
Politecnico	di	Milano	

							
From FPGA-based Reconfigurable Systems to

Autonomic Heterogeneous Computing Systems!
an enabling technologies perspective and more…!

International Center for Theoretical Physics!
Trieste @ 5 December 2018!

Marco D. Santambrogio !
<marco.santambrogio@polimi.it>!

Politecnico di Milano!

2.2 . | IL MARCHIO, IL LOGOTIPO: LE DECLINAZIONI

2	

Computing systems are getting…!

3	

little…!

Computing systems are getting…!

4	

little…! little+Big!

Computing systems are getting…!

5	

little…! little+Big!

little+Big and heterogeneous!

Computing systems are getting…!

Heterogeneous Complex Systems!
•  Ryft ONE!

–  Big Data infrastructure due to an FPGA-accellerated architecture!
–  http://www.ryft.com/!

•  IBM Power8!
–  Introducing the Coherent Accelerator Processor Interface (CAPI) port that is

layered on top of PCI Express 3.0!
–  http://www-304.ibm.com/webapp/set2/sas/f/capi/home.html!

•  Microsoft Catapult!
–  Stratix V (Arria 10 FPGA)!
–  http://research.microsoft.com/en-us/projects/catapult/!

•  Amazon EC2 F1 Instances!
–  Xilinx UltraScale Plus FPGA!
–  https://aws.amazon.com/about-aws/whats-new/2017/04/amazon-ec2-f1-

instances-customizable-fpgas-for-hardware-acceleration-are-now-generally-
available/!

•  OpenPower Foundation!
–  http://openpowerfoundation.org/!

6	

							

Field-Programmable Gate Arrays!
•  Configurable Logic Blocks!

–  to implement combinational
and sequential logic!

8	

CLB CLB CLB CLB

CLB CLB CLB CLB

CLB CLB CLB CLB

CLB CLB CLB CLB

CLB

CLB

CLB

CLB

LookUp Tables: LUTs!

•  LUT contains Memory
Cells to implement small
logic functions!

•  Each cell holds ‘0’ or ‘1’ .!
•  Programmed with outputs

of Truth Table!
•  Inputs select content of

one of the cells as output!
!

!

9	

O = f(D, C, B, A)!

OMUX

BACD
LUT

0/1
0/1
0/1
0/1
0/1
0/1
0/1
0/1
0/1
0/1
0/1
0/1
0/1
0/1
0/1

0/1

Field-Programmable Gate Arrays!
•  Configurable Logic Blocks!

–  to implement combinational
and sequential logic!

•  I/O blocks!
–  special logic blocks at

periphery of device for !
 external connections!

10	

CLB CLB CLB CLB

CLB CLB CLB CLB

CLB CLB CLB CLB

CLB CLB CLB CLB

CLB

CLB

CLB

CLB

Field-Programmable Gate Arrays!

11	

•  Configurable Logic Blocks!
–  to implement combinational

and sequential logic!

•  I/O blocks!
–  special logic blocks at

periphery of device for !
 external connections!

•  Interconnections!
–  wires to connect Inputs/

Outputs to configurable
logic blocks!

CLB CLB CLB CLB

CLB CLB CLB CLB

CLB CLB CLB CLB

CLB CLB CLB CLB

CLB

CLB

CLB

CLB

Xilinx FPGA and Configuration Memory!

12	

FPGA

Xilinx FPGA and Configuration Memory!

13	

Configuration Memory

FPGA

Xilinx FPGA and Configuration Memory!

14	

Configuration
Interfaces

Configuration Memory

FPGA

Xilinx FPGA and Configuration Memory!

15	

Configuration
Interfaces

Configuration bitstream

Configuration Memory

FPGA

16	

1010000	
1111101	
0100010100	
1010100011	
0101010111	
1101010100	

Reconfiguration in everyday life!
Football	

(Complete	–	Sta1c)	

17	

18	

1010000	
1111101	
0100010100	
1010100011	
0101010111	
1101010100	

Reconfiguration in everyday life!

Soccer

Football	
(Complete	–	Sta1c)	

(Par1al	–	Sta1c)	

19	

20	

1010000	
1111101	
0100010100	
1010100011	
0101010111	
1101010100	

1010000	
1111101	

Reconfiguration in everyday life!

Soccer

Football	
(Complete	–	Sta1c)	

Hockey
	

(Par1al	
–	Dynam

ic)	

(Par1al	–	Sta1c)	

21	

22	

24	

25	

3	dicembre	2018	 Marco	D.	Santambrogio/	Politecnico	di	Milano	 26	

							

Research Challenge!

27	

28	

Set of Available
Functionalities

FiArea/Time

Legenda:

A2/1

B 1/2

C2/2

D 1/1 E 1/1

F 2/2

RR3RR2RR1

FPGA

Starting Scenario @ 2009!

29	

RR3RR2RR1

A

RR3RR2RR1

F

RR3RR2RR1

D

RR3RR2RR1

B

RR3RR2RR1

C

E

RR3RR2RR1

RFU
Implementations

RC	
ImplementaCons	

Set of Available
Functionalities

FiArea/Time

Legenda:

A2/1

B 1/2

C2/2

D 1/1 E 1/1

F 2/2

RR3RR2RR1

FPGA

Starting Scenario @ 2009!

People Demanding
for Functionalities

Set of Available
Functionalities

FiArea/Time

Legenda:

A2/1

B 1/2

C2/2

D 1/1 E 1/1

F 2/2

RR3RR2RR1

FPGA

30	

RR3RR2RR1

A

RR3RR2RR1

F

RR3RR2RR1

D

RR3RR2RR1

B

RR3RR2RR1

C

E

RR3RR2RR1

RFU
Implementations

RC	
ImplementaCons	

Starting Scenario @ 2009!

People Demanding
for Functionalities

RR3RR2RR1

A

RR3RR2RR1

F

RR3RR2RR1

D

RR3RR2RR1

B

RR3RR2RR1

C

E

RR3RR2RR1

RFU
Implementations

31	

RC	
ImplementaCons	

A

E

D

C

B

F

2/1

2/2

1/2

1/1

1/1

2/2

 A possible scenario

FiArea/Time

Legenda:

Time

Starting Scenario @ 2009!

The Problem!

Time

Area

A
B

Rec. F

F

Rec. E

E

Rec. C

C

Rec. D

D

32	

A

E

D

C

B

F

2/1

2/2

1/2

1/1

1/1

2/2

 A possible scenario

FiArea/Time

Legenda:

Time

RR3RR2RR1

A

RR3RR2RR1

F

RR3RR2RR1

D

RR3RR2RR1

B

RR3RR2RR1

C

E

RR3RR2RR1

RFU
Implementations

RC	
ImplementaCons	

A Possible Solution!
RR3RR2RR1

A

RR3RR2RR1

F

RR3RR2RR1

D

RR3RR2RR1

B

RR3RR2RR1

C

E

RR3RR2RR1

RFU Implementations

RR3RR2RR1

A

RR3RR2RR1

C

RR3RR2RR1

B

RR3RR2RR1

B

RR3RR2RR1

D

RR3RR2RR1

D

E

RR3RR2RR1

E

RR3RR2RR1

RR3RR2RR1

F

Time

Area

A
B

Rec. C

C

Rec. F

F

Rec. E

E

D
Rec. D

33	

A

E

D

C

B

F

2/1

2/2

1/2

1/1

1/1

2/2

 A possible scenario

FiArea/Time

Legenda:

Time

RC	ImplementaCons	

Relocation!

34	

A

E

D

C

B

F

2/1

2/2

1/2

1/1

1/1

2/2

 A possible scenario

FiArea/Time

Legenda:

Time

Time

Area

A
B

Rec. C

C

R2 F

F

R2 E

E

D
R2 D

RR3RR2RR1

A

RR3RR2RR1

F

RR3RR2RR1

D

RR3RR2RR1

B

RR3RR2RR1

C

E

RR3RR2RR1

RFU
Implementations

RC	
ImplementaCons	

Relocation: Virtual homogeneity!

35	

Relocation: Virtual homogeneity!

36	

Set	of	funcConaliCes	
	

(1)	 (2)	

(3)	
1/2	

2/2	

2/5	

Legenda:	
	

func	
Area/ExeTime	

Relocation: Virtual homogeneity!

37	

Relocation: Virtual homogeneity!

38	

(2)	
2/5	

Starting Scenario @ 2009!
Set of Available
Functionalities

FiArea/Time

Legenda:

A2/1

B 1/2

C2/2

D 1/1 E 1/1

F 2/2

RR3RR2RR1

FPGA

39	

RR3RR2RR1

A

RR3RR2RR1

F

RR3RR2RR1

D

RR3RR2RR1

B

RR3RR2RR1

C

E

RR3RR2RR1

RFU
Implementations

RC	
ImplementaCons	

People Demanding
for Functionalities

Starting Scenario!

40	

RR3RR2RR1

A

RR3RR2RR1

F

RR3RR2RR1

D

RR3RR2RR1

B

RR3RR2RR1

C

E

RR3RR2RR1

RFU
Implementations

RC	
ImplementaCons	

People Demanding
for Functionalities

Starting Scenario!

41	

People Demanding
for Functionalities

42	

Starting Scenario!

43	

							

NECST Scenario @ 2017/2018!

44	

45	

							

46	

							

47	

Jan 2019!

Some Applicative Domains !
for FPGA acceleration!

•  Image and Video Processing!
•  Security!
•  Machine Learning!
•  Genomics!
•  Financial Analytics!
•  Big Data Analytics!

48	

Who Victor is!

49	

How a genetic test !
changed Victor’s life!

50	

Open Challenges!
•  It is necessary to keep-up with continuous

development of biological research !

51	

Open Challenges!
•  It is necessary to keep-up with continuous

development of biological research !

52	

•  Each individual DNA provides huge amount of
data!

Open Challenges!
•  It is necessary to keep-up with continuous

development of biological research !

53	

•  Each individual DNA provides huge amount of
data!

•  To produce a tailor-made drug, for each DNA:!

Open Challenges!
•  It is necessary to keep-up with continuous

development of biological research !

54	

•  Each individual DNA provides huge amount of
data!

•  To produce a tailor-made drug, for each DNA:!

Open Challenges!
•  It is necessary to keep-up with continuous

development of biological research !

55	

•  Each individual DNA provides huge amount of
data!

•  To produce a tailor-made drug, for each DNA:!

Open Challenges!
•  It is necessary to keep-up with continuous

development of biological research !

56	

•  Each individual DNA provides huge amount of
data!

•  To produce a tailor-made drug, for each DNA:!

Personalized Medicine Today!

•  FPGA-based acceleration!
–  optimal ratio performance/power consumption!
–  reconfigurability!

•  Possibility to use pre-accelerated biological
pipelines!

•  Available on-site or for AWS cloud!

57	

DRAGEN Hybrid Onsite !
& Cloud Solutions!

58	

hPp://edicogenome.com/dragen-bioit-plaRorm/	

Benefits of the AWS F1 Cloud
Compute Platform!

•  Makes FPGA acceleration available to a large
community of developers, and to millions of
potential AWS users!

•  Provides dedicated and large amounts of FPGA
logic with elasticity to scale to multiple FPGAs!

•  Simplifies the development process by providing
cloud-based FPGA development tools!

•  Provides a Marketplace for FPGA applications,
giving more choice, secure and easy access to
millions of AWS users!

59	

							

61 EXTRA Consortium Proprietary

							

							

62	

							

!

Usability	

63	

							

Interac(vity	

64	

							

Modularity	

65	

66	

The proposed CAOS framework!

__

__

Application
(C,		C++	OPENCL)

W
eb

 U
I

CA
O

S
Fl

ow
 M

an
ag

er

Frontend
IR generation – profiling –

templates applicability check
– HW/SW partitioning

Functions
Optimization

HW resource estimation –
static code analysis –

performance estimation –
code optimization / DSE

Backend
Runtime generation – function

synthesis – floorplanning –
bitstream generation

IR	gen.

profiling

…

HW	est.

DSE

…

Floorpl.

Bit.	gen.

…

…

…

<system>
…

</system>

Profiling
Datasets

System	
Description

1010
1 0 1 0
1
1 0 1 0
1 0 1 1
0 1 0

1 0 1 0
1 0 1 0
1
1 0 1 0
1 0 1 1
0 1 0

1 0 1 0
1 0 1 0
1
1 0 1 0
1 0 1 1
0 1 0

1 0 1 0
1 0 1 0
1
1 0 1 0
1 0 1 1
0 1 0

System	
runtime

FPGAs
bitstreams

67	

The proposed CAOS framework!

Architectural	
Templates	

()
OpenCL	

Streaming	

…	

()

…	

Computa8on	Model	 Technology	

SST	

__

__

Application
(C,		C++	OPENCL)

W
eb

 U
I

CA
O

S
Fl

ow
 M

an
ag

er

Frontend
IR generation – profiling –

templates applicability check
– HW/SW partitioning

Functions
Optimization

HW resource estimation –
static code analysis –

performance estimation –
code optimization / DSE

Backend
Runtime generation – function

synthesis – floorplanning –
bitstream generation

IR	gen.

profiling

…

HW	est.

DSE

…

Floorpl.

Bit.	gen.

…

…

…

<system>
…

</system>

Profiling
Datasets

System	
Description

1010
1 0 1 0
1
1 0 1 0
1 0 1 1
0 1 0

1 0 1 0
1 0 1 0
1
1 0 1 0
1 0 1 1
0 1 0

1 0 1 0
1 0 1 0
1
1 0 1 0
1 0 1 1
0 1 0

1 0 1 0
1 0 1 0
1
1 0 1 0
1 0 1 1
0 1 0

System	
runtime

FPGAs
bitstreams

68	

CAOS Frontend!

__

__

Application
(C,		C++	OPENCL)

W
eb

 U
I

CA
O

S
Fl

ow
 M

an
ag

er

Frontend
IR generation – profiling –

templates applicability check
– HW/SW partitioning

Functions
Optimization

HW resource estimation –
static code analysis –

performance estimation –
code optimization / DSE

Backend
Runtime generation – function

synthesis – floorplanning –
bitstream generation

IR	gen.

profiling

…

HW	est.

DSE

…

Floorpl.

Bit.	gen.

…

…

…

<system>
…

</system>

Profiling
Datasets

System	
Description

1010
1 0 1 0
1
1 0 1 0
1 0 1 1
0 1 0

1 0 1 0
1 0 1 0
1
1 0 1 0
1 0 1 1
0 1 0

1 0 1 0
1 0 1 0
1
1 0 1 0
1 0 1 1
0 1 0

1 0 1 0
1 0 1 0
1
1 0 1 0
1 0 1 1
0 1 0

System	
runtime

FPGAs
bitstreams

69	

CAOS Functions Optimization!

__

__

Application
(C,		C++	OPENCL)

W
eb

 U
I

CA
O

S
Fl

ow
 M

an
ag

er

Frontend
IR generation – profiling –

templates applicability check
– HW/SW partitioning

Functions
Optimization

HW resource estimation –
static code analysis –

performance estimation –
code optimization / DSE

Backend
Runtime generation – function

synthesis – floorplanning –
bitstream generation

IR	gen.

profiling

…

HW	est.

DSE

…

Floorpl.

Bit.	gen.

…

…

…

<system>
…

</system>

Profiling
Datasets

System	
Description

1010
1 0 1 0
1
1 0 1 0
1 0 1 1
0 1 0

1 0 1 0
1 0 1 0
1
1 0 1 0
1 0 1 1
0 1 0

1 0 1 0
1 0 1 0
1
1 0 1 0
1 0 1 1
0 1 0

1 0 1 0
1 0 1 0
1
1 0 1 0
1 0 1 1
0 1 0

System	
runtime

FPGAs
bitstreams

70	

CAOS Backend!

__

__

Application
(C,		C++	OPENCL)

W
eb

 U
I

CA
O

S
Fl

ow
 M

an
ag

er

Frontend
IR generation – profiling –

templates applicability check
– HW/SW partitioning

Functions
Optimization

HW resource estimation –
static code analysis –

performance estimation –
code optimization / DSE

Backend
Runtime generation – function

synthesis – floorplanning –
bitstream generation

IR	gen.

profiling

…

HW	est.

DSE

…

Floorpl.

Bit.	gen.

…

…

…

<system>
…

</system>

Profiling
Datasets

System	
Description

1010
1 0 1 0
1
1 0 1 0
1 0 1 1
0 1 0

1 0 1 0
1 0 1 0
1
1 0 1 0
1 0 1 1
0 1 0

1 0 1 0
1 0 1 0
1
1 0 1 0
1 0 1 1
0 1 0

1 0 1 0
1 0 1 0
1
1 0 1 0
1 0 1 1
0 1 0

System	
runtime

FPGAs
bitstreams

71	

CAOS Backend!

__

__

Application
(C,		C++	OPENCL)

W
eb

 U
I

CA
O

S
Fl

ow
 M

an
ag

er

Frontend
IR generation – profiling –

templates applicability check
– HW/SW partitioning

Functions
Optimization

HW resource estimation –
static code analysis –

performance estimation –
code optimization / DSE

Backend
Runtime generation – function

synthesis – floorplanning –
bitstream generation

IR	gen.

profiling

…

HW	est.

DSE

…

Floorpl.

Bit.	gen.

…

…

…

<system>
…

</system>

Profiling
Datasets

System	
Description

1010
1 0 1 0
1
1 0 1 0
1 0 1 1
0 1 0

1 0 1 0
1 0 1 0
1
1 0 1 0
1 0 1 1
0 1 0

1 0 1 0
1 0 1 0
1
1 0 1 0
1 0 1 1
0 1 0

1 0 1 0
1 0 1 0
1
1 0 1 0
1 0 1 1
0 1 0

System	
runtime

FPGAs
bitstreams

SST	
MaxCompiler

Output	Genera-on	

72	

CAOS: OpenCL and SDAccel!
•  CAOS Frontend supports OpenCL code:!

–  Intermediate representation support!
–  Template applicability check for SDA!
– Code profiling through LTPV (OpenCL profiler)!
–  Function optimization:!

•  Static code analysis and HW resource estimation
within SDA!

–  Backend support for SDAccell!

</>	
</>	

73	

CAOS Backend for SDAccel!
SDAccel	generates	&	
provides:	
-  XCLBIN	containing	the	

bitstream	
-  OpenCL	Run1me	to	

manage	kernel	
execuCon		

CAOS	Integrates	SDAccel:	
-  IdenCfying	I/O	

Variables	
-  GeneraCng	a	specific	

OpenCL	Host	code	for	
the	applicaCon	

74	

Evaluations: Evaluations!
[1, 2] Streaming Stencil Time-step (SST)!
[3] Pearson Correlation Coefficient, Asian Option Pricing!
[5] Protein Folding!
[4] Smith Waterman and Vessels Segmentation!

75	

TABLE I. EXPERIMENTAL RESULTS

Case Study Board Improvement wrt CPU
Performance Energy Efficiency

IV-A Virtex 7 3.68x 11.8x
IV-A Kintex 14.15x 45x
IV-B Virtex 7 1.61x 15.29x
IV-C Virtex 7 3.1x 2.2x

IV-D jacobi-2d Virtex 7 1.09x 12.9x
IV-D heat-3d Virtex 7 0.22x 2.46x

ISLs consists in the iterative update of each element of a multi-
dimensional array with weighted contributions from a subset
of its neighbors in both time and space[16].

In this case study the applications are written in C, while
the system description requires the code to be accelerated on a
Xilinx Virtex 7 FPGA connected via PCIe to the x64 host pro-
cessor. Since the computational kernels – i.e. the ISLs – within
the applications are already identified, profiling in the frontend
phase is skipped. The phase demanded to perform the architec-
tural templates applicability check extracts the code parts from
the functions identified by the application designer and tries to
derive the corresponding polyhedral representation[15], while
also checking for them to be ISLs. As in this case study these
steps are successfully performed, the architectural template
selected is then the SST technology[15, 16].

In the functions optimization component, for each iden-
tified ISL static code analysis is in charge of retrieving the
total number of time-steps, while HW resource estimation for
a single SST is produced by means of Vivado HLS reports.
The performance estimation is then performed employing an
analytical model[15] to derive the maximum lenght of SSTs
that can be enqueued in the resulting accelerator, taking into
account total amount of available resources.

The backend component then generates the scheduling
and the runtime support to load the ISLs accelerators when
needed during the execution of the application, and the PCIe
interface needed to perform the data exchange. HW synthesis,
floorplanning and bitstream generation are then performed by
means of Vivado IPI.

Table I provides performance and power efficiency im-
provements of the best implementation – i.e. the longest queue
of SSTs that it was possible to synthesize – for all the ISLs
analyzed, with respect to the CPU-only system, equipped
with an Intel Xeon E5 processor, where the ISLs have been
compiled using Pluto with diamond tiling[25], state of the art
optimization for the implementation of ISLs on CPU. In both
cases, overall power consumption was measured at the wall,
which means that the whole system power drain was taken
into account. Notice how we yield better power efficiency
in all cases (up to 12.9X), while raw performance shows an
improvement only in the case of jacobi-2d.

V. CONCLUSIONS

In this paper we presented the design flow of CAOS (CAD
as an Adaptive OpenPlatform Service), a platform designed
to provide a fully integrated development experience when
accelerating an application on reconfigurable hardware. The
framework has been conceived to automate or heavily assist
all the steps involved in the development flow, being able
to provide usability, modularity and interactivity. We then

validated the proposed design flow by analyzing four different
case studies, and showing how each of them flows through the
different framework phases. The final objective of this work is
to ultimately push the adoption of reconfigurable hardware in
HPC.

ACKNOWLEDGMENTS

The work is part of the EXTRA project. The EXTRA
project runs from September 2015 till August 2018 and
receives funding from the EU Horizon 2020 research and
innovation program under grant No 671653.

REFERENCES

[1] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and
D. Burger, “Dark silicon and the end of multicore scaling,” in
Computer Architecture (ISCA), 2011 38th Annual International
Symposium on. IEEE, 2011, pp. 365–376.

[2] T. El-Ghazawi, E. El-Araby, M. Huang, K. Gaj, V. Kindratenko,
and D. Buell, “The promise of high-performance reconfigurable
computing,” Computer, no. 2, pp. 69–76, 2008.

[3] D. Stroobandt, A. L. Varbanescu, C. B. Ciobanu, M. Al Kadi,
A. Brokalakis, G. Charitopoulos, T. Todman, X. Niu, D. Pnev-
matikatos, A. Kulkarni et al., “Extra: Towards the exploitation of
exascale technology for reconfigurable architectures,” in Recon-
figurable Communication-centric Systems-on-Chip (ReCoSoC),
2016 11th International Symposium on. IEEE, 2016, pp. 1–7.

[4] Xilinx Inc., “Xilinx developer zone.” [Online]. Available:
https://www.xilinx.com/products/design-tools.html

[5] J. E. Stone, D. Gohara, and G. Shi, “Opencl: A parallel
programming standard for heterogeneous computing systems,”
Computing in science & engineering, vol. 12, no. 1-3, pp. 66–
73, 2010.

[6] Topic Embedded Products, “Dynamic process loader -
dyplo.” [Online]. Available: https://topicembeddedproducts.
com/products/dyplo/

[7] J. B. Dennis, “Data flow supercomputers,” Computer, vol. 13,
no. 11, pp. 48–56, Nov. 1980. [Online]. Available: http:
//dx.doi.org/10.1109/MC.1980.1653418

[8] Maxeler Technologies, “Maxeler technologies website.”
[Online]. Available: http://maxeler.com/#/

[9] A. Panella, M. D. Santambrogio, F. Redaelli, F. Cancare, and
D. Sciuto, “A design workflow for dynamically reconfigurable
multi-fpga systems,” in 2010 18th IEEE/IFIP International
Conference on VLSI and System-on-Chip, Sept 2010, pp. 414–
419.

[10] M. D. Santambrogio, D. Pnevmatikatos, K. Papadimitriou, C. Pi-
lato, G. Gaydadjiev, D. Stroobandt, T. Davidson, T. Becker,
T. Todman, W. Luk, A. Bonetto, A. Cazzaniga, G. C. Durelli,
and D. Sciuto, “Smart technologies for effective reconfigura-
tion: The faster approach,” in 7th International Workshop on
Reconfigurable and Communication-Centric Systems-on-Chip
(ReCoSoC), July 2012, pp. 1–7.

[11] J. Hegarty, J. Brunhaver, Z. DeVito, J. Ragan-Kelley, N. Cohen,
S. Bell, A. Vasilyev, M. Horowitz, and P. Hanrahan,
“Darkroom: Compiling high-level image processing code
into hardware pipelines,” ACM Trans. Graph., vol. 33,
no. 4, pp. 144:1–144:11, Jul. 2014. [Online]. Available:
http://doi.acm.org/10.1145/2601097.2601174

[12] M. Araya-Polo, J. Cabezas, M. Hanzich, M. Pericas, F. Rubio,
I. Gelado, M. Shafiq, E. Morancho, N. Navarro, E. Ayguade,
J. M. Cela, and M. Valero, “Assessing accelerator-based hpc
reverse time migration,” IEEE Transactions on Parallel and
Distributed Systems, vol. 22, no. 1, pp. 147–162, Jan 2011.

[13] C. Tomas, L. Cazzola, D. Oriato, O. Pell, D. Theis,
G. Satta, and E. Bonomi, “Acceleration of the anisotropic

[1]
[2]

[3]
[5]
[4]
[4]

[*] intel Xeon E5 1410
32 GB RAM

[*]	

76 EXTRA Consortium Proprietary

Hints on the problem…!

77	

*
[*]	Vipin,	K.	and	Fahmy,	S.	A.:	Architecture-aware	reconfiguraCon-centric	floorplanning	for	parCal	reconfiguraCon.	In	ARC,	
pages	13-25,	2012.	

Heuristic-Optimal Floorplanner!

78	

Reconfigurable	regions	+	
Resource	requirements	 FPGA	 HeurisCc	

soluCon	

MILP	model	

MILP	Solver		
(Gurobi,	Cplex,	GLPK,	…)	

Improved	heurisCc	soluCon	

User-defined	linear	
ObjecCve	FuncCon	

Geometrical	constraints	

•  Non overlapping
guaranteed by the
geometrical constraints

Objective function!
•  Cost function can be defined starting from the

variables and parameters of the MILP model!
!

•  Implemented metrics:!
–  Global wirelength measured using HPWL ()!
–  Regions perimeter ()!
–  Wasted resources ()!

79	

Hints on the problem…!

80	

*
[*]	Vipin,	K.	and	Fahmy,	S.	A.:	Architecture-aware	reconfiguraCon-centric	floorplanning	for	parCal	reconfiguraCon.	In	ARC,	
pages	13-25,	2012.	

Hints on the problem…!
•  Optimal solution in 29s!

•  34% wasted frames
reduction!
–  No DSP and CLB wasted

by the Video Decoder RR!
–  No BRAM wasted by the

Signal Decoder RR!

•  Approximately same
wirelength!

81	

*
[*]	Vipin,	K.	and	Fahmy,	S.	A.:	Architecture-aware	reconfiguraCon-centric	floorplanning	for	parCal	reconfiguraCon.	In	ARC,	
pages	13-25,	2012.	

3	dicembre	2018	 your	name	/	affiliaCon	here	 82	

							

Runtime Reconfiguration Management!
•  Reconfigurable architecture!

–  Static Area: used to control the reconfiguration process!
–  Reconfigurable Area: used to swap at runtime different cores!
–  Reconfiguration- oriented communication infrastructure !

!
•  Runtime reconfiguration managed via SW !

–  Standalone, Operating System!
•  Increased portability of user applications!
•  Inherited multitasking capabilities!
•  Simplified software development process!

!
•  Bitstreams relocation technique to !

–  speedup the overall system execution!
–  achieve a core preemptive execution !
–  assign at runtime the bitstreams placement!
–  reduce the amount of memory used to store partial bitstreams!

84	

Runtime Reconfiguration Management!
•  Reconfigurable architecture!

–  Static Area: used to control the reconfiguration process!
–  Reconfigurable Area: used to swap at runtime different cores!
–  Reconfiguration- oriented communication infrastructure !

!
•  Runtime reconfiguration managed via SW !

–  Standalone, Operating System!
•  Increased portability of user applications!
•  Inherited multitasking capabilities!
•  Simplified software development process!

!
•  Bitstreams relocation technique to !

–  speedup the overall system execution!
–  achieve a core preemptive execution !
–  assign at runtime the bitstreams placement!
–  reduce the amount of memory used to store partial bitstreams!

85	

OS-based management of
dynamic reconfiguration!

•  Provide software support for dynamic partial reconfiguration
on Systems-on-Chip running an operating system (i.e.,
LINUX).!
–  OS customization for specific architectures!
–  Rec. Functional Unit caching policies to improve the performance!
–  Partial reconfiguration process management from the OS!
–  Addition and removal of reconfigurable components!
–  Automatic loading and unloading of specific drivers for the IP-

Cores upon components configuration and/or deconfiguration!

•  Hardware-independent interface for software developers
based on the GNU/Linux!

•  Easier programming interface for specific drivers!

86	

IP-Core Devices Access!
•  Interaction with configured IP-Cores implemented

by means of the standard Linux device access!
–  Open, Close, Read, write, ioctl operations!

/dev/device_1

/dev/device_2a

/dev/device_2b

Software
Application 1

Software
Application 2

device_1.o

device_2.o

/dev

Device
Drivers

Userspace

Devices

IP-Core_1

IP-Core_2a

IP-Core_2b

FPGA

Multiple instances
of the same

hardware module

87	

Reconfigurable Process Control Block!
•  Reconfigurable process: an RFU object code in execution!

•  Each reconfigurable process is represented in the system by a
Reconfigurable Process Control Block (RPCB).!

•  A RPCB contains all the information associated with a specific
reconfigurable process!
–  State: the state in which the reconfigurable process control is at

the current time!
–  Position: the placement position on the device!
–  Object Code Accounting Information:!

•  Object Code!
•  Configuration Priority!
•  Resources!
•  Position!

Configured

Addressing Space
Assignment

Ready

Positioning

Configuring

Configuring

Cached

Computing Removed

Waiting

Executing
Preempted

88	

The Centralized Manager!
•  Userspace applications are not allowed to explicitly

request a bitstream!
–  They request high-level functionalities!

•  Userspace requests are collected and served by a
centralized manager (Linux Reconfiguration Manager)!
–  The OS chooses the configuration code!
–  A new reconfigurable process is created!

•  Only the LRM can ask for a bitstream to be configured
on the FPGA!
–  Centralized knowledge of the device status!
–  Area management and module caching!

89

89	

Reconfiguration: Online Static!

90	

Reconfiguration: Online Static!

91	

Reconfiguration: Online Static!

92	

Reconfiguration: Online Static!

93	

Reconfiguration: Online Static!

94	

Reconfiguration: Online Static!

95	

96	

Where	to	go	necst?	

Trying to raise the bar!
•  Towards the design and implementaion of Self-

adaptive and autonomic systems!

97	

Trying to raise the bar!
•  Towards the design and implementaion of Self-

adaptive and autonomic systems!

•  We need to include 2 more features!
– Goal-oriented!

•  Tell the system what you want!
•  System’s job to figure out how to get there !

–  Approximate!
•  Does not expend any more effort than necessary to

meet goals!

98	

Data DataEnvironment Environment

Output - Environment Update
Output - Environment Update

Online Static Solution Adaptive Solution

99	

Data DataEnvironment Environment

Output - Environment Update
Output - Environment Update

Online Static Solution Adaptive Solution

100	

Data DataEnvironment Environment

Output - Environment Update
Output - Environment Update

Online Static Solution Adaptive Solution

101	

Data DataEnvironment Environment

Output - Environment Update
Output - Environment Update

Online Static Solution Adaptive Solution

102	

Data DataEnvironment Environment

Output - Environment Update
Output - Environment Update

Online Static Solution Adaptive Solution

103	

Data DataEnvironment Environment

Output - Environment Update
Output - Environment Update

Online Static Solution Adaptive Solution

104	

Data DataEnvironment Environment

Output - Environment Update
Output - Environment Update

Online Static Solution Adaptive Solution

105	

Data DataEnvironment Environment

Output - Environment Update
Output - Environment Update

Online Static Solution Adaptive Solution

106	

Data DataEnvironment Environment

Output - Environment Update
Output - Environment Update

Online Static Solution Adaptive Solution

107	

Nice idea, but!

108	

Nice idea, but how to use it!!

109	

Umh…	

Autonomic Operating System!
•  The AcOS project aims at !

–  designing and prototyping a patch for commodity
operating systems (e.g. Linux, FreeBSD)!

–  being capable to observe its own execution and
optimize, in a self-aware manner, its behavior with
respect to the external environment, to user needs
and to applications demands!

[integrated/used in different research projects]!

110	

The research effort!
•  K42!

–  http://researcher.watson.ibm.com/researcher/
view_project.php?id=2078!

•  The SElf-awarE Computing (SEEC) Model!
–  http://groups.csail.mit.edu/carbon/seec/!

•  Angstrom!
–  http://projects.csail.mit.edu/angstrom/!

•  The Swarm project and Tessellation OS!
–  http://tessellation.cs.berkeley.edu!

111	

Reconfiguration: Self-Aware!

112	

Reconfiguration: Self-Aware!

113	

Reconfiguration: Self-Aware!

114	

115

Reconfiguration: Self-Aware!

116	

AcOS: via an intelligent ODA loop!

117	

Monitoring	
Infrastructures	

AdaptaCon	
Policies	

ApplicaCons	

System	

Goals	
Measurements	

Decide	

Act	 Observe	

The Heart Rate Monitor!
•  Heartbeats signal[1] either progresses or availability!

–  video encoder: 1 heartbeat = 1 frame!
–  web server: 1 heartbeat = 1 request!
–  database server: 1 heartbeat = transaction!

•  Heart rate as a performance measure and goal!
–  High-level, application-specific performance

measurements and goals (e.g., video encoder: 30
heartbeats/s = 30 frames/s)!

•  Compact API, user/kernel-space partitioned
implementation[2]!
–  User-mode fast-path heartbeats issue!
–  User and kernel-mode low-latency heart rate access!

118	

[1] Hoffmann et al., Application Heartbeats for Software Performance and Health, !
Proc. of the 15th ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel Programming, 2010!
[2] Sironi et al., Metronome: Operating System Level Performance Management via Self-Adaptive Computing, !
Proc. of the 49th Annual Design Automation Conference 2012!

The Heart Rate Monitor!
!

119	

The Heart Rate Monitor!
•  Set performance goal!
!

120	

The Heart Rate Monitor!
•  Set performance goal!
!

121	

e.g.:!
min: 25hb/sec!
max: 35hb/sec!

The Heart Rate Monitor!
•  Set performance goal!
•  Run the app and update progress!

122	

Issue an heartbeat!

e.g.:!
min: 25hb/sec!
max: 35hb/sec!

The Heart Rate Monitor!
•  Set performance goal!
•  Run the app and update progress!

123	

Issue an heartbeat! Statistics automatically !
updated!

e.g.:!
min: 25hb/sec!
max: 35hb/sec!

The Heart Rate Monitor!
•  Set performance goal!
•  Run the app and update progress!

•  Check heart rate and, if necessary, react!

124	

Issue an heartbeat! Statistics automatically !
updated!

e.g.:!
min: 25hb/sec!
max: 35hb/sec!

Autonomic Scheduling!
•  In a scenario were applications !

–  are competing for the same set of resources!
–  require predictable performance, expressed

through high-level, application-specific metrics!

•  The scheduler has to become Performance-
Aware to automatically allocate resources to
match performance goals!
– With Metronome, we introduce performance-

awareness by means of a non-invasive
modifications to the Completely Fair Scheduler!

125	

Metronome!

126	

Metronome!

127	

Metronome!

Sironi et al., Metronome: Operating System Level Performance Management via Self-Adaptive Computing, !
Proc. of the 49th Annual Design Automation Conference 2012!

128	

From Metronome to Metronome++!
•  Metronome demonstrates

how a simple heuristic can be
enough to enable goal-
oriented resource allocation
by exploiting runtime
performance feedback!

•  Metronome++ has been
designed with more
advanced adaptation policy
to dynamically allocate CPUs
to SLO-bound!
–  E.g. Through tasks migration

among run queues!

129	

x264a
x264b

th
ro

u
gh

p
u
t

0

5

8
10
12

15

20

time (s)

0 10 20 30 40 50 60

x264a

x264b

th
ro

u
gh

p
u
t

0

5

10

15

20

time (s)

0 10 20 30 40 50 60

(1) Linux kernel vanilla !

(2) Linux kernel enhanced with Metronome++!

Trying to raise the bar (again)!
•  AcOS took into consideration performance…!
•  Any other HOT topic?!

130	

Trying to raise the bar (again)!
•  AcOS took into consideration performance…!
•  Any other HOT topic?!

– What about temperature Control/Management!!

131	

132	

swaptions @ 2.80 GHz
ab @ 2.80 GHz

te
m

pe
ra

tu
re

 in
cr

ea
se

 (
°C

)

0

10

20

time (s)
0 100 200 300 400 500 600

DVFS is dangerous!

2

Temperature Control/Management
starting scenario!

133	

swaptions @ 2.80 GHz
ab @ 2.80 GHz

te
m

pe
ra

tu
re

 in
cr

ea
se

 (
°C

)

0

10

20

time (s)
0 100 200 300 400 500 600

DVFS is dangerous!

2

Temperature Control/Management !
set a temperature cap!

Temperature Control/Management!
DVFS is dangerous!

134	

DVFS is dangerous!

2

DVFS from 2.80 to 2.13 GHz

swaptions @ 2.80 GHz
ab @ 2.80 GHz
swaptions w/ DVFS
ab w/ DVFS

Δ2

Δ1

Δ2

te
m

pe
ra

tu
re

 in
cr

ea
se

 (
°C

)

0

10

20

time (s)
0 100 200 300 400 500 600

135	

swaptions @ 2.80 GHz
ab @ 2.80 GHz

te
m

pe
ra

tu
re

 in
cr

ea
se

 (
°C

)

0

10

20

time (s)
0 100 200 300 400 500 600

DVFS is dangerous!

2

Temperature Control/Management
back to the starting scenario!

136	

swaptions @ 2.80 GHz
ab @ 2.80 GHz

te
m

pe
ra

tu
re

 in
cr

ea
se

 (
°C

)

0

10

20

time (s)
0 100 200 300 400 500 600

DVFS is dangerous!

2

Temperature Control/Management !
set the same temperature cap!

Temperature Control/Management!
The AcOS refreshement: ThermOS!

137	

Idle cycle injection improves!

3

swaptions @ 2.80 GHz
ab @ 2.80 GHz
swaptions w/ ThermOS
ab w/ ThermOS

Δ1

te
m

pe
ra

tu
re

 in
cr

ea
se

 (
°C

)

0

10

20

time (s)
0 100 200 300 400 500 600

138	

Where	to	go	necst?	

A vision!
•  To discover/understand the future, sometimes

you have to look back at the past…!

139	

Heterogeneous System Architecture!

140	

More	informaCon	available	at:	hPp://hsafoundaCon.com/	

A global property!
•  Being able to adapt is not a specific domain

property!
– Operating system, computer architecture, etc…!
– HPC!
–  Exascale computing systems!
–  Embedded systems!
–  IoT!
– …!

141	

A global property!
•  Being able to adapt is not a specific domain

property!
– Operating system, computer architecture, etc…!
– HPC!
–  Exascale computing systems!
–  Embedded systems!
–  IoT!

 embedded/mobile devices and !
HPC/distributed/exascale computing!

142	

143 EXTRA Consortium Proprietary

144 EXTRA Consortium Proprietary

145 EXTRA Consortium Proprietary

146 EXTRA Consortium Proprietary

147 EXTRA Consortium Proprietary

148 EXTRA Consortium Proprietary

149 EXTRA Consortium Proprietary

159

(a) PYNQ-Z1 Development
board

(b) Working NERA Cluster

Figure 25: NERA Cluster

159

(a) PYNQ-Z1 Development
board

(b) Working NERA Cluster

Figure 25: NERA Cluster 159

(a) PYNQ-Z1 Development
board

(b) Working NERA Cluster

Figure 25: NERA Cluster

159

(a) PYNQ-Z1 Development
board

(b) Working NERA Cluster

Figure 25: NERA Cluster

159

(a) PYNQ-Z1 Development
board

(b) Working NERA Cluster

Figure 25: NERA Cluster

159

(a) PYNQ-Z1 Development
board

(b) Working NERA Cluster

Figure 25: NERA Cluster

159

(a) PYNQ-Z1 Development
board

(b) Working NERA Cluster

Figure 25: NERA Cluster

159

(a) PYNQ-Z1 Development
board

(b) Working NERA Cluster

Figure 25: NERA Cluster

159

(a) PYNQ-Z1 Development
board

(b) Working NERA Cluster

Figure 25: NERA Cluster

150 EXTRA Consortium Proprietary

151 EXTRA Consortium Proprietary

x!
152

TABLE V: COMPARISON OF RESOURCES VS PRICES FOR DIFFERENT ZYNQ-BASED
DEVICES

Device Name Price Look-up Tables KLUT/$
snickerdoodle $55 17,600 0.32
snickerdoodle-black $149 53,200 0.36
PYNQ-Z1 (educational) $65 53,200 0.81
PicoZed (7015) $265 46,200 0.17
PicoZed (7030) $375 78,600 0.20
Zynq MMP $1295 218,600 0.17

The management operation is directed by the NERA server, which initiates the swapping

operation one the faulty client notifies it of the error.

6.2.3 Cost e↵ectiveness and scalability

Another significant benefit of the NERA architecture is the increased cost-e↵ectiveness of

the design. Due to the intricacies entailed in silicon manufacturing processes, the cost of silicon

devices is, in general, not linear with their resources. This applies to FPGA devices as well,

and the Zynq System on Chip is not an exception in this regard: a development board with

the XC7Z020 chip costs 65$, while one for the for the XC7Z045 can be purchased for around

1300$. Using the least expensive, commonly available, Zynq-based development boards, table

Table V can be compiled, evidencing how the chosen IC represents the optimal choice in terms

of price versus resources available.

							

152	

Politecnico	di	Milano	

							
From FPGA-based Reconfigurable Systems to

Autonomic Heterogeneous Computing Systems!
an enabling technologies perspective and more…!

International Center for Theoretical Physics!
Trieste @ 5 December 2018!

Marco D. Santambrogio !
<marco.santambrogio@polimi.it>!

Politecnico di Milano!

2.2 . | IL MARCHIO, IL LOGOTIPO: LE DECLINAZIONI

