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little…! little+Big!

little+Big and heterogeneous!

Computing systems are getting…!



Heterogeneous Complex Systems!
•  Ryft ONE!

–  Big Data infrastructure due to an FPGA-accellerated architecture!
–  http://www.ryft.com/!

•  IBM Power8!
–  Introducing the Coherent Accelerator Processor Interface (CAPI) port that is 

layered on top of PCI Express 3.0!
–  http://www-304.ibm.com/webapp/set2/sas/f/capi/home.html!

•  Microsoft Catapult!
–  Stratix V (Arria 10 FPGA)!
–  http://research.microsoft.com/en-us/projects/catapult/!

•  Amazon EC2 F1 Instances!
–  Xilinx UltraScale Plus FPGA!
–  https://aws.amazon.com/about-aws/whats-new/2017/04/amazon-ec2-f1-

instances-customizable-fpgas-for-hardware-acceleration-are-now-generally-
available/!

•  OpenPower Foundation!
–  http://openpowerfoundation.org/!
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Field-Programmable Gate Arrays!
•  Configurable Logic Blocks!

–  to implement combinational 
and sequential logic!
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LookUp Tables: LUTs!

•  LUT contains Memory 
Cells to implement small 
logic functions!

•  Each cell holds ‘0’ or ‘1’ .!
•  Programmed with outputs 

of Truth Table!
•  Inputs select content of 

one of the cells as output!
!

!
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O = f(D, C, B, A)!
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Field-Programmable Gate Arrays!
•  Configurable Logic Blocks!

–  to implement combinational 
and sequential logic!

•  I/O blocks!
–  special logic blocks at 

periphery of device for !
    external connections!
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Field-Programmable Gate Arrays!
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•  Configurable Logic Blocks!
–  to implement combinational 

and sequential logic!

•  I/O blocks!
–  special logic blocks at 

periphery of device for !
    external connections!

•  Interconnections!
–  wires to connect Inputs/

Outputs to configurable 
logic blocks!
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Xilinx FPGA and Configuration Memory!
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FPGA



Xilinx FPGA and Configuration Memory!
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Xilinx FPGA and Configuration Memory!
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Configuration 
Interfaces
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Xilinx FPGA and Configuration Memory!
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Configuration 
Interfaces

Configuration bitstream

Configuration Memory

FPGA
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Reconfiguration in everyday life!
Football	

(Complete	–	Sta1c)	
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Reconfiguration in everyday life!

Soccer 

Football	
(Complete	–	Sta1c)	

(Par1al	–	Sta1c)	
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Reconfiguration in everyday life!

Soccer 

Football	
(Complete	–	Sta1c)	
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(Par1al	
–	Dynam

ic)	
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The Problem!
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A Possible Solution!
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Relocation!
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Relocation: Virtual homogeneity!

35	



Relocation: Virtual homogeneity!
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Relocation: Virtual homogeneity!
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Starting Scenario!
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Starting Scenario!
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Starting Scenario!
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NECST Scenario @ 2017/2018!
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Jan 2019!



Some Applicative Domains !
for FPGA acceleration!

•  Image and Video Processing!
•  Security!
•  Machine Learning!
•  Genomics!
•  Financial Analytics!
•  Big Data Analytics!
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Who Victor is!

49	



How a genetic test !
changed Victor’s life!
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Open Challenges!
•  It is necessary to keep-up with continuous 

development of biological research !

51	



Open Challenges!
•  It is necessary to keep-up with continuous 

development of biological research !
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•  Each individual DNA provides huge amount of 
data!
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•  Each individual DNA provides huge amount of 
data!

•  To produce a tailor-made drug, for each DNA:!
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Open Challenges!
•  It is necessary to keep-up with continuous 

development of biological research !
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•  Each individual DNA provides huge amount of 
data!

•  To produce a tailor-made drug, for each DNA:!



Personalized Medicine Today!

•  FPGA-based acceleration!
–  optimal ratio performance/power consumption!
–  reconfigurability!

•  Possibility to use pre-accelerated biological 
pipelines!

•  Available on-site or for AWS cloud!
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DRAGEN Hybrid Onsite !
& Cloud Solutions!
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hPp://edicogenome.com/dragen-bioit-plaRorm/	



Benefits of the AWS F1 Cloud 
Compute Platform!

•  Makes FPGA acceleration available to a large 
community of developers, and to millions of 
potential AWS users!

•  Provides dedicated and large amounts of FPGA 
logic with elasticity to scale to multiple FPGAs!

•  Simplifies the development process by providing 
cloud-based FPGA development tools!

•  Provides a Marketplace for FPGA applications, 
giving more choice, secure and easy access to 
millions of AWS users!
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The proposed CAOS framework!
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CAOS Frontend!
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CAOS Backend!
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CAOS Backend!
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CAOS: OpenCL and SDAccel!
•  CAOS Frontend supports OpenCL code:!

–  Intermediate representation support!
–  Template applicability check for SDA!
– Code profiling through LTPV (OpenCL profiler)!
–  Function optimization:!

•  Static code analysis and HW resource estimation 
within SDA!

–  Backend support for SDAccell!

</>	
</>	
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CAOS Backend for SDAccel!
SDAccel	generates	&	
provides:	
-  XCLBIN	containing	the	

bitstream	
-  OpenCL	Run1me	to	

manage	kernel	
execuCon		

CAOS	Integrates	SDAccel:	
-  IdenCfying	I/O	

Variables	
-  GeneraCng	a	specific	

OpenCL	Host	code	for	
the	applicaCon	
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Evaluations: Evaluations!
[1, 2] Streaming Stencil Time-step (SST)!
[3] Pearson Correlation Coefficient, Asian Option Pricing!
[5] Protein Folding!
[4] Smith Waterman and Vessels Segmentation!

75	

TABLE I. EXPERIMENTAL RESULTS

Case Study Board Improvement wrt CPU
Performance Energy Efficiency

IV-A Virtex 7 3.68x 11.8x
IV-A Kintex 14.15x 45x
IV-B Virtex 7 1.61x 15.29x
IV-C Virtex 7 3.1x 2.2x

IV-D jacobi-2d Virtex 7 1.09x 12.9x
IV-D heat-3d Virtex 7 0.22x 2.46x

ISLs consists in the iterative update of each element of a multi-
dimensional array with weighted contributions from a subset
of its neighbors in both time and space[16].

In this case study the applications are written in C, while
the system description requires the code to be accelerated on a
Xilinx Virtex 7 FPGA connected via PCIe to the x64 host pro-
cessor. Since the computational kernels – i.e. the ISLs – within
the applications are already identified, profiling in the frontend
phase is skipped. The phase demanded to perform the architec-
tural templates applicability check extracts the code parts from
the functions identified by the application designer and tries to
derive the corresponding polyhedral representation[15], while
also checking for them to be ISLs. As in this case study these
steps are successfully performed, the architectural template
selected is then the SST technology[15, 16].

In the functions optimization component, for each iden-
tified ISL static code analysis is in charge of retrieving the
total number of time-steps, while HW resource estimation for
a single SST is produced by means of Vivado HLS reports.
The performance estimation is then performed employing an
analytical model[15] to derive the maximum lenght of SSTs
that can be enqueued in the resulting accelerator, taking into
account total amount of available resources.

The backend component then generates the scheduling
and the runtime support to load the ISLs accelerators when
needed during the execution of the application, and the PCIe
interface needed to perform the data exchange. HW synthesis,
floorplanning and bitstream generation are then performed by
means of Vivado IPI.

Table I provides performance and power efficiency im-
provements of the best implementation – i.e. the longest queue
of SSTs that it was possible to synthesize – for all the ISLs
analyzed, with respect to the CPU-only system, equipped
with an Intel Xeon E5 processor, where the ISLs have been
compiled using Pluto with diamond tiling[25], state of the art
optimization for the implementation of ISLs on CPU. In both
cases, overall power consumption was measured at the wall,
which means that the whole system power drain was taken
into account. Notice how we yield better power efficiency
in all cases (up to 12.9X), while raw performance shows an
improvement only in the case of jacobi-2d.

V. CONCLUSIONS

In this paper we presented the design flow of CAOS (CAD
as an Adaptive OpenPlatform Service), a platform designed
to provide a fully integrated development experience when
accelerating an application on reconfigurable hardware. The
framework has been conceived to automate or heavily assist
all the steps involved in the development flow, being able
to provide usability, modularity and interactivity. We then

validated the proposed design flow by analyzing four different
case studies, and showing how each of them flows through the
different framework phases. The final objective of this work is
to ultimately push the adoption of reconfigurable hardware in
HPC.
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Heuristic-Optimal Floorplanner!
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Reconfigurable	regions	+	
Resource	requirements	 FPGA	 HeurisCc	

soluCon	

MILP	model	

MILP	Solver		
(Gurobi,	Cplex,	GLPK,	…)	

Improved	heurisCc	soluCon	

User-defined	linear	
ObjecCve	FuncCon	

Geometrical	constraints	

•  Non overlapping 
guaranteed by the 
geometrical constraints 



Objective function!
•  Cost function can be defined starting from the 

variables and parameters of the MILP model!
!

•  Implemented metrics:!
–  Global wirelength measured using HPWL (              )!
–  Regions perimeter (         )!
–  Wasted resources (          )!
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Hints on the problem…!
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Hints on the problem…!
•  Optimal solution in 29s!

•  34% wasted frames 
reduction!
–  No DSP and CLB wasted 

by the Video Decoder RR!
–  No BRAM wasted by the 

Signal Decoder RR!

•  Approximately same 
wirelength!
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* 
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Runtime Reconfiguration Management!
•  Reconfigurable architecture!

–  Static Area: used to control the reconfiguration process!
–  Reconfigurable Area: used to swap at runtime different cores!
–  Reconfiguration- oriented communication infrastructure !

!
•  Runtime reconfiguration managed via SW !

–  Standalone, Operating  System!
•  Increased portability of user applications!
•  Inherited multitasking capabilities!
•  Simplified software development process!

!
•  Bitstreams relocation technique to !

–  speedup the overall system execution!
–  achieve a core preemptive execution !
–  assign at runtime the bitstreams placement!
–  reduce the amount of memory used to store partial bitstreams!
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OS-based management of 
dynamic reconfiguration!

•  Provide software support for dynamic partial reconfiguration 
on Systems-on-Chip running an operating system (i.e., 
LINUX).!
–  OS customization for specific architectures!
–  Rec. Functional Unit caching policies to improve the performance!
–  Partial reconfiguration process management from the OS!
–  Addition and removal of reconfigurable components!
–  Automatic loading and unloading of specific drivers for the IP-

Cores upon components configuration and/or deconfiguration!

•  Hardware-independent interface for software developers 
based on the GNU/Linux!

•  Easier programming interface for specific drivers!
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IP-Core Devices Access!
•  Interaction with configured IP-Cores implemented 

by means of the standard Linux device access!
–  Open, Close, Read, write, ioctl operations!

/dev/device_1

/dev/device_2a

/dev/device_2b

Software
Application 1

Software
Application 2

device_1.o

device_2.o

/dev

Device
Drivers

Userspace

Devices

IP-Core_1

IP-Core_2a

IP-Core_2b

FPGA

Multiple instances 
of the same 

hardware module
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Reconfigurable Process Control Block!
•  Reconfigurable process: an RFU object code in execution!

•  Each reconfigurable process is represented in the system by a 
Reconfigurable Process Control Block (RPCB).!

•  A RPCB contains all the information associated with a specific 
reconfigurable process!
–  State: the state in which the reconfigurable process control is at 

the current time!
–  Position: the placement position on the device!
–  Object Code Accounting Information:!

•  Object Code!
•  Configuration Priority!
•  Resources!
•  Position!

Configured

Addressing Space 
Assignment

Ready

Positioning

Configuring

Configuring

Cached

Computing Removed

Waiting

Executing
Preempted
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The Centralized Manager!
•  Userspace applications are not allowed to explicitly 

request a bitstream!
–  They request high-level functionalities!

•  Userspace requests are collected and served by a 
centralized manager (Linux Reconfiguration Manager)!
–  The OS chooses the configuration code!
–  A new reconfigurable process is created!

•  Only the LRM can ask for a bitstream to be configured 
on the FPGA!
–  Centralized knowledge of the device status!
–  Area management and module caching!
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Reconfiguration: Online Static!
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Reconfiguration: Online Static!
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Reconfiguration: Online Static!
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Reconfiguration: Online Static!
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Reconfiguration: Online Static!

94	



Reconfiguration: Online Static!
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96	

Where	to	go	necst?	



Trying to raise the bar!
•  Towards the design and implementaion of Self-

adaptive and autonomic systems!
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Trying to raise the bar!
•  Towards the design and implementaion of Self-

adaptive and autonomic systems!

•  We need to include 2 more features!
– Goal-oriented!

•  Tell the system what you want!
•  System’s job to figure out how to get there !

–  Approximate!
•  Does not expend any more effort than necessary to 

meet goals!
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Data DataEnvironment Environment

Output - Environment Update
Output - Environment Update

Online Static Solution Adaptive Solution
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Data DataEnvironment Environment
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Data DataEnvironment Environment

Output - Environment Update
Output - Environment Update

Online Static Solution Adaptive Solution
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Nice idea, but!

108	



Nice idea, but how to use it!!
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Umh…	



Autonomic Operating System!
•  The AcOS project aims at !

–  designing and prototyping a patch for commodity 
operating systems (e.g. Linux, FreeBSD)!

–  being capable to observe its own execution and 
optimize, in a self-aware manner, its behavior with 
respect to the external environment, to user needs 
and to applications demands!

[integrated/used in different research projects]!
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The research effort!
•  K42!

–  http://researcher.watson.ibm.com/researcher/
view_project.php?id=2078!

•  The SElf-awarE Computing (SEEC) Model!
–  http://groups.csail.mit.edu/carbon/seec/!

•  Angstrom!
–  http://projects.csail.mit.edu/angstrom/!

•  The Swarm project and Tessellation OS!
–  http://tessellation.cs.berkeley.edu!
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Reconfiguration: Self-Aware!
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Reconfiguration: Self-Aware!
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Reconfiguration: Self-Aware!
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Reconfiguration: Self-Aware!
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AcOS: via an intelligent ODA loop!
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Monitoring	
Infrastructures	

AdaptaCon	
Policies	

ApplicaCons	

System	

Goals	
Measurements	

Decide	

Act	 Observe	



The Heart Rate Monitor!
•  Heartbeats signal[1] either progresses or availability!

–  video encoder: 1 heartbeat = 1 frame!
–  web server: 1 heartbeat = 1 request!
–  database server: 1 heartbeat = transaction!

•  Heart rate as a performance measure and goal!
–  High-level, application-specific performance 

measurements and goals (e.g., video encoder: 30 
heartbeats/s = 30 frames/s)!

•  Compact API, user/kernel-space partitioned 
implementation[2]!
–  User-mode fast-path heartbeats issue!
–  User and kernel-mode low-latency heart rate access!
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[1] Hoffmann et al., Application Heartbeats for Software Performance and Health, !
Proc. of the 15th ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel Programming, 2010!
[2] Sironi et al., Metronome: Operating System Level Performance Management via Self-Adaptive Computing, !
Proc. of the 49th Annual Design Automation Conference 2012!



The Heart Rate Monitor!
!
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The Heart Rate Monitor!
•  Set performance goal!
!
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The Heart Rate Monitor!
•  Set performance goal!
!
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e.g.:!
min: 25hb/sec!
max: 35hb/sec!



The Heart Rate Monitor!
•  Set performance goal!
•  Run the app and update progress!
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Issue an heartbeat!

e.g.:!
min: 25hb/sec!
max: 35hb/sec!



The Heart Rate Monitor!
•  Set performance goal!
•  Run the app and update progress!
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Issue an heartbeat! Statistics automatically !
updated!

e.g.:!
min: 25hb/sec!
max: 35hb/sec!



The Heart Rate Monitor!
•  Set performance goal!
•  Run the app and update progress!

•  Check heart rate and, if necessary, react!
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Issue an heartbeat! Statistics automatically !
updated!

e.g.:!
min: 25hb/sec!
max: 35hb/sec!



Autonomic Scheduling!
•  In a scenario were applications !

–  are competing for the same set of resources!
–  require predictable performance, expressed 

through high-level, application-specific metrics!

•  The scheduler has to become Performance-
Aware to automatically allocate resources to 
match performance goals!
– With Metronome, we introduce performance-

awareness by means of a non-invasive 
modifications to the Completely Fair Scheduler!
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Metronome!
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Metronome!
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Metronome!

Sironi et al., Metronome: Operating System Level Performance Management via Self-Adaptive Computing, !
Proc. of the 49th Annual Design Automation Conference 2012!
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From Metronome to Metronome++!
•  Metronome demonstrates 

how a simple heuristic can be 
enough to enable goal-
oriented resource allocation 
by exploiting runtime 
performance feedback!

•  Metronome++ has been 
designed with more 
advanced adaptation policy 
to dynamically allocate CPUs 
to SLO-bound!
–  E.g. Through tasks migration 

among run queues!
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Trying to raise the bar (again)!
•  AcOS took into consideration performance…!
•  Any other HOT topic?!
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Trying to raise the bar (again)!
•  AcOS took into consideration performance…!
•  Any other HOT topic?!

– What about temperature Control/Management!!
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Temperature Control/Management 
starting scenario!
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set a temperature cap!



Temperature Control/Management!
DVFS is dangerous!
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Temperature Control/Management!
The AcOS refreshement: ThermOS!
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Idle cycle injection improves!
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Where	to	go	necst?	



A vision!
•  To discover/understand the future, sometimes 

you have to look back at the past…!
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Heterogeneous System Architecture!

140	

More	informaCon	available	at:	hPp://hsafoundaCon.com/	



A global property!
•  Being able to adapt is not a specific domain 

property!
– Operating system, computer architecture, etc…!
– HPC!
–  Exascale computing systems!
–  Embedded systems!
–  IoT!
– …!
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A global property!
•  Being able to adapt is not a specific domain 

property!
– Operating system, computer architecture, etc…!
– HPC!
–  Exascale computing systems!
–  Embedded systems!
–  IoT!

  embedded/mobile devices and !
HPC/distributed/exascale computing!
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(a) PYNQ-Z1 Development
board

(b) Working NERA Cluster

Figure 25: NERA Cluster
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TABLE V: COMPARISON OF RESOURCES VS PRICES FOR DIFFERENT ZYNQ-BASED
DEVICES

Device Name Price Look-up Tables KLUT/$
snickerdoodle $55 17,600 0.32
snickerdoodle-black $149 53,200 0.36
PYNQ-Z1 (educational) $65 53,200 0.81
PicoZed (7015) $265 46,200 0.17
PicoZed (7030) $375 78,600 0.20
Zynq MMP $1295 218,600 0.17

The management operation is directed by the NERA server, which initiates the swapping

operation one the faulty client notifies it of the error.

6.2.3 Cost e↵ectiveness and scalability

Another significant benefit of the NERA architecture is the increased cost-e↵ectiveness of

the design. Due to the intricacies entailed in silicon manufacturing processes, the cost of silicon

devices is, in general, not linear with their resources. This applies to FPGA devices as well,

and the Zynq System on Chip is not an exception in this regard: a development board with

the XC7Z020 chip costs 65$, while one for the for the XC7Z045 can be purchased for around

1300$. Using the least expensive, commonly available, Zynq-based development boards, table

Table V can be compiled, evidencing how the chosen IC represents the optimal choice in terms

of price versus resources available.
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