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➤ long files are harder to manage for both 
programmer and the machine 

➤ A big file means long compilation for a small 
change 

➤ If possible, its very confusing for several 
programmers to simultaneously modify a file.

PROBLEMS
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MOTIVATION
small 
programme

‘Not so small’ 
programme

➤ Divide the code to components 

➤ Minimum compilation when 
something is changed 

➤ Easy maintenance of project structure, 
dependencies and creation

SOLUTION: DIVIDE PROJECT TO MULTIPLE FILES (TARGETS)



PROJECT MAINTENANCE

➤Done in Unix by the Makefile mechanism 
➤A makefile is a file (script) containing: 

➤ The project structure (files, dependencies) 
➤ Instructions for files creation 

➤The make command reads a makefile, understands 
the project structure and makes up the executable 

➤ It is not limited to C programs
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PROJECT MAINTENANCE
Project structure and dependencies can be represented as a ‘Directed Acyclic Graph’

➤ Example : 

- Program contains 3 files 

- main.c, sum.c, sum.h 

➤ sum.h is included in both ‘.c’ files 

- Executable should be the file ‘sum’



PROJECT MAINTENANCE
Directed Acyclic Graph

sum(exe)

main.o sum.o

sum.c sum.hmain.c sum.h



MAKEFILE

Target: Dependancie 
←tab→ rules

Target02: Dependancie 
←tab→ rules

filename: makefile

> cd ‘dir’ of makefile 
> make



MAKEFILE

sum: main.o sum.o 
 gcc –o sum main.o sum.o 

main.o: main.c sum.h 
 gcc –c main.c  

sum.o: sum.c sum.h 
 gcc –c sum.c 

Target: Dependancie 
←tab→ rules



MAKEFILE

sum: main.o sum.o 
 gcc –o sum main.o sum.o 

main.o: main.c sum.h 
 gcc –c main.c  

sum.o: sum.c sum.h 
 gcc –c sum.c 



➤ ‘.o’ depends (by default) on corresponding ‘.c’ file.  
We may rewrite the makefile in this equivalent format:

EQUIVALENT MAKEFILES



sum: main.o sum.o 
 gcc –o sum main.o sum.o 

main.o: sum.h 
 gcc –c main.c  

sum.o: sum.h 
 gcc –c sum.c 
 

EQUIVALENT MAKEFILES
➤ ‘.o’ depends (by default) on corresponding ‘.c’ file.  

We may rewrite the makefile in this equivalent format:



EQUIVALENT MAKEFILES

sum: main.o sum.o 
 gcc –o sum main.o sum.o 

main.o: sum.h 
 gcc –c main.c  

sum.o: sum.h 
 gcc –c sum.c 
 

➤ We can compress identical dependencies and use built-in macros 
to get another (shorter) equivalent makefile:

sum: main.o sum.o 
 gcc –o $@ main.o sum.o 

main.o sum.o: sum.h 
 gcc –c $*.c



MAKE OPERATION
➤ Project dependencies tree is constructed 
➤ Target of the first rule should be created 

➤ We go down the tree to see if there is a target that should be 
recreated.  
➤ This is required when the target file is older than one of its 

dependencies 
➤ In this case we recreate the target file according to the action 

specified, on our way up the tree. Consequently, more files may 
need to be recreated 

➤ If something was changed, linking is performed
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PROJECT MAINTENANCE
Directed Acyclic Graph

sum 10:03

main.o 09:56 sum.o 09:35

sum.c 09:14 sum.h 08:39main.c 10:45 sum.h 08:39 



PROJECT MAINTENANCE
Directed Acyclic Graph

sum 10:03

main.o 17:00 sum.o 09:35

sum.c 09:14 sum.h 08:39main.c 10:45 sum.h 08:39 



PROJECT MAINTENANCE
Directed Acyclic Graph

sum 17:00

main.o 17:00 sum.o 09:35

sum.c 09:14 sum.h 08:39main.c 10:45 sum.h 08:39 



MAKE OPERATION

➤ ‘make’ operation can be used to ensure 
minimum compilation, when the project 
structure is written properly 

➤ Do not write this at home: 
   prog: main.c sum1.c sum2.c 

  gcc –o prog main.c sum1.c sum2.c



USEFUL GCC OPTIONS

➤ Include: -I<path> 
➤ Define: -D<identifier> 
➤ Optimization: -O<level>



USEFUL GCC OPTIONS

➤ Include: -I<path> 
➤ Define: -D<identifier> 
➤ Optimization: -O<level>

Example:  

 gcc –DDEBUG –O2 –I/usr/include example.c –o example -lm



# Makefile to compare sorting routines 
BASE       = /home/blufox/base 
CC           =   gcc 
CFLAGS  =   -O –Wall 
EFILE      =   $(BASE)/bin/compare_sorts 
INCLS     =   -I$(LOC)/include 
LIBS        =   $(LOC)/lib/g_lib.a \ 
                     $(LOC)/lib/h_lib.a 
LOC        =   /usr/local

ANOTHER EXAMPLE



ANOTHER EXAMPLE

# Makefile to compare sorting routines 
BASE       = /home/blufox/base 
CC           =   gcc 
CFLAGS  =   -O –Wall 
EFILE      =   $(BASE)/bin/compare_sorts 
INCLS     =   -I$(LOC)/include 
LIBS        =   $(LOC)/lib/g_lib.a \ 
                     $(LOC)/lib/h_lib.a 
LOC        =   /usr/local 
OBJS = main.o    another_qsort.o    chk_order.o \ 
             compare.o    quicksort.o 

$(EFILE): $(OBJS) 
 @echo “linking …” 
 @$(CC) $(CFLAGS) –o $@ $(OBJS) $(LIBS) 

$(OBJS): compare_sorts.h 
 $(CC) $(CFLAGS) $(INCLS) –c $*.c 

# Clean intermediate files 
clean: 
 rm *~ $(OBJS)



# Makefile to compare sorting routines 
BASE       = /home/blufox/base 
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➤ We can define multiple 
targets in a makefile 

➤ Target clean – has an empty 
set of dependencies. Used to 
clean intermediate files. 

➤ make clean will remove 
intermediate files 

➤ make will create the 
‘compare_sorts’ executable
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GET MORE 
OUT OF 

MAKEFILE
  http://www.gnu.org/software/

make/manual/make.html


