
José Antonio de la Torre las Heras

Universidad de Castilla-La Mancha

SMR3249

A PyQT GUI for a SoC design

A PyQT GUI for a SoC design SMR3249

Contents

1 Vivado and SDK 4

2 main.c 9

3 Opening development environment 9

4 Designing the interface 11
4.1 Design in QtDesigner . 11
4.2 Exporting the interface . 18

5 Programming the controller 19

6 Testing the design 26

7 Optional exercises 31
7.1 Add controls to select a serial device and baudrate (easy) 31
7.2 Use layouts to make tabs responsive . 31
7.3 Modify how pyqtgraph looks (easy) . 31
7.4 Modify how data is sent . 31

1

A PyQT GUI for a SoC design SMR3249

Introduction

In this tutorial, you will learn how to communicate external devices like pmods sensors, and leds
from Zedboard to a PC (frontend). In order to avoid privative software like: Matlab, Visual
Basic, Labview. . . In this laboratory, we are going to use Python and different libraries which
are completely free and open source. The advantages of using these kind of technologies are the
following ones: you have control over all parts of your system and you don’t need to trust in
external companies and private design cycles.

In this project, you will learn how to integrate a fully functional project from a reconfigurable part
to high level programming in Python. The main objective of the project is that the student, at
the end, understands how to integrate all the parts to create a final product.

Objectives

• To design a fully functional GUI (Graphical User Interface)

• To create a controller of the GUI

• To connect a Zedboard to the GUI

• To control a Zedboard from the GUI

• To get data and plot from Zedboard

Procedure

This project has different parts. In the first part, the student will create a Vivado project and
configure a Zedboard to use a GPIOs (General Purpose Input Outputs) and a PMOD temperature
sensor. In the second part, a SDK project will be created in order to obtain temperature values.
During the third, very simple, but functional, serial protocol will be added to send data to Zedboard
and control it from a PC. Once it has been completed, the student will move on to a completely
different set of tools to create a GUI in QT. That part only puts controls in a window, but it will
be in the fifth part when the GUI will be alive. In fifth part, the main objective is to program a
controller in Python language and send values to the board in order to turn on and off the leds.
Finally, in the last part, the plot will be added in order to plot data that comes from the board.

Design flow

In Figure 1 it is depicted a general architecture of the project.

As it can be seen, data will be read from a PMOD sensor using SPI. In order to avoid some
problems with embedded SPI controller inside the PS, we will use a SPI IP controller inside PL.
As an advanced exercise the student could extend the project to use a internal SPI inside the PS.

Once in the PL, it is necessary to setup several parameters of the SPI controller like in any classic
microcontroller design. Also, will be necessary to “talk” directly with the PMOD sensor in order to
obtain the temperature. Finally, in the GUI located in a PC, the Python controller of the GUI will
read the data from the PL and plot it in a graph. Moreover, in order to see how to communicate
in both ways, the GPIOs configured in the Vivado project will be written from the PC.

2

A PyQT GUI for a SoC design SMR3249

PMOD
(TEMP SENSOR)

ZEDBOARD

PL

PS

SPI

AXI

S
e
ria

l

PC

QT

GPIOS
(BOARD LEDS)

Figure 1: General architecture of lab

3

A PyQT GUI for a SoC design SMR3249

1 Vivado and SDK

First of all, this laboratory will start from a Vivado project already created with all the parts
needed in order to communicate with the PMOD temperature sensor and with the GPIOs. It is
supposed that the student already knows the basic architecture of this type of Vivado project.

The project can be found in the shared folder. It is important to move the project to a folder in
which the user has permission for reading it and writing it. Normally the desktop is enough.

Once the project has been copied, open it with Vivado. In windows you should double click over
the .xpr file and Vivado will appears. If for some reason, it does not work, open Vivado and click
in the menu “File → Project → open” (Figure 2) and select the TutorialTempLedPyQt.xpr file.

Figure 2: Opening a project in Vivado

When Vivado opens the project you should see something similar to Figure 3. Please, note that
paths could change, it doesn’t matter, it is only important that the content is the same. As you can
see in the upper right corner, the bitsteam has been already generated for you. It is not necessary
to generate it again but if you feel ready you can try!.

4

A PyQT GUI for a SoC design SMR3249

Figure 3: Vivado project

In the Figure 5 you can see how the project looks like. To open the block design you should click
over “Open block design” in the “IP integrator” submenu, as it is depicted in Figure 4

5

A PyQT GUI for a SoC design SMR3249

Figure 4: Opening a block design

Figure 5: Block Design

6

A PyQT GUI for a SoC design SMR3249

The project is very simple and the block design too. It is composed of 3 main IP cores:

• axi quad spi: This block is the manager of the SPI protocol. PS part will use that in order
to communicate with the temperature sensor.

• axi gpio 0: The GPIO controller has the responsability to control the GPIO associated to
the boards leds. In general that, GPIO controller could be mapped to any pin inside the
board but in this case it is used to board leds.

• processing system7 0: Processing system or PS is the heart of the application. It has the
responsability to understand packets coming from the pc and perform control the GPIOs and
PMODs to reply those packets.

Once you have understand the design, let us move to the next step that normally should be create
the bitstream but, in this case, it is not necessary because it has been already created for you in
order to reduce the time needed to start working in the project.

Click on menu “File → Launch SDK” (Figure 6. Once opened it should looks similar to Figure 7

Figure 6: Open SDK

7

A PyQT GUI for a SoC design SMR3249

Figure 7: SDK Opened

In the left part of the SDK you can see the main projects included in the workspace. If in your
SDK you don’t see the full list, click over the arrow in order to extend the tree.

The main projects are:

1. design 1 wrapper hw platform 0: This project is generated by Vivado when hardware is ex-
ported. In this project, you have not exported because it has been done for you before. In
the tree you will find:

• design 1 wrapper.bit: Bitstream used to configure FPGA part.

• ps7 init gpl.c ps7 init gpl.h ps7 init ps7 init.h: This code is responsible of starting ARM
processing system before execute the main program. You should not edit these files.

• ps7 init.html: Summary of resources loaded in PS part.

• ps7 init.tcl: Exactly the same as ps7 init.c but in tcl scripting language.

• system.hdf: Hardware Definition File, in this file you can see all IPs loaded in your
design and the registers they have.

2. PMOD: Main project, this will be the project in which you will be working. It has the
regular files in this type of projects. You will use only main.c. In that file you will find all
the necessary parts to start working in the project. Take a look before going to the next step
in order to understand how it is developed.

3. PMOD BSP: This project it is generated by Vivado in order to create necessary drivers to
each one of the cores loaded in the design.

8

A PyQT GUI for a SoC design SMR3249

2 main.c

As you can note, main.c is the principal source code of this project. You should open it and see
what is inside. In summary, these are the most important functions implemented:

• check communication: It reads two characters from serial device and returns one if the pc
wants to receive data or two if pc wants to write data. The protocol designed to this project
is too easy. In order to get the data, PS should read “gd”, and to set data, it should read
“sd”.

• set gpios: It reads 3 characters from serial device and converts them in to a int, then it writes
in the GPIO controller.

• send temperature: It sends temperature read from SPI temperature sensor in format 2.3f
that means 3 decimals and 2 integers.

• main.c: It is developed to configure each core and start a while loop in which it reads serial
communication and send or received the data.

Take some time to understand the code and ask all questions you have in this step.

3 Opening development environment

In order to get all the software ready to be used and also with the intention to use only free
software, a Debian virtual machine has been created and placed in C:\SW2018\PyQTDebian .
This machine has mainly the following software:

• Debian Stretch OS: A free operating system.

• Python 3: Last version of Python.

• PyQT4: Python binding to Qt.

• (Recommended) Visual Code: Free text editor that simplify the work of developing python
code.

• PyCharm: Another text editor of python.

All those programs could be installed in any operating system like MAC or Windows but it won’t
be covered within this laboratory.

To open this machine you will need two programs:

1. Virtualbox: Free software to virtualize machines.

2. Virtualbox Extension Pack: Free of charge program installed in top of virtualbox that brings
USB support to virtual machines.

Again, those programs are already installed in lab’s computers so you don’t need to worry.

Once you have located the virtualbox, you can open it by clicking over the blue icon as showed in
Figure 8. When virtualbox appears, right-click over PyQtDebian and then start and normal start.

9

A PyQT GUI for a SoC design SMR3249

Figure 8: Virtual machine

It may take some time but at the end a login screen will appear (Figure 9). There you should enter
following user and password:

• user: ictp

• password: ictp

Figure 9: Login

10

A PyQT GUI for a SoC design SMR3249

At this point, you have completed this step. If you have time, try to explore the virtual machine
to familiarize yourself with it.

4 Designing the interface

Designing a good interface is a hard process. Normally, there are a lot of professionals working in
that in order to make a fully responsive interface. The objective of this laboratory is not to make
the best interface, but to create a functional one with the latest technology in the area.

Qt is one of the most used technology in the world of interface development. GTK is another
alternative but in the last years Qt has advanced in embedded design and companies like Tesla has
adopted it.

For the design of a typical interface, some steps should be carried out. Following there is a list
summarizing each one:

• Mockup: Typically, it involves draw some drafts in order to have and idea of the final window.

• Design with a WYSIWYG (What you get is what you see): The output of this project is
normally a HTML or XML describing how the computer should compose the interface. In
this laboratory we will use a QTDesigner that it is completely free and easy to use.

• Create a controller: WYSIWYG normally outputs a description of the window but it can not
be used to make any action. In order to make it alive it is necessary to program a controller.
The controller role is to connect each button, textbox and, in general, each control with a
function in Python, C, C++, Java. . . In this laboratory we will use Python.

So, in order to follow those steps and ignoring the mockup, we will start designing the interface.

4.1 Design in QtDesigner

First of all, you need to open QtDesigner. It should be in desktop, so click over it. Once opened,
you should see something similar to Figure 10. Please, select widget and default size and then click
create. At the end, you should have a clean window ready to be design.

11

A PyQT GUI for a SoC design SMR3249

Figure 10: Qt Designer

In Figure 11 and Figure 12 you can see how the final interface should looks like.

Figure 11: First tab of final interface

12

A PyQT GUI for a SoC design SMR3249

Figure 12: Second tab of final interface

As you can see in Figure 11 the interface has tabs. These tabs allow us to change to different
“subwindows” and separate each part. In the first tab we will control the leds and in the second
one, we will plot data coming from the PMOD.

In order to create the tabs, go to left part of qtdesign and then, search for “tab” in the search
field (Figure 13). Once you have found it, move it to the canvas as shown in Figure 13. As can
be shown in that figure, it is possible to resize the tabs but it has the problem that it will have a
fixed size and if you resize the window it will no grow. To obtain that behavior, in Qt, you must
fix a layout. To do that click over a blank area and click over layouts and then layout horizontally
(Figure 14).

13

A PyQT GUI for a SoC design SMR3249

Figure 13: Searching a control in qt designer

Figure 14: Making responsive

Now, inside the first tab we will put eight checkbox that will turn on/off each led in the board.
Again, search in the left panel as in Figure 13 but in this case, search for a “radio” control. Then,
move to the canvas and click over it. When clicked in the lower right window you will see a
properties window like one in Figure 15. Search for text property and remove it.

14

A PyQT GUI for a SoC design SMR3249

Figure 15: Changing properties

Now, in the same window, search for an “autoexclusive” property. That property makes the radio
buttons exclusive. That means, that you can not select more than one at the same time. When
properties have been selected click over the radio button and copy and paste until you have eight
buttons. You can use Figure 11 as example of the final application but you can arrange it as you
want.

Once you have the buttons prepared it is very important to change the object name in order
to call it from the Python Application. To do that go click over each button and in properties
windows search for “objectName” property. This property will be used in python code. In order
to make it easier, to help you in case of problems, please put “led1 2” to the left led, “led2 2” to
right one and so on.

At the end, you should have something similar to Figure 16.

Figure 16: Object inspector

Now, with the same procedure you can create following two components:

• QPushButton: Change the text with a “SEND BUTTON” text and “objectName” to send-
Button.

• QTextButton: Change the “objectName” to ledInformation.

At the end, you should have something similar to Figure 17.

15

A PyQT GUI for a SoC design SMR3249

Figure 17: Object inspector of first tab

Now, when the first tab has been completed, we will move to the next one. In that tab, we will
plot data coming from the zedboard.

In order to plot data in PyQt4, you should use an external library or make all by yourself. In this
case, we have chosen PyQtGraph. PyQtGraph is a very powerful library that has GPU acceleration
and a lot of features like FFT already ready to use.

As we have told, PyQtGraph is an external library, that means that it will not appear in QtDesigner
as a control and also, we will need to make some hacks in order to integrate it.

First of all, let us move to next tab. Click over second tab and you should see another canvas (or
more precisely a QWidget). In this canvas, we will design another interface similar to Figure 12.

At this point, you should know how to move controls and change their object name and text. In
the Figure 18 you have a summary of the primary components you shall create. Please, try to hold
same “object names”.

Figure 18: Object inspector of second tab

Once you have completed it, you are ready to prepare the PyQtGraph.

16

A PyQT GUI for a SoC design SMR3249

As it has been told before, PyQtGraph is not a standard library so we will make some hacks. First,
move a “Graphics View” and change “objectName” to “graphComponent”. Then, right click over
it and select “Promote to” option as show in Figure 19.

Figure 19: Promoting graphics to plot

Fill the modal dialog as shown in Figure 20. These values come from PyQtGraph documentation,so,
feel free to go and search it. When filled, click over “add” and later over “promote”.

17

A PyQT GUI for a SoC design SMR3249

Figure 20: Values to promote

Now, you have completed the design of the interface.

4.2 Exporting the interface

Until now, we have design the interface in a WYGIWYS program but python can not understand
it. In order to prepare the Interface for Python, we should convert that controls to an intermediate
language. Qt has chosen XML as a definition language but other frameworks could use other
languages.

To export the interface go to File\Save and type “interface.ui”. In order to simplify next steps
save it in a “home” folder as shown in Figure 21

18

A PyQT GUI for a SoC design SMR3249

Figure 21: Exporting interface

Now, you are ready to go to python and start working in the controller.

5 Programming the controller

At this point we have an interface exported in XML format (with .ui extension) and we are ready
to work with Python.

PyQt comes with a utility that converts XML code to Python code. To make this step, open a
terminal and type “pyuic4 -x interfaz.ui -o interfaz.py”. pyuic4 is the compiler that takes XML
code and generate python equivalent code. “-x” is an option to make it executable, “interfaz.ui”
has to be the same the one you saved from qtdesigner. Finally, “-o” is an option that has an
argument to tell the compiler which is the name and the location of the generated code.

19

A PyQT GUI for a SoC design SMR3249

Figure 22: Compile interface

In order to test it, once you have generated python code, type “python3 interfaz.py” and you
should see the interface.

Looking back, until now, we have completed following items:

• Design interface in WYGIWYG program.

• Export the interface to .xml.

• Compile the interface to python code.

If you open the python interface with any editor installed in the virtual machine you will see
something similar to the Listing 1

Source Code 1: Interface code

1 try:

2 _fromUtf8 = QtCore.QString.fromUtf8

3 except AttributeError:

4 def _fromUtf8(s):

5 return s

6

7 try:

8 _encoding = QtGui.QApplication.UnicodeUTF8

9 def _translate(context, text, disambig):

20

A PyQT GUI for a SoC design SMR3249

10 return QtGui.QApplication.translate(context, text, disambig, _encoding)

11 except AttributeError:

12 def _translate(context, text, disambig):

13 return QtGui.QApplication.translate(context, text, disambig)

14

15 class Ui_Dialog(object):

16 def setupUi(self, Dialog):

17 Dialog.setObjectName(_fromUtf8("Dialog"))

18 Dialog.resize(1207, 519)

19 sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Expanding, QtGui.QSizePolicy.Expanding)

20 sizePolicy.setHorizontalStretch(0)

21 sizePolicy.setVerticalStretch(0)

22 sizePolicy.setHeightForWidth(Dialog.sizePolicy().hasHeightForWidth())

23 Dialog.setSizePolicy(sizePolicy)

24 self.horizontalLayout_3 = QtGui.QHBoxLayout(Dialog)

25 self.horizontalLayout_3.setObjectName(_fromUtf8("horizontalLayout_3"))

26 self.ledTab = QtGui.QTabWidget(Dialog)

27 self.ledTab.setObjectName(_fromUtf8("ledTab"))

28 self.tab = QtGui.QWidget()

29 self.tab.setObjectName(_fromUtf8("tab"))

30 self.horizontalLayout_4 = QtGui.QHBoxLayout(self.tab)

All of that code has been already generated by the pyqt compiler. In other scenarios or frameworks
where there is not any compiler or designer tool you must do it by yourself.

If you see the Code 1 you could recognize, in line 15 the definition of a class. The name of the class
is very important because we will use it in the next steps. Please, if you have other name, note it
and in following steps use that.

Now that you have verified that the interface looks as expected it, it is time to make it alive
with some logic. Before doing that it is important to note how each piece of code fits together to
understand what we will do.

In the Figure 23 you can see how the application architecture looks like.

21

A PyQT GUI for a SoC design SMR3249

interface.py Our business
code

import

connect signals

communicate

with external world

Figure 23: Software architecture

As you can see, interface.py, that is the code listed in Code 1 is imported in “our business code”.
The name of the business code could be whatever you want, for example app.py. That code is
responsible of launch the interface, connect signals or callbacks to each button and, in general,
controls. And finally connect with external world.

Now, that you have an idea of the architecture, we are ready for starting coding the controller of
business code. First, go to a terminal (in desktop you can find a shortcut) and open it. Navigate
to the directory where you save the files. To move to a directory you can use “cd” command. If
you need to show files in a directory use “ls” command. When you are finally in the directory
where files are located, create a new file called app.py. In order to create a file and open with an
editor, you can use following instruction: “code app.py”.

When a visual code window (Figure 24) appears you are ready to code. In order to make it easier
you can copy and paste the code needed to make the interface works. The code is located in a
shared folder and you will have it written in a blackboard. The file is called “helpCode.py”

22

A PyQT GUI for a SoC design SMR3249

Figure 24: Window editor

In the following paragraphs the code we will explained. As you read the code you will see some
“?” in that lines you will need to complete it with no more than 4 lines.

The first part to start with, it is the class called ZedboardController. That class is responsible of
opening a serial connection when it is created and set the GPIOS and read the temperature from
that serial port. In Code 2 you can see that class.

Source Code 2: Zed controller code

1 class ZedboardController:

2 def __init__(self, com_port):

3 self.com_port = com_port

4 self.transceiver = serial.Serial(com_port, baudrate=115200)

5

6 def setGPIOS(self, value):

7 str_value = format(value, '03d')

8 self.transceiver.write('sd{}\n'.format(str_value).encode())

9 self.transceiver.flushOutput()

10

11 def read_temperature_sensor(self, num_samples):

12 to_return = []

23

A PyQT GUI for a SoC design SMR3249

13 for i in range(num_samples):

14 self.transceiver.write("gd\n".encode())

15 self.transceiver.flushOutput()

16 data = self.transceiver.read(6)

17 to_return.append(float(data.decode()))

18

19 return to_return

ZedboardController is already done but you can read it in order to understand how it is pro-
grammed. Basically, it receives a name of the serial port and then it creates a new “transceiver”
with PySerial library, as you can see in line 4. Then, it has two functions, setGPIOS that sends
“sdXXX” in order to set leds to represent XXX number. And read temperature sensor that read
a data from a serial transceiver and then converts it to float number.

Now we need to write the code of the controller. The controller can be shown in Code 3

Source Code 3: Controller code

1 class Controller:

2 def __init__(self, interface):

3 self.interface = interface

4 self.zedboard = ZedboardController('/dev/ttyACM0')

5 self.connect_signals_to_methods()

6 self.dataY = np.zeros(500)

7 self.line = self.interface.graphComponent.plot()

8

9 def connect_signals_to_methods(self):

10 self.interface.sendButton.clicked.connect(self.led_button_clicked)

11 # ?? connect start button clicked signal

12 # ?? connect stop button clicked signal

13

14 def led_button_clicked(self):

15 leds = [self.interface.led8_2,

16 self.interface.led7_2,

17 self.interface.led6_2,

18 self.interface.led5_2,

19 self.interface.led4_2,

20 self.interface.led3_2,

21 self.interface.led2_2,

22 self.interface.led1_2]

23 position = 0

24 result = 0

25 for led in leds:

26 if led.isChecked():

27 # Calculate result of binary representation of leds

28 # for example leds in off, off, off, off, off, off, one,one should have 3 as result

29 # Save the variable called result

30

31 position += 1

32

33 self.interface.ledInformation.append('<h1>Leds changed: {}</h1>'.format(result))

34

24

A PyQT GUI for a SoC design SMR3249

35 self.zedboard.setGPIOS(result)

36

37 def start_button_clicked(self):

38 self.interface.status.setStyleSheet("background-color: green")

39 self.timer = QtCore.QTimer()

40 self.timer.timeout.connect(self.timeout_reached)

41 self.timer.start(33)

42

43 def stop_button_clicked(self):

44 if self.timer:

45 self.interface.status.setStyleSheet("background-color: red")

46 self.timer.stop()

47

48 def timeout_reached(self):

49 received = self.zedboard.read_temperature_sensor(1)

50 self.dataY[:-1] = self.dataY[1:]

51 self.dataY[-1] = received[0]

52 self.line.setData(self.dataY)

53 self.interface.lcd.display(received[0])

The controller class has the responsability to connect each control with the functionality expected
to each one. The first method, “ init ”, is the constructor. That method is called each time
a controller is created. In this method we create a ZedboardController that we have explained
before, we connect each control with a function to be used when an action is performed (con-
nect signals to methods()) and we prepare the plot in order to later send information.

In the method “connect signals to methods” you must write two lines of code in order to connect
other button signals. As an example “sendButton” has been already connected to a “led button clicked”
function. In that function we check each value of each led “RadioButton”. At the end, we should
have a number represented in the binary form of the leds. In this code you should complete code
inside if in order to get the number represented in leds.

Finally, there are two main buttons one to start a timer that, when ready, it will get data from
Zedboard and another one to stop that button.

To complete the project, we should start the interface and install the controller to it. To do that, in
python, there is a magical variable called “ main ”. these variables will have the value “ main ”
if the code is called from a command line or an icon. In other cases, it will have the value of the file.
For example, when we import in first lines the interface, “ name ” will have the value “interface”
but, if we call the file directly from a command line, it will have a “ main ” in its variable.

In Code 4 you can see the main function executed when “ name ” is equals to “ main ”

Source Code 4: Main code

1 def main():

2 qt_app = QtGui.QApplication([])

3 main_window = QtGui.QWidget()

4 my_interface = myui.Ui_Dialog()

5 my_interface.setupUi(main_window)

6 c = Controller(my_interface)

7 main_window.show()

25

A PyQT GUI for a SoC design SMR3249

8 qt_app.exec_()

9

10

11 if __name__ == '__main__':

12 main()

The function “main” could have any name but, normally main is used. In line 11, when the
interpreter goes line by line reading the code it checks if the magic variable “name” has the value
“main” true (only when it is called from a command line or icon), then it will execute the code
inside the “if”. In this case that code is main function that is above “if”.

Main function creates a “QtGui” application and then it creates a main window in which we will
insert our interface. As you can see, in line 4, we are calling the class created by the compiler when
we use “pyuic4”. It is important to check if names are the same. Finally, that class has a method
called “setupUI” that is responsible for preparing each control in their position. Then, in line 6 we
create a new controller with the class designed before and we start showing the interface (line 7).
In order to make it works, it has been explained before in theoretical classes, the main loop has to
be called in order to start listening to control signals.

6 Testing the design

Once you have completed all the pieces of code mark with “??”, you are ready for testing the design
in the board. In order to test it, you should minimize the virtual machine and go to the opened
SDK.

Before programming the PS with the c code explained in Section 2 it is needed to connect the
temperature sensor to the board.

The board has several PMOD connectors, you must connect the temperature sensor in the PMOD
A as shown in Figure 25

26

A PyQT GUI for a SoC design SMR3249

Figure 25: Connect to the upper row

Once you have connect the sensor, you are ready to program the FPGA and start the C program
in PS. In Figure 26 you can see where is located the program button. Click it and then click in
program button located in modal dialog as depicted in Figure 27.

27

A PyQT GUI for a SoC design SMR3249

Figure 26: Green button to program FPGA

28

A PyQT GUI for a SoC design SMR3249

Figure 27: Modal dialog of programming FPGA procedure

When FPGA has been completed a blue led should be turned on, now you are ready to program
the ARM core. To start a ARM program, you should open main.c and later click on the green
button over the toolbar (Figure 28).

29

A PyQT GUI for a SoC design SMR3249

Figure 28: Green button to program the FPGA

In order to connect the serial port from the real computer to the virtual machine we have to tell
virtualbox to do that. Go to menu Devices, USB and the select 2012 cypress. . . device (Figure 29).

Figure 29: Connect usb to virtualbox

Now all in the board is ready, and you have connect it to the virtual machine, move to the virtual
machine and open a new terminal. Go to the folder where you have the app.py file and execute
it with “python3 app.py”. Now, you should be ready to test the interface. In order to change the
temperature you can touch the IC from the sensor.

30

A PyQT GUI for a SoC design SMR3249

7 Optional exercises

7.1 Add controls to select a serial device and baudrate (easy)

In this exercise, you should add two controls to select baudrate and address to serial device. You
can use any kind of control.

• Design new controls in QtDesigner

• Recompile with pyuic4 your new .ui interface

• Modify your app.py to add different signals of your controls and store values

• Use these values when you create a serial device (controller)

7.2 Use layouts to make tabs responsive

If you try to resize the window you will see that tabs are not resizing properly. In order to obtain
that behavior you should use layouts. Go to Qt documentation and read about layouts. Later, try
to put in practice.

• Open QtDesigner and add layouts

• Recompile python code from ui file.

7.3 Modify how pyqtgraph looks (easy)

In this exercise, you can change how graphs in pyqtgraph look like. In order to do that, you should
go to documentation and modify all the parameters that you want. For example, you can use
antialliasing, change background color. . .

• Go to documentation of pyqtgraph http://www.pyqtgraph.org/documentation/config_

options.html

• Find where you can modify those parameters

• Modify them

7.4 Modify how data is sent

Now, data is sent in a ascii way. In this exercise you can modify how data is sent. You should
modify Zedboard class and SDK.

• Check how the different parts are communicating now

• Identify which parts should be changed

• Use binary form

• Modify SDK

• Relaunch PS program

• Modify ZedboardController class.

31

http://www.pyqtgraph.org/documentation/config_options.html
http://www.pyqtgraph.org/documentation/config_options.html

	Vivado and SDK
	main.c
	Opening development environment
	Designing the interface
	Design in QtDesigner
	Exporting the interface

	Programming the controller
	Testing the design
	Optional exercises
	Add controls to select a serial device and baudrate (easy)
	Use layouts to make tabs responsive
	Modify how pyqtgraph looks (easy)
	Modify how data is sent

