

Ing. Rodrigo A. Melo November 26th to December 7th, 2018, Trieste









Introduction

**AMBA AXI** 

Zynq-7000 PL-PS Interfaces

Design Under Test

Results





### **Motivation**

#### FPGA SoC:

- ► In 2010 Actel (later Microsemi, now Microchip) introduced SmartFusion (ARM Cortex-M3).
- ▶ In 2011 Xilinx introduced Zynq-7000 and Altera (now Intel Programmable Solutions Group) some variants of Cyclone/Arria (2 x ARM Cortex-A9).

#### Previous attempts:

- Excalibur from Altera (ARM 9 and MIPS microcontrollers)
- Virtex-II and Virtex-4 Pro from Xilinx (embedded PowerPC from IBM)

The uP approach has a lowest integration level and lack of peripherals. The FPGA SoC solution integrates the software programmability of state of the art processors, capable of run an operating system, with a huge variety of general purpose and high speed peripherals, and several memory controllers, with the flexibility and scalability of programmable hardware into a single device.





Introduction

**AMBA AXI** 

Zynq-7000 PL-PS Interfaces

Design Under Test

Results





## **Advanced Microcontroller Bus Architecture**

An open standard for the connection and management of functional blocks in a SoC.



- ► AMBA 1 (1996): Advanced Peripheral Bus (APB)
- ► AMBA 2 (1999): AMBA High-performance Bus (AHB)
- AMBA 3 (2003): Advanced Extensible Interface (AXI3)
- AMBA 4 (2010): AXI4

Xilinx was one of the thirty-five companies that contributed with the AMBA 4 specification and an early adopter.

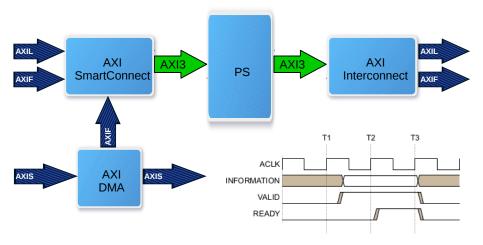
Source: ARM AMBA 4 Specification maximizes performance and power efficiency (press release)





## AXI 3 vs 4

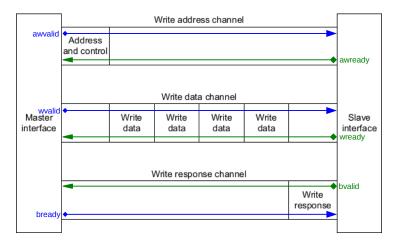
Masters and slaves in the PS are AXI 3, but hardware in the PL is suggested to be AXI 4.


The maximum burst length was extended from 16 to 256 beats (INCR type). Additionally, AXI 4 defines three interfaces:

- ► AXI4 (also known as AXI4-Full) for high-performance memory-mapped requirements.
- ► **AXI4-Lite** for simple, low-throughput memory-mapped communication (such as control and status registers).
- ► **AXI4-Stream** for high-speed streaming data (removes address phase and allows unlimited data burst size).





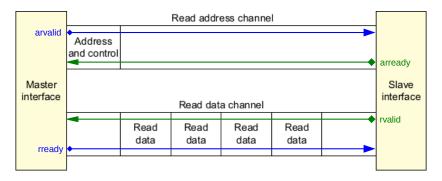

### **Vivado AXI Infrastructure**







### **Write Channels Handshake**




Source: AMBA AXI and ACE Protocol Specification





### **Read Channels Handshake**



Source: AMBA AXI and ACE Protocol Specification

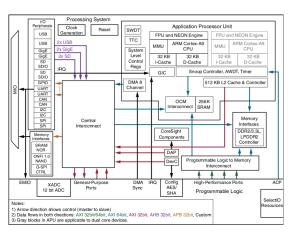




Introduction

AMBA AXI

Zynq-7000 PL-PS Interfaces


Design Under Test

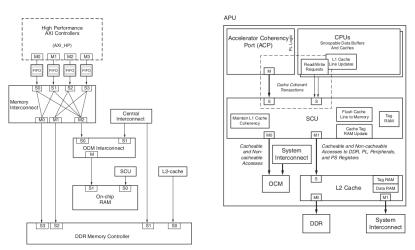
Results





## Zynq-7000 All Programmable SoC Overview




Source: Zynq-7000 All Programmable SoC Technical Reference Manual (UG585)

- Cortex-A9 MPCore (r3p0)
- 2 x 32b General Purpose masters (M\_AXI\_GP[1:0])
- ➤ 2 x 32b General Purpose slaves (S\_AXI\_GP[1:0])
- ► 4 x 32/64b High Performance slaves (S\_AXI\_HP[3:0])
- 1 x 64b Accelerator Coherency Port slave (S\_AXI\_ACP)





### More about AXI ACP and HP



Source: Zynq-7000 All Programmable SoC Technical Reference Manual (UG585)





## **Data Movement Method Comparison Summary**

| Method             | Benefits                                                                                                          | Drawbacks                                                                                                       | Suggested Uses                                                                                     | Estimated<br>Throughput       |  |
|--------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------|--|
| CPU Programmed I/O | Simple Software     Least PL Resources     Simple PL Slaves                                                       | Lowest Throughput                                                                                               | Control Functions                                                                                  | <25 MB/s                      |  |
| PS DMAC            | <ul><li>Least PL Resources</li><li>Medium Throughput</li><li>Multiple Channels</li><li>Simple PL Slaves</li></ul> | Somewhat complex<br>DMA programming                                                                             | Limited PL<br>Resource DMAs                                                                        | 600 MB/s                      |  |
| PL AXI_HP DMA      | Highest Throughput     Multiple Interfaces     Command/Data FIFOs                                                 | OCM/DDR access only     More complex PL     Master design                                                       | High Performance<br>DMA for large<br>datasets                                                      | 1,200 MB/s<br>(per interface) |  |
| PL AXI_ACP DMA     | Highest Throughput     Lowest Latency     Optional Cache Coherency                                                | Large burst might cause cache thrashing     Shares CPU Interconnect bandwidth     More complex PL Master design | High Performance<br>DMA for smaller,<br>coherent datasets     Medium<br>granularity CPU<br>offload | 1,200 MB/s                    |  |
| PL AXI_GP DMA      | Medium Throughput                                                                                                 | More complex PL<br>Master design                                                                                | PL to PS Control<br>Functions     PS I/O Peripheral<br>Access                                      | 600 MB/s                      |  |

$$MB/s = MHz * \frac{bits}{g}$$

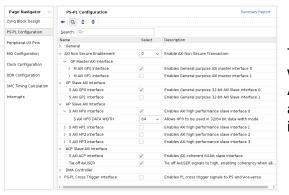
- \* PL Freg. is 150 MHz
- \* Data width is 32/64 bits Where is the protocol overhead?

Source: Zyng-7000 All Programmable SoC Technical Reference Manual (UG585)





# **System-Level Address Map**


| Address Range                         | CPUs and<br>ACP | AXI_HP | Other Bus<br>Masters <sup>(1)</sup> | Notes                                                 |  |
|---------------------------------------|-----------------|--------|-------------------------------------|-------------------------------------------------------|--|
|                                       | ОСМ             | ОСМ    | ОСМ                                 | Address not filtered by SCU and OCM is mapped low     |  |
| 0000_0000 to 0003_FFFF (2)            | DDR             | осм    | ОСМ                                 | Address filtered by SCU and OCM is mapped low         |  |
|                                       | DDR             |        |                                     | Address filtered by SCU and OCM is not mapped low     |  |
|                                       |                 |        |                                     | Address not filtered by SCU and OCM is not mapped low |  |
| 0004_0000 to 0007_FFFF                | DDR             |        |                                     | Address filtered by SCU                               |  |
| 0004_0000 to 0007_FFFF                |                 |        |                                     | Address not filtered by SCU                           |  |
| 0008_0000 to 000F_FFFF                | DDR             | DDR    | DDR                                 | Address filtered by SCU                               |  |
|                                       |                 | DDR    | DDR                                 | Address not filtered by SCU <sup>(3)</sup>            |  |
| 0010_0000 to 3FFF_FFFF                | DDR             | DDR    | DDR                                 | Accessible to all interconnect masters                |  |
| 4000_0000 to 7FFF_FFF                 | PL              |        | PL                                  | General Purpose Port #0 to the PL,<br>M_AXI_GP0       |  |
| 8000_0000 to BFFF_FFF                 | PL              |        | PL                                  | General Purpose Port #1 to the PL,<br>M_AXI_GP1       |  |
| E000_0000 to E02F_FFFF                | IOP             |        | IOP                                 | I/O Peripheral registers, see Table 4-6               |  |
| E100_0000 to E5FF_FFFF                | SMC             |        | SMC                                 | SMC Memories, see Table 4-5                           |  |
| F800_0000 to F800_0BFF                | SLCR            |        | SLCR                                | SLCR registers, see Table 4-3                         |  |
| F800_1000 to F880_FFFF                | PS              |        | PS                                  | PS System registers, see Table 4-7                    |  |
| F890_0000 to F8F0_2FFF                | CPU             |        |                                     | CPU Private registers, see Table 4-4                  |  |
| FC00_0000 to FDFF_FFFF <sup>(4)</sup> | Quad-SPI        |        | Quad-SPI                            | Quad-SPI linear address for linear mode               |  |
| FFFC 0000 to FFFF FFFF (2)            | OCM             | ОСМ    | OCM                                 | OCM is mapped high                                    |  |
| FFFC_0000 to FFFF_FFFF (c)            |                 |        |                                     | OCM is not mapped high                                |  |

Source: Zynq-7000 All Programmable SoC Technical Reference Manual (UG585)





# **Zynq AXI Configurations**



To enable cache coherency with ACP, the AXI signals AxCACHE must be **XX11** and AxUSER must have all its bits tie high.



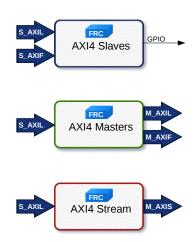


Introduction

**AMBA AXI** 

Zynq-7000 PL-PS Interfaces

**Design Under Test** 


Results

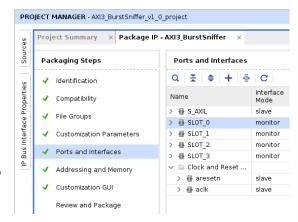




## **Developed IPs**

#### Free Running Counter counter proc: process(aclk) begin if (rising edge (aclk)) then if (aresetn = '0') then counter <= (others => '0'); else if enable = '1' then counter <= counter + 1; else counter <= (others => '0'); end if: end if: end if: end process counter\_proc;

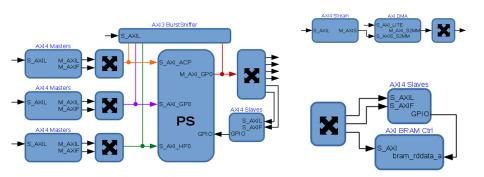







### **AXI3 Burst Sniffer**

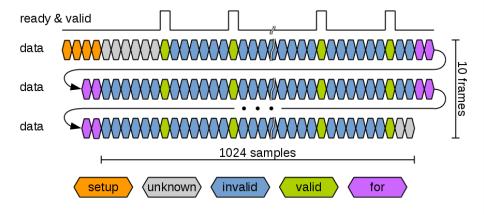



SLOT0-3 are AXI3 interfaces in monitor mode, which have only INPUT ports.








# **Block Designs**







# Cycles measurement in the PS







# Cycles measurement in the PS

```
int data[ROWS][COLS] __attribute__ ((aligned (32)));
...
int row, col;
```

```
pl_cycles = data[row][COLS-1]-data[row][0]
```

```
#include "xtime_I.h"
...
XTime tStart[ROWS], tEnd[ROWS];
...
// do something to be measured here
XTime_GetTime(&tEnd[row]);
...
ps_cycles = 2 * (tEnd[0] - tStart[0]);
```

$$MB/s = \frac{FREQUENCY * SAMPLES * BYTES}{CYCLES}$$

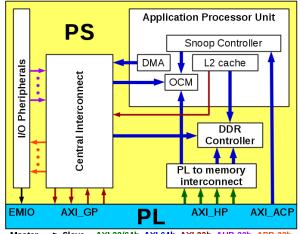




Introduction

**AMBA AXI** 

Zynq-7000 PL-PS Interfaces


Design Under Test

Results





## **Zynq Interfaces Summary**



Master → Slave AXI 32/64b, AXI 64b, AXI 32b, AHB 32b, APB 32b



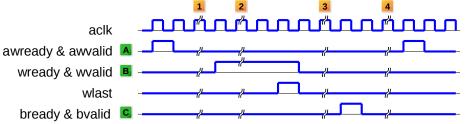


## **Measured cycles**

| Test Case |                       |       | Be  | tween D | Data | Per Frame      |               |       |
|-----------|-----------------------|-------|-----|---------|------|----------------|---------------|-------|
| Interface | Variant               | Burst | min | typ     | max  | PS (MB/s)      | PL (MB/s)     | PS/PL |
| EMIO      | GPIO (XGpioPs_Read)   | No    | 20  | 21      | 29   | 96954 (27.46)  | 22358 (27.48) | 4.33  |
| EMIO      | GPIO (Xil_In32)       | No    | 20  | 20      | 31   | 92502 (28.78)  | 21330 (28.80) | 4.33  |
| M_AXI_GP  | AXI Lite (Xil_In32)   | No    | 28  | 28      | 33   | 124386 (21.40) | 28689 (21.41) | 4.33  |
| M_AXI_GP  | AXI Full (Xil_In32)   | No    | 24  | 24      | 26   | 106588 (24.97) | 24581 (24.99) | 4.33  |
| M_AXI_GP  | AXI Lite (memcpy)     | No    | 19  | 20      | 31   | 90973 (29.26)  | 20974 (29.29) | 4.33  |
| M_AXI_GP  | AXI Full (memcpy)     | No    | 15  | 16      | 25   | 73336 (36.30)  | 16910 (36.33) | 4.33  |
| S_AXI_GP  | AXI Lite              | No    | 44  | 44      | 45   | 200229 (13.29) | 46075 (13.33) | 4.34  |
| S_AXI_HP  | AXI Lite              | No    | 36  | 36      | 37   | 160386 (16.59) | 36865 (16.66) | 4.35  |
| S_AXI_ACP | AXI Lite              | No    | 36  | 36      | 36   | 160389 (16.59) | 36864 (16.66) | 4.35  |
| S_AXI_GP  | AXI Full              | Yes   | 1   | 4       | 59   | 21962 (121.22) | 4868 (126.21) | 4.51  |
| S_AXI_HP  | AXI Full              | Yes   | 1   | 3       | 40   | 16669 (159.72) | 3675 (167.18) | 4.53  |
| S_AXI_ACP | AXI Full              | Yes   | 1   | 3       | 37   | 15506 (171.70) | 3409 (180.22) | 4.54  |
| M_AXI_GP  | AXI Full with PS DMA  | Yes   | 1   | 1       | 4    | 11425 (233.3)  | 1213 (506.51) | 9.41  |
| S_AXI_GP  | AXI Full with AXI DMA | Yes   | 1   | 1       | 571  | 7245 (367.48)  | 1654 (371.46) | 4.38  |
| S_AXI_HP  | AXI Full with AXI DMA | Yes   | 1   | 1       | 381  | 6048 (440.21)  | 1397 (439.79) | 4.32  |
| S_AXI_ACP | AXI Full with AXI DMA | Yes   | 1   | 1       | 422  | 6154 (432.62)  | 1418 (433.28) | 4.33  |

The ideal PS/PL relation is 650 MHz/150 MHz = 4.33






### **Custom AXI master vs AXI DMA**



Custom AXI master (GP example)

- 3 cycles between A and B
- 16 cycles in B
- 36 cycles between B and C
- 21 cycles between C and a new A







## **Custom AXI Master improvment**

| Test Case |                       | Between Data |     |     | Per Frame      |               |       |
|-----------|-----------------------|--------------|-----|-----|----------------|---------------|-------|
| Interface | Variant               | min          | typ | max | PS (MB/s)      | PL (MB/s)     | PS/PL |
| S_AXI_GP  | AXI Lite              | 44           | 44  | 45  | 200229 (13.29) | 46075 (13.33) | 4.34  |
| S_AXI_HP  | AXI Lite              | 36           | 36  | 37  | 160386 (16.59) | 36865 (16.66) | 4.35  |
| S_AXI_ACP | AXI Lite              | 36           | 36  | 36  | 160389 (16.59) | 36864 (16.66) | 4.35  |
| S_AXI_GP  | AXI Full              | 1            | 4   | 59  | 21962 (121.22) | 4868 (126.21) | 4.51  |
| S_AXI_HP  | AXI Full              | 1            | 3   | 40  | 16669 (159.72) | 3675 (167.18) | 4.53  |
| S_AXI_ACP | AXI Full              | 1            | 3   | 37  | 15506 (171.70) | 3409 (180.22) | 4.54  |
| S_AXI_GP  | AXI Full with AXI DMA | 1            | 1   | 571 | 7245 (367.48)  | 1654 (371.46) | 4.38  |
| S_AXI_HP  | AXI Full with AXI DMA | 1            | 1   | 381 | 6048 (440.21)  | 1397 (439.79) | 4.32  |
| S_AXI_ACP | AXI Full with AXI DMA | 1            | 1   | 422 | 6154 (432.62)  | 1418 (433.28) | 4.33  |



| Test Ca   | Between Data |     |     | Per Frame |                     |                    |       |
|-----------|--------------|-----|-----|-----------|---------------------|--------------------|-------|
| Interface | Variant      | min | typ | max       | PS                  | PL                 | PS/PL |
| S_AXI_GP  | AXI Lite     | 3   | 3   | 4         | 14382 (185.12 MB/s) | 3187 (192.78 MB/s) | 4.51  |
| S_AXI_HP  | AXI Lite     | 3   | 3   | 3         | 13952 (190.82 MB/s) | 3072 (200. 0 MB/s) | 4.54  |
| S_AXI_ACP | AXI Lite     | 3   | 5   | 8         | 26769 (99.45 MB/s)  | 5963 (103. 3 MB/s) | 4.48  |
| S_AXI_GP  | AXI Full     | 1   | 1   | 5         | 6677 (398.74 MB/s)  | 1406 (436.98 MB/s) | 4.74  |
| S_AXI_HP  | AXI Full     | 1   | 1   | 4         | 6456 (412.39 MB/s)  | 1342 (457.82 MB/s) | 4.81  |
| S AXI ACP | AXI Full     | 1   | 1   | 5         | 6684 (398.32 MB/s)  | 1406 (436.98 MB/s) | 4.75  |





Introduction

**AMBA AXI** 

Zynq-7000 PL-PS Interfaces

Design Under Test

Results





- If burst transactions will not be used (neither DMA or cache) use AXI Lite interfaces (they are simpler and less PL resources are consumed).
- ► The AXI interfaces provided by the IP packager could/must be improved:
  - AXI Lite interfaces consume an extra cycle per operation.
  - AXI Full slave do not work with burst.
  - The address phase of AXI Full master can be changed to be at same time that TLAST (is what AXI DMA does).
  - The write response channel can be ignored to improve the data rate (is what AXI DMA does but IS NOT COMPLIANT WITH THE AMBA AXI SPEC).
- When 32-bit data is used in 64-bit interfaces, the burst transactions involves 64-bit transfer with one cycle between them.
- The PS DMA driver seems that could be improved to obtain very high data rates.
- ► The main disadvantage in GP interfaces is the 32-bit data width, due that slightly lower data rates are observed compared with HP/ACP.





INTI-CMNB-FPGA

### Rodrigo A. Melo

- rmelo@inti.gob.ar
- in rodrigoalejandromelo
- @rodrigomelo9ok
- g rodrigomelo9

#### **Bruno Valinoti**

- valinoti@inti.gob.ar
- bruno-valinoti



Attribution-ShareAlike 4.0 International http://creativecommons.org/licenses/by-sa/4.0/

# Thanks!