
Introduction

David Grellscheid

Python – Introduction, David Grellscheid 2018-04-28

Why Python?

easy to learn

huge library

excellent science support

quick development turnaround

Python – Introduction, David Grellscheid 2018-04-28

History

development started 1989 
main author Guido van Rossum (BDFL)

Python 2: October 2000 (now: 2.7.14) 
“end of life” in 2020

Python 3: December 2008 (now 3.6.4)

Python – Introduction, David Grellscheid 2018-04-28

Version Choice
Python 2 used to have better library support –
now hardly any difference. 
Consider external factors for choice

Features from 3.0 ported to 2.6 
Features from 3.1 ported to 2.7

But: no more 2.x releases!

conversion tools available: 2to3 3to2 
largest visible change for beginners: print vs print()

compatibility library: six 

Python – Introduction, David Grellscheid 2018-04-28

Design choices

Zen of Python, by Tim Peters (import this)

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Readability counts.
There should be one—and preferably only one—
obvious way to do it.
If the implementation is hard to explain, it's a bad idea.

Python – Introduction, David Grellscheid 2018-04-28

Design choices

Multi-paradigm language: 
structured, object oriented & functional
styles are all supported

Paradigms not enforced by language 
“We are all consenting adults here”

clean syntax, fun to use

Highly extensible:  
small core, large standard lib

Python – Introduction, David Grellscheid 2018-04-28

Implementations

CPython: the reference implementation, 
interpreted bytecode (pyc files)

PyPy: just-in-time compiler to machine code

Jython targets Java JVM

IronPython: C# / .NET

Python – Introduction, David Grellscheid 2018-04-28

$ python

>>> 3+4

7

Usage

$ python test.py
a = 3+4

print(a)

test.py

$./test.py

#!/usr/bin/env python

a = 3+4

print(a)

Python – Introduction, David Grellscheid 2018-04-28

Type system
strong typing

’foo’+5 is an error

dynamic typing

a = ’foo’
b = 2*a
a = 5
b = 2*a

“duck typing”
def foobar(a,b):

 return a+b 
 

function calls will take any
argument types, 

runtime error if it doesn’t fit

Python – Introduction, David Grellscheid 2018-04-28

Whitespace is significant!

if (a>b)

 foo();

 bar();

baz(); 
 

C/C++

if a>b:

 foo()

 bar()

baz() 
 

Python

Syntax

Python – Introduction, David Grellscheid 2018-04-28

Whitespace is significant!

if (a>b)

 foo();

 bar();

baz(); 
 

C/C++

if a>b:

 foo()

 bar()

baz() 
 

Python

Syntax

!

Python – Introduction, David Grellscheid 2018-04-28

Boolean operators are written out:
and or not

True False 

Expressions
mostly as expected from other languages

transparent arbitrary-length integers!

Be careful with division in Python 2!

from __future__ import division

Can be “fixed” with this line at the top:

5/3 == 1 5./3. == 1.66666666667

Python – Introduction, David Grellscheid 2018-04-28

Syntax

Control flow

if a>b:

 foo()

elif b!=c:

 bar()

else:

 baz()

while a>b:

 foo()

 bar()

for i in list:  
 baz(i)

break

continue
pass

Python – Introduction, David Grellscheid 2018-04-28

Strings
String delimiters:

use ’ or ” as needed, no difference
 

a = ”Fred’s house”

b = ’He said “Hello!” to me’

Verbatim texts in triple quotes
”””can go

over several lines

like this

””” 

Python – Introduction, David Grellscheid 2018-04-28

String formatting
Two styles:

The second option is more flexible:
text = “I ate {num} {food} today. Yes, really {num}.”

answer = text.format(num=12,food=”apples”)

”I ate %d %s today” % (12,”apples”)

”I ate {} {} today”.format(12,”apples”)

(like printf())

Python – Introduction, David Grellscheid 2018-04-28

Collections

dict, set

d={‘name’:‘Monty’, ‘age’:42}

 d[‘name’] d[‘age’]

{3, 1, ‘foo’, 12.} unique elements, union, intersection, etc.

list, tuple

[3, 1, ‘foo’, 12.] List (mutable)

(3, 1, ‘foo’) Tuple (immutable)

a[0] a[-1] a[2:5] a[2:10:2] index / slice access

[x**2 for x in range(1,11)] list comprehension

Python – Introduction, David Grellscheid 2018-04-28

def timesN(N):

 def f(x):

 return N*x

 return f

somefn = timesN(6)

a = somefn(7)

Syntax
Function definition
def stuff(a,b,c):

 a = 3*b

 return a+b-c

functions can be passed as values!

Python – Introduction, David Grellscheid 2018-04-28

def timesN(N):

 def f(x):

 return N*x

 return f

somefn = timesN(6)

a = somefn(7)

Syntax
Function definition
def stuff(a,b,c):

 a = 3*b

 return a+b-c

functions can be passed as values!

Python – Introduction, David Grellscheid 2018-04-28

t = (3, 7+5j)

a, b = t

a, b = b, a

pts = [

 (1,3),

 (5,6),

]

for i in pts:

 print(i)

for x,y in pts:

 print(x,‘and’,y)

Some syntax niceties

Python – Introduction, David Grellscheid 2018-04-28

Exceptions
Use them!

try:

 a = read_my_data()

except:

 print(“Corrupted data”)

if consistent_data():

 a = read_my_data()

else:

 print(“Corrupted data”)

is almost always preferable to:

Python – Introduction, David Grellscheid 2018-04-28

File I/O

f = open(“somefile.txt”,”r”)
for line in f:

print(line)
words = line.split()
…

f.close()

Create file handle, then read/write to it.

Python – Introduction, David Grellscheid 2018-04-28

File I/O

f = open(“somefile.txt”,”r”)
for line in f:

print(line)
words = line.split()
…

f.close()

Create file handle, then read/write to it.

with open(“somefile.txt”,”r”) as f:
for line in f:

print(line)
do something …

Python – Introduction, David Grellscheid 2018-04-28

File I/O

f = open(“somefile.txt”,”r”)
for line in f:

print(line)
words = line.split()
…

f.close()

Create file handle, then read/write to it.

with open(“somefile.txt”,”r”) as f:
for line in f:

print(line)
do something …

msg ="""\
How are you?
"""

with open("hello.txt","w") as f:
f.write(msg)

Python – Introduction, David Grellscheid 2018-04-28

File I/O

f = open(“somefile.txt”,”r”)
for line in f:

print(line)
words = line.split()
…

f.close()

Create file handle, then read/write to it.

with open(“somefile.txt”,”r”) as f:
for line in f:

print(line)
do something …

msg ="""\
How are you?
"""

with open("hello.txt","w") as f:
f.write(msg)

msg ="""\
 سلام، چطوری؟
"""

with open("hello.txt","w") as f:
f.write(msg)

 Unicode is easy in Python3,
more work needed in Py2

Python – Introduction, David Grellscheid 2018-04-28

File I/O

i = ‘foo.txt’

o = ‘bar.txt’

with open(i,’r’) as fi, open(o,’w’) as fo:

 for line in fi:

 l = line + line[::-1]

 fo.write(l)

Python – Introduction, David Grellscheid 2018-04-28

Standard Library
Enormous variety:

Regular expressions, difflib, textwrap

datetime, calendar

synchronized queue

copy

math, decimal, fractions, random

os.path, stat, tempfile, shutil

pickle, sqlite3, zlib, bz2, tarfile, csv

Markup, internet protocols, multimedia, debugging, ...

Python – Introduction, David Grellscheid 2018-04-28

External packages

~100000 available at PyPI

http://pypi.python.org/pypi

...,Numpy, Scipy, Matplotlib, ...

Easy installation with pip

Quality varies a lot!

https://pypi.python.org/pypi

Python – Introduction, David Grellscheid 2018-04-28

warm-up to get familiar with editors,
file handling, and of course Python

http://docs.python.org/3/tutorial/
Sections 3–8

http://projecteuler.net/problems

Python – Introduction, David Grellscheid 2018-04-28

http://projecteuler.net/problems

A. 1, 2, 3 (to use basic language features)

B. 14, 17 (use dict), 57

C. 79 (file input), 102 (handle 2D points)

