

Swiss Tropical and Public Health Institute Schweizerisches Tropen- und Public Health-Institut Institut Tropical et de Santé Publique Suisse

Associated Institute of the University of Basel

Department of Epidemiology & Public Health

General Principles of and Examples of Environmental Exposure Assessment

Kees de Hoogh

Andrea Ranzi

23 - 27 April 2018 Trieste, Italy

teritar merinaturi http://www.kitp.t/www.il/i www.illiana.co.u

Outline

First half

- Definition of exposure
- Different exposure pathways
- Exposure misclassification
- Air pollution

Second half

- Examples of air pollution exposure assessment in studies
- Use of satellite data
- Other studies

National Research Council: an event consisting of contact at a boundary between a human and the environment at a specific contaminant concentration for a specified interval of time.

Ott: the existence of a person and an agent (contaminant) in the same microenvironment at the same time (in potential contact with each other).

Jaycock: the product of (concentration), (time), and (duration), or rate of transport of toxicant (mg/cm²-min)

Human Health Effects of Pollution

Figure 2: Human Health Effects of Environmental Pollution from Pollution Source to Receptor Figure shows the human health effects of environmental pollution from pollution source to receptor. Source: Mikael Häggström via Wikimedia Commons

- Ingestion of contaminants in groundwater, surface water, soil, and food.
- Inhalation of contaminants in air (dust, vapor, gases), including those volatilized or otherwise emitted from groundwater, surface water, and soil.
- **Dermal contact** with contaminants in water, soil, air, food, and other media, such as exposed wastes or other contaminated material.
- *External exposure* to radiation.

Source: Exposure Science in the 21st Century – National Academy of Sciences, 2012

24-4-2018

How can we assess exposure?

Exposure pathways contaminated site

Source:

Public Health Assessment Guidance Manual Exposure Evaluation: Evaluating Exposure Pathways ATSDR (Agency for Toxic Substances and Disease Registry) http://www.atsdr.cdc.gov/hac/PHAManual/ch6.html

Exposure pathways contaminated site

Source:

Public Health Assessment Guidance Manual

Exposure Evaluation: Evaluating Exposure Pathways ATSDR (Agency for Toxic Substances and Disease Registry) http://www.atsdr.cdc.gov/hac/PHAManual/ch6.html

Calculating Exposure Doses

Exposure Evaluation: Evaluating Exposure Pathways ATSDR (Agency for Toxic Substances and Disease Registry) http://www.atsdr.cdc.gov/hac/PHAManual/ch6.html

Example – Exposure through Soil ingestion

Exhibit 5. Soil Ingestion Exposure Dose Equation

Source:

Public Health Assessment Guidance Manual

Exposure Evaluation: Evaluating Exposure Pathways

ATSDR (Agency for Toxic Substances and Disease Registry)

http://www.atsdr.cdc.gov/hac/PHAManual/ch6.html

>Interpolation

- Models spatial pattern of exposure on the basis of monitored (georeferenced) data with or without covariates
 - e.g. kriging in soil pollution or inverse distance weighting in air pollution exposure modelling

- Source-receptor modelling
 - Models exposure by simulating relationships between source and receptor
 - e.g. dispersion modelling in air pollution exposure modelling

- Specific
- Accurate
- Robust
- Flexible
- Representative
- Practical

Models are a simplified representation of reality:

- Every model makes assumptions and generalisation about processes, interactions and feedbacks in the reality it describes
- Exposure models make assumption about spatial patterns of environmental hazard concentrations and the individual or population under study
- Various aspects of uncertainty associated with each method of estimating exposure

Air pollution

"**Air pollution** is contamination of the indoor or outdoor environment by any chemical, physical or biological agent that modifies the natural characteristics of the atmosphere." *Definition according to WHO*

Where does it come from?

Environmental Exposure Assessment

24-4-2018

Sources of particulate air pollution

Natural

Anthropogenic

Long distance transport!

 $\begin{array}{l} \Rightarrow \text{ Combustion} \\ \Rightarrow \text{ Abrasion} \end{array}$

Indoor sources

Particulate Matter (PM)

PM size fractions:

24-4-2018

How can we measure air pollution?

Health effects

Who is affected by air pollution?

Big problem in mega cities				Big problem in middle and low income countries			
BARLINGER BEES							
			_	_	White Stars - To Will		
	But also a	problem	in Europe	- no thresh	old of toxicity for PM!	5000	
		Number of cohorts	Number of observations	HR (95% CI)	HR (95% CI) based on all participants (no threshold) in the same cohorts*		
	10 µg/m³	9	68 527	1.02 (0.87–1.19)	1.06 (1.00–1.13)	- Beer	
	15 μg/m³	11	241293	1.04 (0.98–1.11)	1.07 (1.01–1.13)		
	20 µg/m³	17	304759	1.07 (1.01–1.13)	1.06 (1.01–1.12)		
	25 μg/m³	17	309310	1.06 (1.00–1.12)	1.06 (1.01–1.12)		
Beijing, Jan	No threshold	19 (all)	322159	1.07 (1.02–1.13)	1.07 (1.02–1.13)		
PM _{2.5} > 500	Table 5: Results from mortality and expos	n random-effect sure to PM ₂₋₅ belo	s meta-analyses fo ow various thresho	r the adjusted associ Id values	ation between natural cause		
	Beelen et al. 20)13				E State	
					Percentage	and it	
WHO guidelines for PM _{2.5}					3.5 million premature deaths	/ year	

annual mean: 10 µg/m₃ 24-hour mean: 25 µg/m₃ 3.5 million premature deaths / year attributed to household
air pollution from solid fuels!
IHME, GBD 2010
WHO, 2011

- We spend majority of time indoors
- New buildings => better insulation to save energy

Where do we monitor air pollution

Annual mean PM₁₀ concentrations in Europe in 2008

What can measurements tell us

Figure 1 - Annual mean NO₂ at 'worst 20' EEA monitors (2010)¹

Swiss TPH S

Environmental modelling: Modelled NO2 concentration: 3-day simulation over Europe

Methods

- Proximity based methods
- Spatial interpolation
- Dispersion modelling
- Land Use regression

Tobler's first law of geography:

Everything is related to everything else

...but near things are more related than distant things

Approach	Example	Description				
Proximity	Voronoi tesselation	Creates areas around each point containing locations nearest to that point				
	Buffering	Creates zone (buffer) of specified distance around point				
Distance functions	Inverse-distance weighting	Weights each location in terms of inverse distance from monitoring site				
Global interpolators	Trend surface analysis	Fits global surface through data points				
Local interpolators	Kriging	Fits series of local surfaces through data points				

Interpolation

- Trend surface analysis
- Inverse distance weighting
- Spline
- Local polynomials
- Kriging
 Which method is the most appropriate?
- Informed by good understanding of the data
- Validate with another dataset
- Measure of the certainty or accuracy of the predictions

ar

24-4-2018

Values at unsampled locations are a function of values at sampled locations within a specified zone of influence (e.g. radius). The weighting (or influence) of surrounding locations are usually a function

of inverse distance.

$$Z_{j} = \sum_{i} \lambda_{i} Z_{i}$$

$$Z_{j} \text{ is the value (we are trying to predict) at location}$$

$$\lambda_{i} \text{ is the weighting for location i}$$

$$Z_{i} \text{ is the sampled value at location i}$$

Swiss TPH

$$\lambda_i = 1/d_i^p / \sum_{i=1}^N 1/d_i^p$$

 d_i is the distance between prediction location j and each measured location i P is the power function for distance (typically '2')

Inverse distance weighting

ID	Х	Y	Zi	d	d ²	1/d ²	weight	% cont.	Zj
2	2	6	10	2.24	5	0.20	0.24	23.93	2.39
3	1	1	5	3.61	13	0.08	0.09	9.20	0.46
4	4	3	20	1.41	2	0.50	0.60	59.83	5.98
5	7	5	10	4.12	17	0.06	0.07	7.04	1.47
							1		10.24

Dispersion modelling

arpae

33

- (mostly) use Gaussian equations to model the transport of gaseous pollutants through the atmosphere and predict ground level concentrations.
- originally developed as a tool for regulatory compliance modelling and traditionally used in environmental impact assessment.
- require detailed input data on emissions (for industrial sources: stack height, stack diameter, emission rate, temperature of exit gas; for traffic: flow, composition, speed)
- meteorological parameters (a minimum of wind direction, wind speed, ambient temperature, cloud cover).

Modelling air pollution

= pollutant release height

arpae

emilia-romagna

35

= H_s + ∆h $\Delta h = plume rise$

- y

Gaussian plume distribution

$$x = \frac{Q}{2\pi\bar{u}\sigma_y\sigma_z} exp\left(-\frac{y^2}{2\sigma_y^2}\right) \times \left[exp\left(-\frac{(z-H)^2}{2\sigma_z^2}\right) + exp\left(-\frac{(z+H)^2}{2\sigma_z^2}\right)\right]$$

Q = pollutant mass emissions rate (μ gs-1), \bar{u} = wind speed (in m s-1), **x**, **y**, **and z** = along wind, crosswind, and vertical distances (in m) **H** = effective stack height (the height of the stack + the plume rise (in m)). σ_y and σ_z = extent of plume growth, and are the standard deviations of the horizontal and

vertical concentrations in the plume (in m) – depending on atmospheric conditions

Typical flow chart dispersion modelling

arpa

37

24-4-2018

Air pollution modelling approaches

emilia-romagna

Land Use Regression (LUR)

NO₂ measurement sites (A,B,C)

	Measured NO ₂	Traffic ₃₀₀	Housing ₃₀₀	Altitude
А	37	9,000	20	5
В	48	60,000	50	10
С	30	18,000	10	6

LUR modelling

- Outcome variables = annual average pollutant concentrations
- Predictor variables:
 - Land use (CORINE)
 - Road length, distance to road (Eurostreets)
 - Population density/household density
 - Altitude, Longitude, Latitude
 - Traffic intensity, distance to road (Local road network)
 - Local variables
- Supervised stepwise forward regression
- Model checks: Cook's D, Heteroscedasticity of residuals, VIF, spatial autocorrelation (Moran's I)
- Leave-one-out cross-validation

Table 2. Stages of model development for the Thames Valley LUR model (n=40).

Stage	Variable	В	R ²	Adj.R ²	Sig. (p)	VIF	SEE
1	(Constant)	30.19	0.671	0.662	0.000	-	10.40
	HEAVYTRAFLOAD50	0.0001500			0.000	1.000	
2	(Constant)	10.8515519	0.837	0.828	0.003	-	7.42
	ROADLENGTH500	0.0016410			0.000	1.120	
	HEAVYTRAFLOAD50	0.0001242			0.000	1.120	
3	(Constant)	9.90	0.864	0.852	0.004	-	6.89
	HLDRES5000	0.0000002			0.011	1.768	
	HEAVYTRAFLOAD50	0.0001204			0.000	1.136	
	ROADLENGTH500	0.0011237			0.001	1.805	

Satellite data is increasingly used to help predict ground level pollutant concentrations.

➢At the same time dispersion or Chemical Transport Modelling (CTM) is used in conjunction with land use regression modelled in so-called hybrid models.

>Bring together information from both satellites and dispersion modelling in a European LUR framework for $PM_{2.5}$ and NO_2 .

≻Aims

>To compare the performance of satellite-derived and chemical transport model estimates with local variables in a $PM_{2.5}$ and NO_2 land use regression model.

To produce $PM_{2.5}$ and NO_2 land use regression models for Western Europe for large scale health studies.

Monitoring data

- AIRBASE monitoring data (2010) for 2400 sites (NO₂)
- The monitoring data were stratified by study area and site type and the model was derived on 80% and validated on the remaining 20% sites.

Predictor data

- Annual averages inferred from aerosol optical depth (PM_{2.5}) and from tropospheric NO₂ columns retrieved from NASA satellites (SAT)
- CTM and NO₂ estimates from the MACC-II Ensemble model.
- Other predictor data (100x100m), calculated for different buffer sizes, included land cover (CORINE), gridded road network, altitude, latitude.
- Restricted to predictor data available for the whole study area

All models – $PM_{2.5}$ and NO_2

	Model	Predictor variables	Adj-R ²	SEE	HOV R ²	COV R ²
PM _{2.5}						
ESCAPE	M1	All roads (0.7km), Urban green (1.8km), Natural (10km), Residential, Major roads (0.1km), Y-coord	0.38	4.4	0.32	0.21
	M2	PM2.5 SAT, All roads (5km), Residential, Altitude, Major roads, Y-coord	0.58	3.7	0.51	0.58
	M3	PM2.5 CTM, All roads (0.1km), Natural (0.8km), Residential, Major roads, Y-coord	0.40	4.4	0.37	0.28
	M4	PM2.5 SAT, PM2.5 CTM, All roads (0.7km), Residential, Major roads, Altitude, Y-coord	0.60	3.6	0.54	0.59
AIRBASE	M1	Natural (10km), Natural (0.4km), Urban green (10km), Altitude, Major roads (0.1km), Residential, Urban green (0.6km), Ind/comm(10km), Y-coord	0.36	4.2	0.27	0.39
	M2	PM2.5 SAT, Altitude, Natural (0.2km), All roads (0.1km), Residential (0.2km), Major roads, Y-coord	0.61	3.2	0.56	0.56
_	M3	PM2.5 CTM, Altitude, Residential (0.2km), Major roads (0.1km), Natural (0.1km), Urban green (1.8km)	0.52	3.5	0.45	0.23
	M4	PM2.5 SAT, PM2.5 CTM, Altitude, Residential (0.2km), Major roads (0.1km), Natural (0.1km), Y-coord	0.63	3.1	0.58	0.52
NO2						
ESCAPE	M1	All roads (5km), All roads (0.2km), Residential (1.8km), Major roads, Ind/comm(10km), Ports (0.4km), Y-coord	0.47	12.1	0.38	0.46
	M2	NO2 SAT, All roads (5km), All roads (0.2km), Urban green (1.8km), Residential (1.5km), Major roads, Ind/comm(10km), Ports (0.4km), Y-coord	0.51	11.6	0.40	0.51
	M3	NO2 CTM, Major roads, Residential (1.5km), All roads (0.2km), All roads (2km), Urban green, Y-coord	0.57	10.9	0.44	0.55
	M4	n.a.				
AIRBASE	M1	All roads (2km), Major roads (0.1km), Total build up (10km), Natural (1.5km), Residential (0.5km), Ports (0.2km), Altitude, All roads, Y-coord	0.51	10.1	0.54	0.37
	M2	NO2 SAT, Major roads (0.1km), All roads (10km), Residential (1.8km), Ports (0.2km), Residential (0.3km), All roads (10km), Y-coord	0.54	9.9	0.55	0.42
C	M3	NO2 CTM, Major roads (0.1km), All roads (2km), All roads, Ports (0.2km), Residential (0.3km), Natural (0.5km)	0.58	9.4	0.60	0.50
	IVI 4	n.a.	-			
	24-4-20	18 Environmental Exposure Assessment	a		e -romagna	44

Model 3 AIRBASE NO₂

Transect (red line in Inset 1) through Paris and surrounding area (0-230km) showing the contribution of each predictor variable of Model 2 (in μ g/m³) and the final modelled NO₂

Satellite data

Aerosol Optical Depth: Definition

➤"Aerosol Optical Depth" (AOD) or "Aerosol Optical Thickness"- measures the light extinction (reduction of light) by aerosol scattering and its absorption in the atmospheric column.

- Sophisticated spatiotemporal hybrid models (2003 2013) developed allowing estimation of daily exposures.
- Models are based on a method developed by Kloog et al. (2013) incorporating satellite-derived aerosol optical depth (AOD) measurements together with spatial and temporal predictors like land use, road traffic, meteorology and altitude.
- To this date, this method has been successfully applied to

Region	Out-of-sample	Reference
	R2	
New England (U.S.),	0.81	Kloog et al., 2011
the Mid-Atlantic region (U.S.)	0.81	Kloog et al., 2012
North-eastern USA (U.S.)	0.88	Kloog et al., 2014
Mexico City (Mexico)	0.72	Just et al., 2015

Key points

- AOD measures light scattering by a column of air up to the satellite
- We care about concentrations near the ground
- Some days more of the particles are near the ground

The earth is characterized by a mixing height, below which particles mix vertically fairly well

- So, on days when the mixing height is low, more of the particles emitted are trapped near the earth, and PM_{2.5} concentrations are higher for the same AOD
- Solution: Interaction term between AOD and mixing height
- Similarly using land use terms for each grid cell can help

Flow diagram

arpa

emilia-romagna

50

PM_{2.5} and PM₁₀ monitoring (2003-2013)

Correlation PM_{2.5}-PM₁₀ at co-located sites

Daily PM_{10} (red) and $PM_{2.5}$ (blue) in Bern ($\mu g/m^3$, 2009)

Other predictor data

- *Road density*; 1:25'000 VECTOR25 road data (SwissTopo).
- Land Use; 100 m European Corine Land Cover (CLC2006)
- Traffic density; sonBASE traffic database which is linked to the VECTOR25 road network.
- *Emissions*; PM2.5 (2005, 2010) and NO2 (2005, 2010, 2015) emissions at a 1x1km grid, covering agriculture, household, industry, traffic and wood smoke emissions (FOEN, 2011 and FOEN, 2013) (MeteoTest).
- Meteorology; daily temperature, wind speed, wind direction, humidity, cloud cover, global radiation and precipitation (MeteoSwiss)
- *Elevation*: SRTM Digital Elevation Database version 4.1(CGIAR-CSI) with a resolution of one arc second (approximately 90 m) and a vertical error <16 m.

Annual modelled PM_{2.5} 2003 - 2013

Daily PM2.5 for 4 consecutive days

Examples

Risk of adverse birth outcomes in populations living near landfill sites

Elliott P, Briggs D, Morris S, de Hoogh C, Hurt C, Jensen T K, Maitland I, Richardson S, Wakefield J, and Jarup L. BMJ 2001;323:363-368

Areas within 2 km of a landfill site in Great Britain

c) Intersect density map with postcodes and attribute number of landfill sites to each postcode

a) Construct separate 2km buffers around each landfill site

> d) Intersect with 5km grid cells and compute birth- and time-weighted landfill index for each cell

 b) Intersect buffers and create density map with number of overlaps (landfill sites within 2km) attributed to each polygon

Cancer Risk Near a Polluted River in Finland

Figure 1. Exposure zones around the River Kymijoki. Reproduced with permission of the National Land Survey of Finland.

Air Pollution from Incinerators and Reproductive Outcomes

FIGURE 1. Pollutant dispersion map of Bologna site: A, PM₁₀ (year 2006) for incinerator; B, NO_x for other sources.

Characterization of soil heavy metal contamination and Swiss TPH > potential health risk in metropolitan region of northern China

Fig. 3 Spatial distribution of Cr in topsoil from Beijing, Tianjin, and the surrounding regions

Geographical Information Systems

> A GIS works with **layers** of spatial data

Answer questions by comparing different layers of data

