

Swiss Tropical and Public Health Institute Schweizerisches Tropen- und Public Health-Institut Institut Tropical et de Santé Publique Suisse

Associated Institute of the University of Basel

The use of GIS in modelling exposure (practical)

Kees de Hoogh – Swiss TPH Environmental Exposures and Health Unit Department of Epidemiology and Public Health

Andrea Ranzi – Arpae Reference Centre for Environment and Health Regional Agency for Prevention, Environment and Energy of Emilia-Romagna

We will present practical examples on use of GIS for exposure assessment in epi studies and HIA

Example 1: Use of dispersion model to assess population exposure

Air Pollution from Incinerators and Reproductive Outcomes

FIGURE 1. Pollutant dispersion map of Bologna site: A, PM₁₀ (year 2006) for incinerator; B, NO_x for other sources.

Monitoring incinerators in the territory of Emilia-Romagna

Study Population

Final Database

Database of gecoded addresses

Database of population data

Database of residential history (i.e. a record for each subject residence)

Exposure assessment

Incinerator (PM10)

Legend

cohort residences

Heavy metals (ng/m3) Concentration map

Legend • cohort resider NO2 (μg./m3) Concentration map

<24,805
24,805 - 29,756
29,756 - 32,332
32,332 - 33,671
33,671 - 36,247
36,247 - 41,198
41,198 - 50,717
50,717 - 69,017
69,017 - 104,199
104,199 - 171,839

All sources (NOx)

Environmental study

ADMS urban software

😫 ADMS-Urban: C:\Do	cuments an	d Settings	MARCO\	De\pi	iacenza	.UPL		
File Run! Results Utiliti	es Advanced	Pollutants	Emissions	Inventor	y Help			
Setup Source		Meteorology Background				Grids	Output	
		1	Sourc	e				
• Enter source data New		Delete Delete all				Emissions		
C Create groups New		Delete						
Show Industrial Sour	Number of industrial sources = 1				Geometry			
Road Sources Grid Source	ces	ht Diam. V I (m) (m	el Vol /s) (m³/s)	Temp. (°C)	Xp (m)	Yp (m) L1 (m)		
Source909-inc	Point	70 2,26 1	7,1 68,6	180	557852	989817 1		
	•							
Time varuing emissi	on factore	Data				and and a surray of the		
Data source Hourly factors (road and grid sources only)								

ADMS OUTPUT

📮 CORINV.glt - Blocco note File Modifica Formato Visualizza ?

×(m),Y(m),Z	<pre>(m),Conc uq/m³</pre>	" NO2 A]]	sources - 24hrs	,Concluq/m³/VOC	All sources -	24hrs,Conc uq/r	m³ SO2 All sourc	es - 1hr,Conc uq/m³ SO2 A:	ll sources - 24hrs,Con 🔼
742740.75,	898740.75,	0.00,	0.162806É+02,	0.186956E+01,	0.712687E+01,	0.712687E+01,	0.168796E+02,	0.975210E+01	
743000.00,	898740.75,	0.00,	0.163769E+02,	0.206153E+01,	0.714985E+01,	0.714985E+01,	0.168998E+02,	0.104943E+02	
743259.25.	898740.75.	0.00.	0.164551E+02.	0.214814E+01.	0.715662E+01.	0.715662E+01.	0.169094E+02.	0.111086E+02	
743518.50.	898740.75.	0.00.	0.168953E+02.	0.250100E+01.	0.717245E+01.	0.717245E+01.	0.169443E+02.	0.138787E+02	
743777 81	898740 75	0.00,	0 168017E+02	0 243576E+01	0 718063E+01	0 718063E+01	0 169394E+02	0 132370E+02	
744037 06	898740.75	0.00,	0 1743055+02	0.2400702101	0 7212375+01	0 7212375+01	0 1700755+02	0 1761345+02	
744037.00,	909740.75	0.00,	0.1715260.07	0.3100192401,	0.7212376+01,	0.7212376+01,	0.1609595.07	0.1559510.07	
744290.31,	090740.75	0.00,	0.1706645.07	0.2007776401,	0.7212236401,	0.72122JETUL,	0.1607075.07	0.1490975.00	
744000.00,	090740.73,	0.00,	0.170004E+02,	0.279174E+01,	0.7211896+01,	0.721109E+01,	0.1697976+02,	0.14690/E+02	
744814.81,	898740.75,	0.00,	0.17040/E+02,	0.276409E+01,	0.720981E+01,	0.720981E+01,	0.169783E+02,	0.146246E+02	
745074.06,	898740.75,	0.00,	0.1/3141E+02,	0.308421E+01,	0.721950E+01,	0.721950E+01,	0.170109E+02,	U.1645/5E+U2	
/45333.31,	898740.75,	0.00,	0.1/3301E+02,	0.30860/E+01,	0.722181E+01,	0.722181E+01,	0.1/0130E+02,	0.164299E+02	
745592.62,	898740.75,	0.00,	0.173631E+02,	0.309391E+01,	0.722696E+01,	0.722696E+01,	0.170153E+02,	0.164924E+02	
745851.88,	898740.75,	0.00,	0.174207E+02,	0.310759E+01,	0.723213E+01,	0.723213E+01,	0.170170E+02,	0.166801E+02	
746111.12,	898740.75,	0.00,	0.177251E+02,	0.345429E+01,	0.726626E+01,	0.726626E+01,	0.170562E+02,	0.183953E+02	
746370.38.	898740.75.	0.00.	0.179870E+02.	0.367006E+01,	0.728154E+01,	0.728154E+01.	0.170797E+02.	0.200916E+02	
746629.62.	898740.75.	0.00.	0.181249E+02.	0.374118E+01.	0.729775E+01.	0.729775E+01.	0.170919E+02.	0.204251E+02	
746888.88.	898740.75.	0.00.	0.182937E+02	0.384181F+01.	0.731577F+01.	0.731577E+01	0.171114F+02	0.207460F+02	
747148.19	898740.75	0.00.	0.188668E+02.	0.434201E+01.	0.738627E+01	0.738627E+01	0.171824E+02	0.227829E+02	
747407 44	898740 75	0.00,	0 2026865+02	$0.522614E\pm01$	0.742215E+01	0.742215 ± 01	$0.173011E \pm 02$	0 294083E+02	
747666 69	808740.75	0.00,	0.212786E+02	0.5726605+01	0.74221001, 0.744811E+01	0.7448115+01	0.1728565+02	0.220672E+02	
747000.09,	090740.75,	0.00,	0.1016775.07	0.1720002401,	0.7440112401,	0.7440112401,	0.17333002402,	0.3300722702	
747925.94,	898740.73,	0.00,	0.1910/20+02,	0.434100E+01,	0.742089E+01,	0.742689E+01,	0.172202E+02,	0.233309E+02	
748185.19,	898740.75,	0.00,	0.184544E+02,	0.432663E+01,	0.747619E+01,	0.747619E+01,	0.172009E+02,	0.1953/2E+U2	
/48444.44,	898740.75,	0.00,	0.181662E+02,	0.423249E+01,	0.748484E+01,	0.748484E+01,	0.1/1891E+02,	0.182642E+02	
/48/03.69,	898740.75,	0.00,	0.179958E+02,	0.421953E+01,	0./49624E+01,	0.749624E+01,	0.1/1880E+02,	0.1/502/E+02	
748963.00,	898740.75,	0.00,	0.178943E+02,	0.423028E+01,	0.750985E+01,	0.750985E+01,	0.171913E+02,	0.169857E+02	
749222.25,	898740.75,	0.00,	0.176853E+02,	0.433784E+01,	0.756316E+01,	0.756316E+01,	0.172079E+02,	0.150240E+02	
749481.50,	898740.75,	0.00,	0.176587E+02,	0.435647E+01,	0.757780E+01,	0.757780E+01,	0.172169E+02,	0.147163E+02	
749740.75,	898740.75,	0.00,	0.176423E+02,	0.437675E+01,	0.758977E+01,	0.758977E+01,	0.172255E+02,	0.144626E+02	
750000.00,	898740.75,	0.00,	0.175009E+02,	0.435966E+01,	0.763035E+01,	0.763035E+01.	0.172322E+02,	0.128718E+02	
750259.25.	898740.75.	0.00.	0.174934E+02.	0.436348E+01.	0.763887E+01.	0.763887E+01.	0.172370E+02.	0.126822E+02	
742740.75.	899000.00.	0.00.	0.189878E+02.	0.443841E+01.	0.721594E+01.	0.721594E+01.	0.171391E+02.	0.282593E+02	
743000.00.	899000.00.	0.00.	0.284101F+02.	0.168194F+02.	0.743353E+01.	0.743353E+01.	0.184290E+02.	0.110632E+03	
743259 25	899000 00	0.00,	0 285373E+02	0 1697105+02	0 743964E+01	0 743964E+01	0.184452E+02	0 111756E+03	
743518 50	899000.00,	0.00,	0.2019796+02,	0.2007102102,	0 7541546+01	0 7541546+01	0 1885465±02	0 1463885+03	
743310.30,	800000.00	0.00,	0.3210792402,	0.7247065.07	0.7601705.01	0.7601705.01	0.1005402+02,	0.1644745.02	
743777.01,	80000.00,	0.00,	0.3391012402,	0.1250210.02	0.7412265.01	0.7412265.01	0.1709225.02	0.7697205.07	
744037.00,	899000.00,	0.00,	0.2493396+02,	0.1313005.03	0.7412202+01,	0.7412208+01,	0.1798336+02,	0.700/392+02	
744290.31,	899000.00,	0.00,	0.243381E+02,	0.131709E+02,	0.741164E+01,	0.741164E+01,	0.179450E+02,	0.732839E+02	
744000.00,	899000.00,	0.00,	0.244228E+02,	0.130538E+02,	0.741340E+01,	0.741340E+01,	0.1/9336E+02,	0.721894E+02	
744814.81,	899000.00,	0.00,	0.243/92E+02,	0.130032E+02,	0.741233E+01,	0.741233E+01,	0.1/932/E+02,	0./16565E+02	
745074.06,	899000.00,	0.00,	0.260419E+02,	0.13662/E+02,	0.748304E+01,	0.748304E+01,	0.181328E+02,	0.809106E+02	
745333.31,	899000.00,	0.00,	0.260621E+02,	0.136691E+02,	0.748637E+01,	0.748637E+01,	0.181365E+02,	0.808121E+02	
745592.62,	899000.00,	0.00,	0.261091E+02,	0.136956E+02,	0.749356E+01,	0.749356E+01,	0.181433E+02,	0.808817E+02	
745851.88,	899000.00,	0.00,	0.262051E+02,	0.137454E+02,	0.750073E+01,	0.750073E+01,	0.181511E+02,	0.812505E+02	
746111.12.	899000.00.	0.00.	0.265837E+02.	0.134723E+02.	0.758976E+01.	0.758976E+01.	0.181861E+02.	0.813827E+02	
746370.38.	899000.00	0.00.	0.296959E+02.	0.166267E+02.	0.767372E+01.	0.767372E+01	0.184933E+02.	0.107022E+03	
746629.62	899000.00	0.00.	0.276235E+02	0.142915E+02	0.764078E+01	0.764078E+01	0.182837E+02	0.878153E+02	
746888.88	899000.00	0.00	0.284728E+02	0.147423E+02	0.767250E+01	0.767250E+01	0.183591E+02	0.908510E+02	
747148 10	899000 00	0.00,	0 4484795+02	0 230846E+02	0 8080335+01	0 808033E+01	0 199728E+02	0 1525996+03	
747407 44	899000.00,	0.00,	0 7752020107	0.1226086+02,	0.7758446+01	0 7758446+01	0 1820305+02,	0.6870665±07	
747666 60	80000.00,	0.00,	0.2733936702,	0.1012406-02,	0.7710995-01	0.7710995,01	0 1702470-02	0.515797F:07	
747000.09,	899000.00,	0.00,	0.240201E+02,	0.1012496+02,	0.771000E+01,	0.771000E+01,	0.1792476+02,	0.1112020102	
747923.94,	899000.00,	0.00,	0.226001E+02,	0.933811E+UL,	0.770009E+01,	0.770009E+01,	0.176243E+U2,	0.430320E+02	
748185.19,	899000.00,	0.00,	0.201333E+U2,	0.89/010E+UI,	U.//82/SE+UI,	U.//82/DE+UI,	U.I/0//IE+U2,	U.200249E+U2	
									`
1									

ADMS OUTPUT

Residential cohort and ADMS output

Residential cohort

CENSUS DATA

📿 coorte con inquinamenti - ArcMap - ArcView

Output layer inherits overlay layer's attributes

Example on Waste-related exposure:

how calculate EBD related to exposure to landfills in Europe

<u>Today</u>

Number of exposed people using European databases

GIS approach to exposure assessment

Tomorrow (IEHIA lecture)

Use RR from literature and

Calculation of AC (Attributable Cases)

Combination of different health outcomes in one analysis using DALYs

Data collection

Location of plants

Population database

European health statistics

Location of plants – E-PRTR register

Data | Data and maps

The European Pollutant Release and Transfer Register (E-PRTR), Member States reporting under Article 7 of Regulation (EC) No 166/2006

The European Pollutant Release and Transfer Register (E-PRTR) is a web-based register established by Regulation (EC) No 166/2006 which implements the UNECE PRTR Protocol, signed in May 2003 in Kiev.

European data Metadata

http://www.eea.europa.eu/data-and-maps/data/member-states-reporting-art-7under-the-european-pollutant-release-and-transfer-register-e-prtr-regulation-10

- E-PRTR data covering reporting for 2007 to 2014 by EU Member States, Iceland, Liechtenstein, Norway, Serbia and Switzerland.
- Article 7 of the Regulation sets the requirements for the annual reporting by Member States which covers the releases to air and water for 91 substances, as well as the transfers of pollutants in water and the transfer of waste from industrial facilities across 65 sectors. The register includes information of more than 30.000 facilities in 32 countries.

1/ 🕹 🧭

🖂 📇 📓

Sector: 5.(d): Landfills (excluding landfills of inert waste and landfills, which were definitely closed before 16.7.2001 or for which the after-care phase required by the competent authorities according to Article 13 of Council Directive 1999/31/EC of 26 April 1999 on the landfill of waste (3) has expired). Capacity threshold: Receiving 10 tonnes per day or with a total capacity of 25 000 tonnes Geocode: *.mkz file from EEA website (plants updated to 2014)

ata SIO, NOAA, U.S. Navy, NGA, GEBCO © 2015 AutoNavi US Dept of State Geographer © 2015 Google

17.87" N 16°38'38.84" E

Table 1: Number of facilities reporting for each country by year.

	2007	2008	2009	2010	2011	2012	2013	2014
Austria	20	17	18	15	16	13	10	12
Belgium	22	23	23	17	17	20	17	16
Bulgaria	14	19	22	24	23	28	30	31
Croatia	0	0	0	0	0	0	0	6
Cyprus	0	0	0	0	1	1	1	1
Czech Republic	6	2	4	10	7	12	14	14
Denmark	52	39	27	23	15	27	24	22
Estonia	8	8	8	5	5	4	5	4
Finland	56	50	51	53	50	56	56	58
France	135	160	162	172	182	199	190	185
Germany	248	249	242	234	222	210	202	188
Greece	7	7	8	7	6	5	5	6
Hungary	14	16	17	14	15	8	11	20
Iceland	1	2	2	2	2	2	2	2
Ireland	30	31	33	33	34	33	34	33
Italy	100	115	118	128	128	120	149	163
Latvia	0	0	1	0	0	1	1	2
Liechtenstein	0	0	0	0	0	0	0	0
Lithuania	7	8	8	5	5	4	5	3
Luxembourg	2	2	2	2	2	2	2	2
Malta	2	2	0	2	2	2	2	0
Netherlands	26	25	29	29	26	26	27	27
Norway	48	58	59	60	66	65	55	56
Poland	77	78	78	77	68	72	74	67
Portugal	42	43	41	45	48	48	51	49
Romania	48	47	43	45	43	42	40	43
Serbia	0	0	0	0	0	0	0	1
Slovakia	9	13	16	8	7	6	9	10
Slovenia	20	35	39	32	29	23	26	24
Spain	121	123	139	143	151	155	153	149
Sweden	42	53	66	80	85	87	87	90
Switzerland	1	2	1	2	1	1	1	1
United Kingdom	250	261	251	253	254	258	245	259
Total	1408	1488	1508	1520	1510	1530	1528	1544

Population

Data | Data and maps

Population density disaggregated with Corine land cover 2000 Raster data on population density using Corine Land Cover 2000 inventory Data are available at 100 meters resolution. Population by municipality correspond to Census 2001 (Eurostat). Owners and Processors: Joint Research Centre (JRC)

http://www.eea.europa.eu/data-and-maps/data/population-densitydisaggregated-with-corine-land-cover-2000-2

Reference:

Gallego F.J., 2010, A population density grid of the European Union, Population and Environment. 31: 460-473 http://www.springerlink.com/content/h22617v812p51014/? p=a5de0fad279b474187e630362f4f2fc8&pi=3

Population

E-PRTR data – Kmz file

KMZ to layer

Buffering

ArcGIS function: "Clip" raster to select squares, then calculation of sum of values

GME free package (http://www.spatialecology.com/gme/, ArcGIS and R are required in your PC)

 Function: isectpolyrst(in=polygon shapefile with buffers, raster=rasterfile with population, prefix="Pop", metrics=c("CNT","SUM","MEAN","STD"), allowpartialoverlap=TRUE);

At the end, each population number has to be divided by 100 (as it represents 1x1 km density on 100x100 m, see Gallego et al.)

GME free package

arnae

Italy

<u>DATA</u>

The geographic coordinate of waste management site

Swiss TPH

The population distribution in the census block by gender and by age

Modena Incinerator: Selection criteria

Step 1

Use the proximity analysis tool to create buffer to a specific distance around the site of study.

in the present example case:

1km

2km

3km

ARCMAP – BUFFER window

School on IEHIA on air pollution and climate change in Mediterranean urban settings

Modena Incinerator: Selection criteria

3 KM buffer

Some census block are completely within the buffer

Some others intersect the buffer

Step 2

Chose the selection criteria

completely within the buffer

intersect the buffer

Question ..

How can we estimate people living in the "red" census block?

Estimating population exposure

we assume an homogeneous distribution of population in a census block

Step 3

Intersect buffer and census block to extract the real area at 3km from incinerator

Step 4

Calculate the area within the buffer

Step 5

Calculate the population proportionally of square meters

 $\sum \left(\frac{Pop}{TOTarea_CensusBlock}\right) * (area_i)$

ARCMAP – INTERSECT window

File Edit View Bookmarks Insert Selection Geoprocessing Customize Windows Help

School on IEHIA on air pollution and climate change in Mediterranean urban settings

tomorrow with health data and HIA calculations...

- Predictor variables:
 - 1. Land use (CORINE)
 - 2. Road length, distance to road (Eurostreets)
 - 3. Population density/household density
 - 4. Altitude, Longitude, Latitude
 - 5. Traffic intensity, distance to road (Local road network)
 - 6. Local variables

School on IEHIA on air pollution and climate change in Mediterranean urban settings

A comparison between self-reported and GIS-based proxies of residential exposure to environmental pollution in a case-control study on lung cancer

M. Cordioli et al. / Spatial and Spatio-temporal Epidemiology 9 (2014) 37-45

Fig. 1. Schematic representation of GIS exposure assessment: (A) length of roads by typology inside a buffer around the residence, (B) percentage of buffer area covered by different land uses, (C) tons of pollution emitted inside a buffer.

Example on exp ass on pm2.5 or pm10 for burden of disease -VIIAS italian project (info at regional level) -Regional air quality plan (info at municipality level)

- Calculate mean of values of PM and total population that fall into a region (i.e. census block)

Bologna, with census block and pm2.5 dispersion model

Italy (2005)

School on IEHIA on air pollution and climate change in Mediterranean urban settings

Methods: estimating population exposure

- Intersect grid and census block to extract the area in each cell 4x4km
- Calculate the area within each cell
- Calculate the population proportionally of square meters

