
THE MAKEFILE UTILITY
Ali Farnudi

MOTIVATION

Small file

small programme

MOTIVATION

Small file

small programme

‘Not so small’ programme

MOTIVATION

Small file

small programme

‘Not so small’ programme

Multiple components

many lines of code

different libraries
dependencies

MOTIVATION
small
programme

‘Not so small’
programme

➤ long files are harder to manage for both
programmer and the machine

➤ A big file means long compilation for a small
change

➤ If possible, its very confusing for several
programmers to simultaneously modify a file.

PROBLEMS

MOTIVATION
small
programme

‘Not so small’
programme

SOLUTION: DIVIDE PROJECT TO
MULTIPLE FILES (TARGETS)

MOTIVATION
small
programme

‘Not so small’
programme

➤ Divide the code to components

➤ Minimum compilation when
something is changed

➤ Easy maintenance of project structure,
dependencies and creation

SOLUTION: DIVIDE PROJECT TO MULTIPLE FILES (TARGETS)

PROJECT MAINTENANCE

➤Done in Unix by the Makefile mechanism
➤A makefile is a file (script) containing:

➤ The project structure (files, dependencies)
➤ Instructions for files creation

➤The make command reads a makefile, understands
the project structure and makes up the executable

➤ It is not limited to C programs

PROJECT MAINTENANCE

Project structure and dependencies can be represented as
a ‘Directed Acyclic Graph’

PROJECT MAINTENANCE
Project structure and dependencies can be represented as a ‘Directed Acyclic Graph’

➤ Example :

- Program contains 3 files

- main.c, sum.c, sum.h

➤ sum.h is included in both ‘.c’ files

- Executable should be the file ‘sum’

PROJECT MAINTENANCE
Directed Acyclic Graph

sum(exe)

main.o sum.o

sum.c sum.hmain.c sum.h

MAKEFILE

Target: Dependancie
←tab→ rules

Target02: Dependancie
←tab→ rules

filename: makefile

> cd ‘dir’ of makefile
> make

MAKEFILE

sum: main.o sum.o
 gcc –o sum main.o sum.o

main.o: main.c sum.h
 gcc –c main.c

sum.o: sum.c sum.h
 gcc –c sum.c

Target: Dependancie
←tab→ rules

MAKEFILE

sum: main.o sum.o
 gcc –o sum main.o sum.o

main.o: main.c sum.h
 gcc –c main.c

sum.o: sum.c sum.h
 gcc –c sum.c

➤ ‘.o’ depends (by default) on corresponding ‘.c’ file.
We may rewrite the makefile in this equivalent format:

EQUIVALENT MAKEFILES

sum: main.o sum.o
 gcc –o sum main.o sum.o

main.o: sum.h
 gcc –c main.c

sum.o: sum.h
 gcc –c sum.c

EQUIVALENT MAKEFILES
➤ ‘.o’ depends (by default) on corresponding ‘.c’ file.

We may rewrite the makefile in this equivalent format:

EQUIVALENT MAKEFILES

sum: main.o sum.o
 gcc –o sum main.o sum.o

main.o: sum.h
 gcc –c main.c

sum.o: sum.h
 gcc –c sum.c

➤ We can compress identical dependencies and use built-in macros
to get another (shorter) equivalent makefile:

sum: main.o sum.o
 gcc –o $@ main.o sum.o

main.o sum.o: sum.h
 gcc –c $*.c

MAKE OPERATION
➤ Project dependencies tree is constructed
➤ Target of the first rule should be created

➤ We go down the tree to see if there is a target that should be
recreated.
➤ This is required when the target file is older than one of its

dependencies
➤ In this case we recreate the target file according to the action

specified, on our way up the tree. Consequently, more files may
need to be recreated

➤ If something was changed, linking is performed

MAKE OPERATION
➤ Project dependencies tree is constructed
➤ Target of the first rule should be created

➤ We go down the tree to see if there is a target that should be
recreated.
➤ This is required when the target file is older than one of its

dependencies
➤ In this case we recreate the target file according to the action

specified, on our way up the tree. Consequently, more files may
need to be recreated

➤ If something was changed, linking is performed

PROJECT MAINTENANCE
Directed Acyclic Graph

sum 10:03

main.o 09:56 sum.o 09:35

sum.c 09:14 sum.h 08:39main.c 10:45 sum.h 08:39

PROJECT MAINTENANCE
Directed Acyclic Graph

sum 10:03

main.o 17:00 sum.o 09:35

sum.c 09:14 sum.h 08:39main.c 10:45 sum.h 08:39

PROJECT MAINTENANCE
Directed Acyclic Graph

sum 17:00

main.o 17:00 sum.o 09:35

sum.c 09:14 sum.h 08:39main.c 10:45 sum.h 08:39

MAKE OPERATION

➤ ‘make’ operation can be used to ensure
minimum compilation, when the project
structure is written properly

➤ Do not write this at home:
 prog: main.c sum1.c sum2.c

 gcc –o prog main.c sum1.c sum2.c

USEFUL GCC OPTIONS

➤ Include: -I<path>
➤ Define: -D<identifier>
➤ Optimization: -O<level>

USEFUL GCC OPTIONS

➤ Include: -I<path>
➤ Define: -D<identifier>
➤ Optimization: -O<level>

Example:

 gcc –DDEBUG –O2 –I/usr/include example.c –o example -lm

Makefile to compare sorting routines
BASE = /home/blufox/base
CC = gcc
CFLAGS = -O –Wall
EFILE = $(BASE)/bin/compare_sorts
INCLS = -I$(LOC)/include
LIBS = $(LOC)/lib/g_lib.a \
 $(LOC)/lib/h_lib.a
LOC = /usr/local

ANOTHER EXAMPLE

ANOTHER EXAMPLE

Makefile to compare sorting routines
BASE = /home/blufox/base
CC = gcc
CFLAGS = -O –Wall
EFILE = $(BASE)/bin/compare_sorts
INCLS = -I$(LOC)/include
LIBS = $(LOC)/lib/g_lib.a \
 $(LOC)/lib/h_lib.a
LOC = /usr/local
OBJS = main.o another_qsort.o chk_order.o \
 compare.o quicksort.o

$(EFILE): $(OBJS)
 @echo “linking …”
 @$(CC) $(CFLAGS) –o $@ $(OBJS) $(LIBS)

$(OBJS): compare_sorts.h
 $(CC) $(CFLAGS) $(INCLS) –c $*.c

Clean intermediate files
clean:
 rm *~ $(OBJS)

Makefile to compare sorting routines
BASE = /home/blufox/base
CC = gcc
CFLAGS = -O –Wall
EFILE = $(BASE)/bin/compare_sorts
INCLS = -I$(LOC)/include
LIBS = $(LOC)/lib/g_lib.a \
 $(LOC)/lib/h_lib.a
LOC = /usr/local
OBJS = main.o another_qsort.o chk_order.o \
 compare.o quicksort.o

$(EFILE): $(OBJS)
 @echo “linking …”
 @$(CC) $(CFLAGS) –o $@ $(OBJS) $(LIBS)

$(OBJS): compare_sorts.h
 $(CC) $(CFLAGS) $(INCLS) –c $*.c

Clean intermediate files
clean:
 rm *~ $(OBJS)

➤ We can define multiple
targets in a makefile

➤ Target clean – has an empty
set of dependencies. Used to
clean intermediate files.

➤ make clean will remove
intermediate files

➤ make will create the
‘compare_sorts’ executable

Makefile to compare sorting routines
BASE = /home/blufox/base
CC = gcc
CFLAGS = -O –Wall
EFILE = $(BASE)/bin/compare_sorts
INCLS = -I$(LOC)/include
LIBS = $(LOC)/lib/g_lib.a \
 $(LOC)/lib/h_lib.a
LOC = /usr/local
OBJS = main.o another_qsort.o chk_order.o \
 compare.o quicksort.o

$(EFILE): $(OBJS)
 @echo “linking …”
 @$(CC) $(CFLAGS) –o $@ $(OBJS) $(LIBS)

$(OBJS): compare_sorts.h
 $(CC) $(CFLAGS) $(INCLS) –c $*.c

Clean intermediate files
clean:
 rm *~ $(OBJS)

➤ We can define multiple
targets in a makefile

➤ Target clean – has an empty
set of dependencies. Used to
clean intermediate files.

➤ make clean will remove
intermediate files

➤ make will create the
‘compare_sorts’ executable

GET MORE
OUT OF

MAKEFILE
 http://www.gnu.org/software/

make/manual/make.html

