (generalizating a classical
multiplier trick)

To replicate bit s from weight p to weight q

add s at weight p.

then add 2q − 2p to the constant bit vector
(a string of 1’s stretching from bit p to bit q)

This performs the sign extension both when s = 0 and s = 1.

All these constants may be pre-added, and only their sum added to the
bit heap.
Managing signed number costs at most one line in the bit heap.

F. de Dinechin Computing Just Right: Application-specific arithmetic 81

Generating an architecture

Adder

Multi-adder

Multiplier

Constant multiplier

Complex product
......

Polynomial
Elem. function

Algorithmic descriptionAlgorithmic descriptionAlgorithmic descriptionAlgorithmic descriptionAlgorithmic description

Bit heap

Architecture generation

Spartan-4Spartan-5Spartan-6
Virtex-4Virtex-5Virtex-6

......
StratixIIIStratixIVStratixV

F. de Dinechin Computing Just Right: Application-specific arithmetic 82

Architecture computing the value of a bit heap

Elementary case 1: the compressor

A compressor replaces a column of bits
by its sum written in binary (on fewer bits)

archetype: the full adder is a 3 to 2 compressor

on a recent FPGA: a 6 to 3 compressor
tabulated in 3 6-input LUTs.

survey and refs in the FPL 2013 paper, see also
papers by M. Kumm.

Elementary case 2: the adder

An adder replaces two n-bit lines, and a carry
by a line of n + 1 bits

F. de Dinechin Computing Just Right: Application-specific arithmetic 83

Architecture computing the value of a bit heap

Elementary case 1: the compressor

A compressor replaces a column of bits
by its sum written in binary (on fewer bits)

archetype: the full adder is a 3 to 2 compressor

on a recent FPGA: a 6 to 3 compressor
tabulated in 3 6-input LUTs.

survey and refs in the FPL 2013 paper, see also
papers by M. Kumm.

Elementary case 2: the adder

An adder replaces two n-bit lines, and a carry
by a line of n + 1 bits

F. de Dinechin Computing Just Right: Application-specific arithmetic 83

Architecture computing the value of a bit heap

Elementary case 1: the compressor

A compressor replaces a column of bits
by its sum written in binary (on fewer bits)

archetype: the full adder is a 3 to 2 compressor

on a recent FPGA: a 6 to 3 compressor
tabulated in 3 6-input LUTs.

survey and refs in the FPL 2013 paper, see also
papers by M. Kumm.

Elementary case 2: the adder

An adder replaces two n-bit lines, and a carry
by a line of n + 1 bits

F. de Dinechin Computing Just Right: Application-specific arithmetic 83

Architecture computing the value of a bit heap

1. Compression
Tile the bit heap with compressors

I use as many compressors in parallel as possible
I this produces a new, smaller bit heap
I ... in one LUT delay

Start again on the compressed bit heap

Stop when bit heap height equal to two

2. Final fast addition

add the remaining two lines

Both steps can be done in log n time and n log n area

F. de Dinechin Computing Just Right: Application-specific arithmetic 84

Architecture computing the value of a bit heap

1. Compression
Tile the bit heap with compressors

I use as many compressors in parallel as possible
I this produces a new, smaller bit heap
I ... in one LUT delay

Start again on the compressed bit heap

Stop when bit heap height equal to two

2. Final fast addition

add the remaining two lines

Both steps can be done in log n time and n log n area

F. de Dinechin Computing Just Right: Application-specific arithmetic 84

Architecture computing the value of a bit heap

1. Compression
Tile the bit heap with compressors

I use as many compressors in parallel as possible
I this produces a new, smaller bit heap
I ... in one LUT delay

Start again on the compressed bit heap

Stop when bit heap height equal to two

2. Final fast addition

add the remaining two lines

Both steps can be done in log n time and n log n area

F. de Dinechin Computing Just Right: Application-specific arithmetic 84

Bit heaps and DSP blocks

Elementary case: the DSP block?

Xilinx DSP blocks compute A + XY (48+18x25)

Altera DSP blocks compute XY (36x36)
or AB± CD (18x18+18x18) or ...

Really different architectures here

Exemple: 53-bit truncated multiplier

D(1)(2) D(0)(2)

D(1)(1)

D(1)(0)

Virtex-5

D(0)(0)

D(-1)(1)

D(1)(-1)

Stratix IV

F. de Dinechin Computing Just Right: Application-specific arithmetic 85

Bit heaps and DSP blocks

Elementary case: the DSP block?

Xilinx DSP blocks compute A + XY (48+18x25)

Altera DSP blocks compute XY (36x36)
or AB± CD (18x18+18x18) or ...

Really different architectures here

Exemple: 53-bit truncated multiplier

D(1)(2) D(0)(2)

D(1)(1)

D(1)(0)

Virtex-5

D(0)(0)

D(-1)(1)

D(1)(-1)

Stratix IV
F. de Dinechin Computing Just Right: Application-specific arithmetic 85

Reconciling bit heaps and DSP blocks

Instanciating DSP blocks is part of the compression

merge operands from various sources in a DSP

unused DSP adders may remove random bits from the heap

D(1)(2) D(0)(2)

D(1)(1)

D(1)(0)

Virtex-5

D(0)(0)

D(-1)(1)

D(1)(-1)

Stratix IV

Many more details in the paper.

F. de Dinechin Computing Just Right: Application-specific arithmetic 86

Current status

Adder

Multi-adder

Multiplier

Constant multiplier

Complex product
......

Polynomial
Elem. function

Algorithmic descriptionAlgorithmic descriptionAlgorithmic descriptionAlgorithmic descriptionAlgorithmic description

Bit heap

Architecture generation

Spartan-4Spartan-5Spartan-6
Virtex-4Virtex-5Virtex-6

......
StratixIIIStratixIVStratixV

F. de Dinechin Computing Just Right: Application-specific arithmetic 87

So, does it work?

Benefits in terms of software engineering

Reduction of FloPoCo code size

Fewer obscure bugs hidden in obscure operators

(I didn’t say fewer bugs)

Benefits in terms of performance

... thanks to operator fusion

Already a few examples

complex product
cosine transforms

Still work in progress

improve compression heuristics
fuse in all the integer adder variants
rework the polynomial evaluator

Progress in the BitHeap class benefits to many operators

F. de Dinechin Computing Just Right: Application-specific arithmetic 88

So, does it work?

Benefits in terms of software engineering

Reduction of FloPoCo code size

Fewer obscure bugs hidden in obscure operators

(I didn’t say fewer bugs)

Benefits in terms of performance

... thanks to operator fusion

Already a few examples

complex product
cosine transforms

Still work in progress

improve compression heuristics
fuse in all the integer adder variants
rework the polynomial evaluator

Progress in the BitHeap class benefits to many operators

F. de Dinechin Computing Just Right: Application-specific arithmetic 88

Generate VHDL, test bench,
and nice clickable SVG graphics

before first compression

0 1.653 ns

0 1.773 ns

1 1.061 ns

1 1.204 ns

before 3-bit height additions

before final addition

F. de Dinechin Computing Just Right: Application-specific arithmetic 89

Future work, from short-term to hopeless

Adapt all the remaining operators to take advantage of bit heaps

Improve the compression heuristics
done, thanks to Martin Kumm

Automate some of the algebraic optimisations done by hand so far

Answer open questions like:

How many bits must flip to compute 16 bits of sin(x)?

F. de Dinechin Computing Just Right: Application-specific arithmetic 90

Example: Floating-point sums and
sums of products

FloPoCo, the user point of view

Example: Multiplication by rational constants

Example: The exponential

Example: Sin/Cos

The universal bit heap

Example: Floating-point sums and sums of products

Example: DSP Filters

Conclusion

F. de Dinechin Computing Just Right: Application-specific arithmetic 91

Floating-point accumulation

Summing a large number of floating-point terms fast and accurately

Crucial for:

Scientific computations:
dot-product, matrix-vector product, matrix-matrix product
numerical integration

Financial simulations:
Monte-Carlo simulations

...

F. de Dinechin Computing Just Right: Application-specific arithmetic 92

Not familiar with floating-point arithmetic?

Floating-Point(FP) numbers

Let x be a normalized binary FP number:

x = (−1)S × 1.f × 2e

where:

S - the sign of x

f - the fraction of x .

e - the exponent of x

e gives the dynamic range

IEEE-754 FP double precision, emin=-1022 and emax = 1023

number of bits of f gives the precision p

IEEE-754 FP double precision, p=52

F. de Dinechin Computing Just Right: Application-specific arithmetic 93

Not familiar with floating-point arithmetic?

Floating-Point(FP) numbers

Let x be a normalized binary FP number:

x = (−1)S × 1.f × 2e

where:

S - the sign of x

f - the fraction of x .

e - the exponent of x

e gives the dynamic range

IEEE-754 FP double precision, emin=-1022 and emax = 1023

number of bits of f gives the precision p

IEEE-754 FP double precision, p=52

F. de Dinechin Computing Just Right: Application-specific arithmetic 93

Not familiar with floating-point arithmetic?

Floating-Point(FP) numbers

Let x be a normalized binary FP number:

x = (−1)S × 1.f × 2e

where:

S - the sign of x

f - the fraction of x .

e - the exponent of x

e gives the dynamic range

IEEE-754 FP double precision, emin=-1022 and emax = 1023

number of bits of f gives the precision p

IEEE-754 FP double precision, p=52

F. de Dinechin Computing Just Right: Application-specific arithmetic 93

Not familiar with floating-point arithmetic?

Floating-Point(FP) numbers

Let x be a normalized binary FP number:

x = (−1)S × 1.f × 2e

where:

S - the sign of x

f - the fraction of x .

e - the exponent of x

Graphical representation:

1 we wf

es f

asdsad

F. de Dinechin Computing Just Right: Application-specific arithmetic 93

Accumulation

Infinitely accurate fixed−point accumulator

Addend

=

Floating−point accumulator

0 0 0 0 01 1 0 00 0 0 1 1 1 0 1 0 0 0 0 0 01

0 0 0 0 01 1 0 00 x0

0 1001 0 0 0 0 00 1 1 1x1

Shifted significand

Accuracy:

Exact Result = 50.2017822265625
FP Acc = 50.125
Fixed-Point Acc = 50.20166015625

F. de Dinechin Computing Just Right: Application-specific arithmetic 94

Accumulation

Infinitely accurate fixed−point accumulator

Addend

=

Floating−point accumulator

0 0 0 0 01 1 0 00 x0

0 1001 0 0 0 0 00 1 1 1x1

0 0 0 0 01 1 11+ x1

0010 0 001 0

0 0 0 0 01 1 11x1

acc

00 0 0 01011101 0 00010111001001

Shifted significand

Accuracy:

Exact Result = 50.2017822265625
FP Acc = 50.125
Fixed-Point Acc = 50.20166015625

F. de Dinechin Computing Just Right: Application-specific arithmetic 94

Accumulation

Infinitely accurate fixed−point accumulator

Addend

=

Floating−point accumulator

0 0 0 0 01 1 0 00 x0

0 0 0 0 01 1 11+ x1

00 0 0 01011101 0 00010111001001

100110000 1 0 1 0 0x2

Shifted significand

Accuracy:

Exact Result = 50.2017822265625
FP Acc = 50.125
Fixed-Point Acc = 50.20166015625

F. de Dinechin Computing Just Right: Application-specific arithmetic 94

Accumulation

Infinitely accurate fixed−point accumulator

Addend

=

Floating−point accumulator

0 0 0 0 01 1 0 00 x0

0 0 0 0 01 1 11+ x1

100110000 1 0 1 0 0x2

1 0 0 0 1 1 0 0 1+ x2

1 1 1 1 100 000

1111 00000x2

acc

111111 00 0 0 0 000 111110 1 0 0 0 0 01 0

Shifted significand

Accuracy:

Exact Result = 50.2017822265625
FP Acc = 50.125
Fixed-Point Acc = 50.20166015625

F. de Dinechin Computing Just Right: Application-specific arithmetic 94

Accumulation

Infinitely accurate fixed−point accumulator

Addend

=

Floating−point accumulator

0 0 0 0 01 1 0 00 x0

0 0 0 0 01 1 11+ x1

1 0 0 0 1 1 0 0 1+ x2

111111 00 0 0 0 000 111110 1 0 0 0 0 01 0

111101000 1 1 0 1 0x3

Shifted significand

Accuracy:

Exact Result = 50.2017822265625
FP Acc = 50.125
Fixed-Point Acc = 50.20166015625

F. de Dinechin Computing Just Right: Application-specific arithmetic 94

Accumulation

Infinitely accurate fixed−point accumulator

Addend

=

Floating−point accumulator

0 0 0 0 01 1 0 00 x0

0 0 0 0 01 1 11+ x1

1 0 0 0 1 1 0 0 1+ x2

111101000 1 1 0 1 0x3

01 0 1 0 1 1 1 1+ x3

011011101

1 00 1 0 1 11 1x3

acc

11110100111011101 1 00100 11101 110

Shifted significand

Accuracy:

Exact Result = 50.2017822265625
FP Acc = 50.125
Fixed-Point Acc = 50.20166015625

F. de Dinechin Computing Just Right: Application-specific arithmetic 94

Accumulation

Infinitely accurate fixed−point accumulator

Addend

=

Floating−point accumulator

0 0 0 0 01 1 0 00 x0

0 0 0 0 01 1 11+ x1

1 0 0 0 1 1 0 0 1+ x2

01 0 1 0 1 1 1 1+ x3

11110100111011101 1 00100 11101 110

001001011 0 0 0 00x4

Shifted significand

Accuracy:

Exact Result = 50.2017822265625
FP Acc = 50.125
Fixed-Point Acc = 50.20166015625

F. de Dinechin Computing Just Right: Application-specific arithmetic 94

Accumulation

Infinitely accurate fixed−point accumulator

Addend

=

Floating−point accumulator

0 0 0 0 01 1 0 00 x0

0 0 0 0 01 1 11+ x1

1 0 0 0 1 1 0 0 1+ x2

01 0 1 0 1 1 1 1+ x3

001001011 0 0 0 00x4

1 1 0 1 0 0 1 0 0+ x4

1 1 0 1 0 0 1 0 0

110 1110 11

x4

acc

11 1 10110100010011 100010011 1 0000

Shifted significand

Accuracy:

Exact Result = 50.2017822265625
FP Acc = 50.125
Fixed-Point Acc = 50.20166015625

F. de Dinechin Computing Just Right: Application-specific arithmetic 94

Accumulation

Addend

=

Floating−point accumulator

0 0 0 0 01 1 0 00 x0

0 0 0 0 01 1 11+ x1

1 0 0 0 1 1 0 0 1+ x2

01 0 1 0 1 1 1 1+ x3

1 1 0 1 0 0 1 0 0+ x4

1 1 0 1 0 0 1 0 0

110 1110 11

x4

acc

11 1 10110100010011 100010011 1 0000

0 1 0 1 0 10 1 01 0 1 00x5

Finite accuracy fixed−point accumulator

Shifted significand

Accuracy:

Exact Result = 50.2017822265625
FP Acc = 50.125
Fixed-Point Acc = 50.20166015625

F. de Dinechin Computing Just Right: Application-specific arithmetic 94

Accumulation

Addend

=

Floating−point accumulator

0 0 0 0 01 1 0 00 x0

0 0 0 0 01 1 11+ x1

1 0 0 0 1 1 0 0 1+ x2

01 0 1 0 1 1 1 1+ x3

1 1 0 1 0 0 1 0 0+ x4

0 1 0 1 0 10 1 01 0 1 00x5

Finite accuracy fixed−point accumulator

0011101 01+ x5

1 1 0 0 01 0 0 1

1 10 1 1 0 0 1 0x5

acc

010111001100010011 100010010 1 0 1 00

Shifted significand

Accuracy:

Exact Result = 50.2017822265625
FP Acc = 50.125
Fixed-Point Acc = 50.20166015625

F. de Dinechin Computing Just Right: Application-specific arithmetic 94

Accumulation

Addend

=

Floating−point accumulator

0 0 0 0 01 1 0 00 x0

0 0 0 0 01 1 11+ x1

1 0 0 0 1 1 0 0 1+ x2

01 0 1 0 1 1 1 1+ x3

1 1 0 1 0 0 1 0 0+ x4

0 1 0 1 0 10 1 01 0 1 00x5

Finite accuracy fixed−point accumulator

0011101 01+ x5

1 1 0 0 01 0 0 1

1 10 1 1 0 0 1 0x5

acc

010111001100010011 100010010 1 0 1 00

Shifted significand

Accuracy:

Exact Result = 50.2017822265625
FP Acc = 50.125
Fixed-Point Acc = 50.20166015625

F. de Dinechin Computing Just Right: Application-specific arithmetic 94

Closer look

Accumulator based on combinatorial floating-point adder

very low frequency

must pipeline for larger frequency

F. de Dinechin Computing Just Right: Application-specific arithmetic 95

Closer look

k

number
of loop
pipeline

levels

Accumulator based on pipelined floating-point adder

loop’s critical path contains 2 shifters

shifters are deeply pipelined

produces k accumulation results

these results have to be added somehow

adder tree
multiplexing mechanism on accumulation loop

F. de Dinechin Computing Just Right: Application-specific arithmetic 95

Closer look

Accumulator based on proposed long accumulator

no shifts on the loop’s critical path

returns the result of the accumulation in fixed point

the alignment shifter pipeline depth does not concern the result

F. de Dinechin Computing Just Right: Application-specific arithmetic 95

Accumulator Architecture

L
o
n
g
A
c
c

wA

shift value

mantissa

carry in

MaxMSBX − LSBA + 1

MaxMSBX

exponent

wE wF

sign

fixed-point sum

registers

Input Shifter

1’s complement

the sum is kept as a large fixed-point number

one alignment shift (size depends on MaxMSBX and LSBA)

the loop’s critical path contains a fixed-point addition

fixed-point addition is fast on current FPGAs

F. de Dinechin Computing Just Right: Application-specific arithmetic 96

Fast Accumulator Design

The accumulator should run at a target frequency

64-bit addition works at 220MHz on Xilinx Virtex4 FPGA due to
fast-carry chains

still not enough ?

use partial carry-save representation

cut large carry-propagation into chunks of k bits
critical path = k-bit addition
small cost: bwidthaccumulator/kc registers

shifters can be arbitrarily pipelined for a given frequency

F. de Dinechin Computing Just Right: Application-specific arithmetic 97

Fast Accumulator Design

The accumulator should run at a target frequency

64-bit addition works at 220MHz on Xilinx Virtex4 FPGA due to
fast-carry chains

still not enough ?

use partial carry-save representation

cut large carry-propagation into chunks of k bits
critical path = k-bit addition
small cost: bwidthaccumulator/kc registers

shifters can be arbitrarily pipelined for a given frequency

F. de Dinechin Computing Just Right: Application-specific arithmetic 97

Fast Accumulator Design

The accumulator should run at a target frequency

64-bit addition works at 220MHz on Xilinx Virtex4 FPGA due to
fast-carry chains

still not enough ?

use partial carry-save representation

cut large carry-propagation into chunks of k bits
critical path = k-bit addition
small cost: bwidthaccumulator/kc registers

shifters can be arbitrarily pipelined for a given frequency

F. de Dinechin Computing Just Right: Application-specific arithmetic 97

Fast Accumulator Design

The accumulator should run at a target frequency

64-bit addition works at 220MHz on Xilinx Virtex4 FPGA due to
fast-carry chains

still not enough ?

use partial carry-save representation

cut large carry-propagation into chunks of k bits
critical path = k-bit addition
small cost: bwidthaccumulator/kc registers

shifters can be arbitrarily pipelined for a given frequency

F. de Dinechin Computing Just Right: Application-specific arithmetic 97

Fast Accumulator Design

The accumulator should run at a target frequency

64-bit addition works at 220MHz on Xilinx Virtex4 FPGA due to
fast-carry chains

still not enough ?

use partial carry-save representation

cut large carry-propagation into chunks of k bits
critical path = k-bit addition
small cost: bwidthaccumulator/kc registers

shifters can be arbitrarily pipelined for a given frequency

F. de Dinechin Computing Just Right: Application-specific arithmetic 97

We advocate:

An application tailored fixed-point accumulator
for floating-point inputs

Ensuring that:

1. accumulator significand never needs to be shifted

2. it never overflows

3. provides a result as accurate as the application requires

F. de Dinechin Computing Just Right: Application-specific arithmetic 98

Accumulator Parameters

MSBA the weight of the MSB of the accumulator

must to be larger than max. expected result

MaxMSBX the max. weight of the MSB of the summand

LSBA weight of the LSB of the accumulator

determines the final accumulation accuracy

The designer must provide values for these parameters.

F. de Dinechin Computing Just Right: Application-specific arithmetic 99

Accumulator Parameters

MSBA

MSBA the weight of the MSB of the accumulator

must to be larger than max. expected result

MaxMSBX the max. weight of the MSB of the summand

LSBA weight of the LSB of the accumulator

determines the final accumulation accuracy

The designer must provide values for these parameters.

F. de Dinechin Computing Just Right: Application-specific arithmetic 99

Accumulator Parameters

MaxMSBXMSBA

MSBA the weight of the MSB of the accumulator

must to be larger than max. expected result

MaxMSBX the max. weight of the MSB of the summand

LSBA weight of the LSB of the accumulator

determines the final accumulation accuracy

The designer must provide values for these parameters.

F. de Dinechin Computing Just Right: Application-specific arithmetic 99

Accumulator Parameters

LSBAMaxMSBXMSBA

MSBA the weight of the MSB of the accumulator

must to be larger than max. expected result

MaxMSBX the max. weight of the MSB of the summand

LSBA weight of the LSB of the accumulator

determines the final accumulation accuracy

The designer must provide values for these parameters.

F. de Dinechin Computing Just Right: Application-specific arithmetic 99

Application Tailored

Application dictates parameter values

Two possibilities:

software profiling + safety margins
rough error analysis + safety margins

How to chose the parameters using the rough error analysis ?

MSBA know an actual maximum + 10 bits safety margin
consider the number of terms to sum

MaxMSBX exploit input properties + safety margin
worst case: MaxMSBX = MSBA

LSBA precision vs. performance
consider the desired final precision
sum n terms, at most log2 n bits are invalid

LSBAMaxMSBXMSBA

log2n

F. de Dinechin Computing Just Right: Application-specific arithmetic 100

Application Tailored

Application dictates parameter values

Two possibilities:

software profiling + safety margins
rough error analysis + safety margins

How to chose the parameters using the rough error analysis ?

MSBA know an actual maximum + 10 bits safety margin
consider the number of terms to sum

MaxMSBX exploit input properties + safety margin
worst case: MaxMSBX = MSBA

LSBA precision vs. performance
consider the desired final precision
sum n terms, at most log2 n bits are invalid

LSBAMaxMSBXMSBA

log2n

F. de Dinechin Computing Just Right: Application-specific arithmetic 100

Application Tailored

Application dictates parameter values

Two possibilities:

software profiling + safety margins
rough error analysis + safety margins

How to chose the parameters using the rough error analysis ?

MSBA know an actual maximum + 10 bits safety margin
consider the number of terms to sum

MaxMSBX exploit input properties + safety margin
worst case: MaxMSBX = MSBA

LSBA precision vs. performance
consider the desired final precision
sum n terms, at most log2 n bits are invalid

LSBAMaxMSBXMSBA

log2n

F. de Dinechin Computing Just Right: Application-specific arithmetic 100

Application Tailored

Application dictates parameter values

Two possibilities:

software profiling + safety margins
rough error analysis + safety margins

How to chose the parameters using the rough error analysis ?

MSBA know an actual maximum + 10 bits safety margin
consider the number of terms to sum

MaxMSBX exploit input properties + safety margin
worst case: MaxMSBX = MSBA

LSBA precision vs. performance
consider the desired final precision
sum n terms, at most log2 n bits are invalid

LSBAMaxMSBXMSBA

log2n

F. de Dinechin Computing Just Right: Application-specific arithmetic 100

Application Tailored

Application dictates parameter values

Two possibilities:

software profiling + safety margins
rough error analysis + safety margins

How to chose the parameters using the rough error analysis ?

MSBA know an actual maximum + 10 bits safety margin
consider the number of terms to sum

MaxMSBX exploit input properties + safety margin
worst case: MaxMSBX = MSBA

LSBA precision vs. performance
consider the desired final precision
sum n terms, at most log2 n bits are invalid

LSBAMaxMSBXMSBA

log2n

F. de Dinechin Computing Just Right: Application-specific arithmetic 100

Application Tailored

Application dictates parameter values

Two possibilities:

software profiling + safety margins
rough error analysis + safety margins

How to chose the parameters using the rough error analysis ?

MSBA know an actual maximum + 10 bits safety margin
consider the number of terms to sum

MaxMSBX exploit input properties + safety margin
worst case: MaxMSBX = MSBA

LSBA precision vs. performance
consider the desired final precision
sum n terms, at most log2 n bits are invalid

LSBAMaxMSBXMSBA

log2n

F. de Dinechin Computing Just Right: Application-specific arithmetic 100

Post-normalization unit, or not

L
o
n
g
A
c
c
2
F
P

mantissa signexponent

fixed-point sum

w ′F

wA

w ′E

carry propagation

LZC + shifter

2’s complement

converts fixed-point accumulator format to floating-point

pipelined unit may be shared by several accumulators

less useful:

many applications do not need the running sum
better to do conversion in software, use FPGA to accelerate the
computation

F. de Dinechin Computing Just Right: Application-specific arithmetic 101

Performance results

800

1000

1200

1400

1600

1800

Slice Usage

3
DSP
3

DSP

2fp
2fp

?
?

2fp

2fp

0

200

400

600

(wE=7,wF=16) (wE=8,wF=23) (wE=10,wF=37) (wE=11,wF=52)

CoreGen FPAdder

2*wF Accumulator, MaxMSBX=1

2*wF Accumulator, MaxMSBX=MSBA

1
DSP
?1

DSP
?

2fp
2fp

2fp
2fp

?

2fp?

F. de Dinechin Computing Just Right: Application-specific arithmetic 102

Performance results

8

10

12

14

16

18

Latency

0

2

4

6

(wE=7,wF=16) (wE=8,wF=23) (wE=10,wF=37) (wE=11,wF=52)

CoreGen FPAdder

2*wF Accumulator, MaxMSBX=1

2*wF Accumulator, MaxMSBX=MSBA

F. de Dinechin Computing Just Right: Application-specific arithmetic 102

Relative error results

‐4

‐3

‐2

‐1

0
1,000 10,000 100,000 1,000,000

)

Relative Error

‐10

‐9

‐8

‐7

‐6

‐5

4

lo
g(
Er
ro
r)

FPAdder LongAcc

Accumulation of FP(wE = 7,wF = 16) in unif. [0,1]

LongAcc (MSBA = 20, LSBA = −11)

F. de Dinechin Computing Just Right: Application-specific arithmetic 103

Accurate Sum-of-Products

Ideea

Accumulate exact results of all multiplications

1. Use exact multipliers:

return all the bits of the exact product
contain no rounding logic
are cheaper to build

2. Feed the accumulator with exact multiplication results

Cost: Input shifter of accumulator is twice as large

F. de Dinechin Computing Just Right: Application-specific arithmetic 104

Operator Performance

1200

1400

1600

1800

2000

2200

2400

Slices

longAcc2fp

?

+

0

200

400

600

800

1000

1200

SP x, SP + | SP x, DP acc DP x, DP +| DP x, 105‐bit acc

CoreGen LongAcc

longAcc2fp

?

+
8 DSP +

4 DSP

+
19 DSP

9 DSP

F. de Dinechin Computing Just Right: Application-specific arithmetic 105

Operator Performance

25

30

35

40

45

Latency

longAcc2fp

longAcc2fp

?

?

0

5

10

15

20

SP x, SP + | SP x, DP acc DP x, DP +| DP x, 105‐bit acc

CoreGen LongAcc

F. de Dinechin Computing Just Right: Application-specific arithmetic 105

Example: DSP Filters

FloPoCo, the user point of view

Example: Multiplication by rational constants

Example: The exponential

Example: Sin/Cos

The universal bit heap

Example: Floating-point sums and sums of products

Example: DSP Filters

Conclusion

F. de Dinechin Computing Just Right: Application-specific arithmetic 106

Finite Impulse Response filters

y(t) =
N−1∑
i=0

bix(t − i)

the bi are potentially real numbers (or almost: Matlab numbers)

the x(t) and y(t) are discrete, fixed-point, low-precision signals
(the lower, the cheaper)

F. de Dinechin Computing Just Right: Application-specific arithmetic 107

FIR filters, architectural view (abstract)

y(t) =
N−1∑
i=0

bix(t − i)

x(t)

b0 b1 b2 b3

x(t − 1)

+

x(t − 2)

+

x(t − 3)

+
y(t)

F. de Dinechin Computing Just Right: Application-specific arithmetic 108

FIR filters, arithmetic view

y(t) =
N−1∑
i=0

bix(t − i)

b0 = .00001001111111010001010101101...
b1 = .00101110110001000101001110000...
b2 = .11000001011011010001001100101...
b3 = .00110101000001001110111001111...

b0x0 xxxxxxxxxxxxxxxxxxxxxxxxx...
+b1x1 xxxxxxxxxxxxxxxxxxxxxxxxxxx...
+b2x2 xxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
+b3x3 xxxxxxxxxxxxxxxxxxxxxxxxxxx...

y = yyyyyyyyyyyyyyyyyyyyyyyyyyyyyy...

The bi are reals, therefore the exact result y may be an irrational.

F. de Dinechin Computing Just Right: Application-specific arithmetic 109

FIR filters, arithmetic view

y(t) =
N−1∑
i=0

bix(t − i)

b0 = .00001001111111010001010101101...
b1 = .001011101100010001010011
b2 = .110000010110110100010011
b3 = .001101010000010011101110

b0x0 xxxxxxxxxxxxxxxxxxxx
+b1x1 xxxxxxxxxxxxxxxxxxxxxx
+b2x2 xxxxxxxxxxxxxxxxxxxxxxxx
+b3x3 xxxxxxxxxxxxxxxxxxxxxx

y = yyyyyyyyyyyyyyyyyyyyyyyyy

2−p

Naive approach: round the bi and the products to the target precision.

F. de Dinechin Computing Just Right: Application-specific arithmetic 109

FIR filters, arithmetic view

y(t) =
N−1∑
i=0

bix(t − i)

b0 = .00001001111111010001010101101...
b1 = .001011101100010001010011
b2 = .110000010110110100010011
b3 = .001101010000010011101110

b0x0 xxxxxxxxxxxxxxxxxxxx
+b1x1 xxxxxxxxxxxxxxxxxxxxxx
+b2x2 xxxxxxxxxxxxxxxxxxxxxxxx
+b3x3 xxxxxxxxxxxxxxxxxxxxxx

y = yyyyyyyyyyyyyyyyyyyyyyyyy

2−p

... but the accumulation of rounding errors makes the result inaccurate

F. de Dinechin Computing Just Right: Application-specific arithmetic 109

FIR filters, arithmetic view

y(t) =
N−1∑
i=0

bix(t − i)

b0 = .00001001111111010001010101101...
b1 = .00101110110001000101001110000...
b2 = .11000001011011010001001100101...
b3 = .00110101000001001110111001111...

b0x0 xxxxxxxxxxxxxxxxxxxxxxx
+b1x1 xxxxxxxxxxxxxxxxxxxxxxxxx
+b2x2 xxxxxxxxxxxxxxxxxxxxxxxxxxx
+b3x3 xxxxxxxxxxxxxxxxxxxxxxxxx

= zzzzzzzzzzzzzzzzzzzzzzzzzzzz
y = yyyyyyyyyyyyyyyyyyyyyyyyy

2−p 2−p−g

Proposed approach: last-bit-accurate architecture
with respect to the exact result

F. de Dinechin Computing Just Right: Application-specific arithmetic 109

Really a matter of interface

Functional spec. Performance spec.

FIR
architecture

generator

real coeff. (bi)0≤i<N

input fixed-point format

output precision p
FPGA frequency

.vhdl

Output precision defines accuracy of the architecture

Accuracy defines the optimal precisions to be used internally

No point in computing more, no point in computing less

F. de Dinechin Computing Just Right: Application-specific arithmetic 110

Really a matter of interface

Functional spec. Performance spec.

FIR
architecture

generator

real coeff. (bi)0≤i<N

input fixed-point format

output precision p
FPGA frequency

.vhdl

Output precision defines accuracy of the architecture

Accuracy defines the optimal precisions to be used internally

No point in computing more, no point in computing less

F. de Dinechin Computing Just Right: Application-specific arithmetic 110

Really a matter of interface

Functional spec. Performance spec.

FIR
architecture

generator

real coeff. (bi)0≤i<N

input fixed-point format

output precision p
FPGA frequency

.vhdl

Output precision defines accuracy of the architecture

Accuracy defines the optimal precisions to be used internally

No point in computing more, no point in computing less

F. de Dinechin Computing Just Right: Application-specific arithmetic 110

Really a matter of interface

Functional spec. Performance spec.

FIR
architecture

generator

real coeff. (bi)0≤i<N

input fixed-point format

output precision p
FPGA frequency

.vhdl

Output precision defines accuracy of the architecture

Accuracy defines the optimal precisions to be used internally

No point in computing more, no point in computing less

F. de Dinechin Computing Just Right: Application-specific arithmetic 110

Example of the accuracy/cost tradeoff

8-tap, 12 bit Root-Raised Cosine FIR filters

Naive, p = 12 5.9 ns, 444 LUT ε > 2−9

y−12y−11y−10y−9y−8y−7y−6y−5y−4y−3y−2y−1y0y1

Proposed, p = 12 4.4 ns, 564 LUT ε < 2−12

y−12y−11y−10y−9y−8y−7y−6y−5y−4y−3y−2y−1y0y1

Proposed, p = 9 4.12 ns, 380 LUT ε < 2−9

y−9y−8y−7y−6y−5y−4y−3y−2y−1y0y1

F. de Dinechin Computing Just Right: Application-specific arithmetic 111

Demo

e

x

√
x2 +y2 +z2

πx

sin
e x+

y

n∑
i=

0
x i

√
x log x

Coefficients entered as math. formulae

FPGA-specific optimizations

Frequency-directed pipeline

Test-driven design

... and all the other operators

http://flopoco.gforge.inria.fr/

F. de Dinechin Computing Just Right: Application-specific arithmetic 112

http://flopoco.gforge.inria.fr/

Fixed point inputs and outputs

Example: 17.42 written in binary

111010110001

weight 2−72−62−52−42−32−22−12021222324

Two parameters (m, l)

m is the weight of the MSB (most significant bit),
defines the range

largest number is 2m − 1
m = 4 above

l is the weight of the LSB (least significant bit),
defines the accuracy

ulp (unit in the last place, quantum of precision) is 2l .
l = −7 above

F. de Dinechin Computing Just Right: Application-specific arithmetic 113

Compute Just Right: Determining msbo
a0 = .00001001111111010001010101101...
a1 = .00101110110001000101001110000...
a2 = .11000001011011010001001100101...
a3 = .00110101000001001110111001111...

a0x0 xxxxxxxxxxxxxxxxxxxxxxxxx...
+a1x1 xxxxxxxxxxxxxxxxxxxxxxxxxxx...
+a2x2 xxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
+a3x3 xxxxxxxxxxxxxxxxxxxxxxxxxxx...

y = yyyyyyyyyyyyyyyyyyyyyyyyyyyyyy...

The MSB of aixi

xi bounded (fixed-point number)
ai known

msbai xi = dlog2(|ai |valmax (xi))e
The MSB of the sum

aixi bounded

msbo = msby = dlog2(
N−1∑
i=0

|ai |valmax (xi))e

F. de Dinechin Computing Just Right: Application-specific arithmetic 114

Compute Just Right: Determining the LSB

a0 = .00001001111111010001010101101...
a1 = .00101110110001000101001110000...
a2 = .11000001011011010001001100101...
a3 = .00110101000001001110111001111...

a0x0 xxxxxxxxxxxxxxxxxxxxxxxxx...
+a1x1 xxxxxxxxxxxxxxxxxxxxxxxxxxx...
+a2x2 xxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
+a3x3 xxxxxxxxxxxxxxxxxxxxxxxxxxx...

y = yyyyyyyyyyyyyyyyyyyyyyyyy

2−p

Supose we use perfect multipliers: εmult < 2−p−1

sum error:

Need for larger intermediary precision

g guard bits

such that errors accumulate in the guard bits

=⇒ g = dlog2(N)e

F. de Dinechin Computing Just Right: Application-specific arithmetic 115

Compute Just Right: Determining the LSB

a0 = .00001001111111010001010101101...
a1 = .00101110110001000101001110000...
a2 = .11000001011011010001001100101...
a3 = .00110101000001001110111001111...

a0x0 xxxxxxxxxxxxxxxxxxxxxxxxx...
+a1x1 xxxxxxxxxxxxxxxxxxxxxxxxxxx...
+a2x2 xxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
+a3x3 xxxxxxxxxxxxxxxxxxxxxxxxxxx...

y = yyyyyyyyyyyyyyyyyyyyyyyyy

2−p

Supose we use perfect multipliers: εmult < 2−p−1

sum error: εy =
N∑

i=0
εmult < N · 2−p−1

Need for larger intermediary precision

g guard bits
such that errors accumulate in the guard bits

=⇒ g = dlog2(N)e

F. de Dinechin Computing Just Right: Application-specific arithmetic 115

Compute Just Right: Determining the LSB

a0 = .00001001111111010001010101101...
a1 = .00101110110001000101001110000...
a2 = .11000001011011010001001100101...
a3 = .00110101000001001110111001111...

a0x0 xxxxxxxxxxxxxxxxxxxxxxxxx...
+a1x1 xxxxxxxxxxxxxxxxxxxxxxxxxxx...
+a2x2 xxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
+a3x3 xxxxxxxxxxxxxxxxxxxxxxxxxxx...

= zzzzzzzzzzzzzzzzzzzzzzzzzzzzzz...
y = yyyyyyyyyyyyyyyyyyyyyyyyy

2−p 2−p−g

Supose we use perfect multipliers: εmult < 2−p−1

sum error: εytotal
=

N∑
i=0

εmult + εfinal rounding < N · 2−p−g−1 + 2−p−1

Need for larger intermediary precision

g guard bits
such that errors accumulate in the guard bits

=⇒ g = dlog2(N)e
F. de Dinechin Computing Just Right: Application-specific arithmetic 115

Perfect constant multipliers in an FPGA

b1 b2 b3 b4 b5 b6

LUT

/
α(= 6)

xi =

aixi

/

basic FPGA computing element: look-up table (LUT)

tabulate all the 2α values of aixi

... correctly rounded to the output precision

perfect fit for small sizes:
α-input LUT + α-bit input =⇒ 1 LUT/output bit

but doesn’t scale:
2 LUT/output bit for (α + 1)-bit inputs,. . .
2k LUT/output bit for (α + k)-bit inputs

F. de Dinechin Computing Just Right: Application-specific arithmetic 116

Perfect constant multipliers in an FPGA

b1 b2 b3 b4 b5 b6

LUT

/
α(= 6)

xi =

aixi

/

basic FPGA computing element: look-up table (LUT)

tabulate all the 2α values of aixi

... correctly rounded to the output precision

perfect fit for small sizes:
α-input LUT + α-bit input =⇒ 1 LUT/output bit

but doesn’t scale:
2 LUT/output bit for (α + 1)-bit inputs,. . .
2k LUT/output bit for (α + k)-bit inputs

F. de Dinechin Computing Just Right: Application-specific arithmetic 116

Perfect constant multipliers in an FPGA

b1 b2 b3 b4 b5 b6

LUT

/
α(= 6)

xi =

aixi

/

basic FPGA computing element: look-up table (LUT)

tabulate all the 2α values of aixi

... correctly rounded to the output precision

perfect fit for small sizes:
α-input LUT + α-bit input =⇒ 1 LUT/output bit

but doesn’t scale:
2 LUT/output bit for (α + 1)-bit inputs,. . .
2k LUT/output bit for (α + k)-bit inputs

F. de Dinechin Computing Just Right: Application-specific arithmetic 116

KCM multipliers by real constants

xi = b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15 b16 b17 b18

di1 di2 di3

xi =
n∑

k=1

2−kαdik where dik ∈ {0, ..., 2α − 1}

=⇒ aixi =
n∑

k=1

2−kαaidik

Each aidik tabulated, 1 LUT/output bit
How many output bits?

aixi = aidi1 xxxxxxxxxxxxxxxxxxxxxxxxxx...

+ 2−αaidi2 xxxxxxxxxxxxxxxxxxxx...

+ 2−2αaidi3 xxxxxxxxxxxxxx...

2−p−gα bitsα bits

F. de Dinechin Computing Just Right: Application-specific arithmetic 117

KCM multipliers by real constants

xi = b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15 b16 b17 b18

di1 di2 di3

xi =
n∑

k=1

2−kαdik where dik ∈ {0, ..., 2α − 1}

=⇒ aixi =
n∑

k=1

2−kαaidik

Each aidik tabulated, 1 LUT/output bit
How many output bits?

aixi = aidi1 xxxxxxxxxxxxxxxxxxxxxxxxxx...

+ 2−αaidi2 xxxxxxxxxxxxxxxxxxxx...

+ 2−2αaidi3 xxxxxxxxxxxxxx...

2−p−gα bitsα bits

F. de Dinechin Computing Just Right: Application-specific arithmetic 117

KCM multipliers by real constants

xi = b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15 b16 b17 b18

di1 di2 di3

xi =
n∑

k=1

2−kαdik where dik ∈ {0, ..., 2α − 1}

=⇒ aixi =
n∑

k=1

2−kαaidik

Each aidik tabulated, 1 LUT/output bit

How many output bits?

aixi = aidi1 xxxxxxxxxxxxxxxxxxxxxxxxxx...

+ 2−αaidi2 xxxxxxxxxxxxxxxxxxxx...

+ 2−2αaidi3 xxxxxxxxxxxxxx...

2−p−gα bitsα bits

F. de Dinechin Computing Just Right: Application-specific arithmetic 117

KCM multipliers by real constants

xi = b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15 b16 b17 b18

di1 di2 di3

xi =
n∑

k=1

2−kαdik where dik ∈ {0, ..., 2α − 1}

=⇒ aixi =
n∑

k=1

2−kαaidik

Each aidik tabulated, 1 LUT/output bit
How many output bits?

aixi = aidi1 xxxxxxxxxxxxxxxxxxxxxxxxxx...

+ 2−αaidi2 xxxxxxxxxxxxxxxxxxxx...

+ 2−2αaidi3 xxxxxxxxxxxxxx...

2−p−gα bitsα bits

F. de Dinechin Computing Just Right: Application-specific arithmetic 117

KCM multipliers by real constants

xi = b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15 b16 b17 b18

di1 di2 di3

xi =
n∑

k=1

2−kαdik where dik ∈ {0, ..., 2α − 1}

=⇒ aixi =
n∑

k=1

2−kαaidik

Each aidik tabulated, 1 LUT/output bit
How many output bits?

aixi = aidi1 xxxxxxxxxxxxxxxxxxxxxxxxxx...

+ 2−αaidi2 xxxxxxxxxxxxxxxxxxxx...

+ 2−2αaidi3 xxxxxxxxxxxxxx...

2−p−gα bitsα bits

F. de Dinechin Computing Just Right: Application-specific arithmetic 117

KCM multipliers by real constants

xi = b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15 b16 b17 b18

Ti1 : ◦p(ai × di1)

di1

Ti2

di2

Ti3

di3

+

/aidi1 /aidi2 /aidi3

/

p̃i ≈ aixi

F. de Dinechin Computing Just Right: Application-specific arithmetic 118

Summing it all up

y =
N−1∑
i=0

aixi

=
N−1∑
i=0

n∑
k=1

2−kαaidik

each aidik is a perfect multiplier
therefore g = dlog2(N · n)e

x0

T01

/α

T02

/α

T03

/α

x1

T11

/α

T12

/α

T13

/α

x2

T21

/α

T22

/α

T23

/α

x3

T31

/α

T32

/α

T33

/α

/p

y

F. de Dinechin Computing Just Right: Application-specific arithmetic 119

Summing it all up

y =
N−1∑
i=0

aixi =
N−1∑
i=0

n∑
k=1

2−kαaidik

each aidik is a perfect multiplier
therefore g = dlog2(N · n)e

x0

T01

/α

T02

/α

T03

/α

x1

T11

/α

T12

/α

T13

/α

x2

T21

/α

T22

/α

T23

/α

x3

T31

/α

T32

/α

T33

/α

/p

y

F. de Dinechin Computing Just Right: Application-specific arithmetic 119

Summing it all up

y =
N−1∑
i=0

aixi =
N−1∑
i=0

n∑
k=1

2−kαaidik

each aidik is a perfect multiplier

therefore g = dlog2(N · n)e

+

x0

T01

/α

T02

/α

T03

/α

x1

T11

/α

T12

/α

T13

/α

x2

T21

/α

T22

/α

T23

/α

x3

T31

/α

T32

/α

T33

/α

/p

y

F. de Dinechin Computing Just Right: Application-specific arithmetic 119

Summing it all up

y =
N−1∑
i=0

aixi =
N−1∑
i=0

n∑
k=1

2−kαaidik

each aidik is a perfect multiplier

therefore g = dlog2(N · n)e

Bit-heap based
pipelined summation architecture

x0

T01

/α

T02

/α

T03

/α

x1

T11

/α

T12

/α

T13

/α

x2

T21

/α

T22

/α

T23

/α

x3

T31

/α

T32

/α

T33

/α

/p

y

F. de Dinechin Computing Just Right: Application-specific arithmetic 119

Summing it all up

Bit-heaps (generalization of bit arrays) in FloPoCo
(see FPL 2013 article)

8-tap, 12-bit FIR filters

Half-Sine Root-Raised Cosine

F. de Dinechin Computing Just Right: Application-specific arithmetic 120

Work in progress

Integration in GNU Radio / CorteXlab

Extension to IIRs (with Paris VI)

infinite accumulation of rounding errors: how many guard bits?

Address the combinatorics of filter realizations (with Paris VI)

Filter approximation from frequency response (with AriC @ LIP)

Remez with an arithmetic focus

F. de Dinechin Computing Just Right: Application-specific arithmetic 121

Conclusion

FloPoCo, the user point of view

Example: Multiplication by rational constants

Example: The exponential

Example: Sin/Cos

The universal bit heap

Example: Floating-point sums and sums of products

Example: DSP Filters

Conclusion

F. de Dinechin Computing Just Right: Application-specific arithmetic 122

Computing just right

In a processor

the choice is between

an integer SUV, or

a floating-point SUV.

In an FPGA

If all I need is a bicycle, I have the possibility to build a bicycle

(and I’m usually faster to destination)

Save routing! Save power! Don’t move useless bits around!

F. de Dinechin Computing Just Right: Application-specific arithmetic 123

Computing just right

In a processor

the choice is between

an integer SUV, or

a floating-point SUV.

In an FPGA

If all I need is a bicycle, I have the possibility to build a bicycle

(and I’m usually faster to destination)

Save routing! Save power! Don’t move useless bits around!

F. de Dinechin Computing Just Right: Application-specific arithmetic 123

Computing just right

In a processor

the choice is between

an integer SUV, or

a floating-point SUV.

In an FPGA

If all I need is a bicycle, I have the possibility to build a bicycle

(and I’m usually faster to destination)

Save routing! Save power! Don’t move useless bits around!

F. de Dinechin Computing Just Right: Application-specific arithmetic 123

Busy until retirement (1)

An almost virgin land

Most of the arithmetic literature addresses the construction of SUVs.

F. de Dinechin Computing Just Right: Application-specific arithmetic 124

Busy until retirement (2)

Designing the flexible parameters was only half of the problem...

(the easy half)

The difficult half is: how to use them?

What precision is required at what point of a computation

F. de Dinechin Computing Just Right: Application-specific arithmetic 125

Meanwhile, in the real world

A very nice paper at Arith 2018 by Lutz and Bruguera:

radix-64 divider architecture in future ARM processors

Massive speculation: replicating hardware that computes many
results in parallel, most of which will be thrown out

in order to reduce latency (whatever the hardware cost)

... and this is a low-power processor!

Almost, but not quite, everything but Computing Just Right

Any cycle gain
allowing us to switch off earlier this huge superscalar core

actually saves energy

F. de Dinechin Computing Just Right: Application-specific arithmetic 126

Thanks for your attention

The following people have contributed to FloPoCo:
S. Banescu, Louis Beseme, Nicolas Bonfante,
Maxime Christ, N. Brunie, S. Collange, J. Detrey,
P. Echeverŕıa, F. Ferrandi, Luc Forget, M. Grad,
K. Illyes, M. Istoan, M. Joldes, J. Kappauf, C. Klein,
M. Kleinlein, M. Kumm, D. Mastrandrea, K. Moeller,
B. Pasca, B. Popa, X. Pujol, G. Sergent, D. Thomas,
R. Tudoran, A. Vasquez.

e

x

√
x2 +y2 +z2

πx

sin
e x+

y

n∑
i=

0
x i

√
x log x

http://flopoco.gforge.inria.fr/

FloPoCo, the user point of view

Example: Multiplication by rational constants

Example: The exponential

Example: Sin/Cos

The universal bit heap

Example: Floating-point sums and sums of products

Example: DSP Filters

Conclusion

F. de Dinechin Computing Just Right: Application-specific arithmetic 127

http://flopoco.gforge.inria.fr/

	FloPoCo, the user point of view
	Example: Multiplication by rational constants
	Example: The exponential
	Example: Sin/Cos
	The universal bit heap
	Example: Floating-point sums and sums of products
	Example: DSP Filters
	Conclusion

