
Introduction to
code testing

Alessandro Corbetta
Post-doctoral researcher – Department of Applied Physics

Eindhoven University of Technology, NL

http://corbetta.phys.tue.nl

http://corbetta.phys.tue.nl/

Alessandro Corbetta
• Post-doc researcher in Applied Physics (TU Eindhoven)
• Study human crowds dynamics as fluid mechanics
• Deep learning for computer vision & physics
• PhD in Applied Mathematics, PhD in Structural Engineering

• Admin of a Git(Lab) server since 2014
Supported/Designed most of project testing/CI

My Lectures

This afternoon:
Floating point arithmetic
(exercises will connect with testing)

Testing intro
(now)

Git and version control
(Saturday)

Testing suites/CI
/conversational development

(Monday)

Software testing, versioning, quality control

Introduction to
code testing

Alessandro Corbetta
Post-doctoral researcher – Department of Applied Physics

Eindhoven University of Technology, NL

http://corbetta.phys.tue.nl

http://corbetta.phys.tue.nl/

Testing: main question

1. Does my code work?
(…broad question…)

Testing: main question

1. Does my code work?
(…broad question…)

2. Does my code have the expected features and functionalities?
[e.g. “client” request; in science: ”do I match the analytic solution?”]

3. Does my code still work?
[e.g. after a modification of myself, collaborators,…]

..as in..

This lecture

• Testing: introduction to the concept
• Contemporary testing as in the scientific method
• Scales of testing
• Contemporary vs. traditional testing
• Unit testing heuristics/best practices

• Testing in python
• Naïve approach
• nosetests
• More advanced nose (fixture options, coverage reports)

Contemporary testing anatomy: Key idea

We ASSERT that our software satisfies a given requirement
The test is passed if the assertion is satisfied; it fails otherwise

The validity of our assertions is checked through programs and scripts.

In general:
1 Test = piece of software that checks 1 ASSERT

Scientific method analogy

Scientific method:
We run experiments to invalidate

(or “prove/hinting correctness of”) an hypothesis.
A test is like an experiment

Functional testing paradigm:
Arrange à preparation of e.g. script that checks for feature
Act à run the test
ASSERT à if fails an issue is found

Scientific method analogy

Functional testing paradigm:
Arrange
Act
ASSERT

Scales of testing
Good modern software comes as a collection of weakly coupled
modules operated together to deliver a result.

Testing follows these scales
“Microscopic” “Macroscopic”

* Individual functions
* Individual classes * complete functionality

UNIT TESTING
“does this element

behaves as expected?”

INTEGRATION TESTING
“does this set of

elements together
behaves as expected?”

ACCEPTANCE TESTING
“does the software meet

client’s expectations?”

SYSTEM TESTING
“does this software, as a
whole, behaves as
expected?”

Developers Client

In other words

• Unit test: if fails -> a piece of your code needs to be fixed.
• Integration test: if fails -> pieces of your application are not working
together as expected.
• System test: if fails -> it tells that the application is not working as

expected
• Acceptance test: if fails -> the application is not doing what the

customer expects it to do.

• Regression test: when it fails, it tells you that the application no
longer behaves the way it used to.

”Contemporary” vs. “traditional” testing

• Traditional approach & pitfalls
• System tested as a whole
• High complexity (how do I build a proper test?)
• Hard to test individual components
• Hard to find sources of errors
• Testing done through print statements/debuggers/script

• Contemporary/Unit testing
• Lower complexity
• Compliance to past requirements easily checked by module
• To the limit: Test Driven Development (TDD – Exercise this afternoon)

• As a requirement is identified, tests are written before the implementation

Is
su

es
 e

m
er

ge

w
ith

 u
sa

ge
or

In

 p
ro

du
ct

io
n

Is
su

es
 e

m
er

ge
In

 d
ev

el
op

m
en

t

Black Box vs. White box testing

Black box
• Tests functionality without

knowledge of internal structure
• Cost effective: High -> can be

authored by non-developers (no
biases though!)

• Efficacy: low -> relies on tester’s
luck about triggering all internals

White box
• Test with knowledge of internals
• Cost effective: Low -> Must be

written by developers

• Efficacy: high -> all internals can
be triggered

White box testing “quality” metrics: coverage

• If parts of our code are not tested (i.e. not covered by a test)
bugs have higher chance to reach production

• Line coverage
• Percentage of lines that are covered by at least one test

(an if condition might be unsatisfied in all tests, thus the
if-true branch remains always untested).

• Branch coverage
• 100% line coverage might still leave many branches

(that grow combinatorically) unexplored.
Branch coverage counts how many of all branches are
“seen” by at least one test.

Unit testing heuristics 1

1. Create test when object design is complete
In TDD write test when interface is defined

2. Design components that are testable
Make life of a tester easy: e.g. allow swappable mocks

3. Testing time slows down development
make quick tests (at run time)
make tests that are no-brainer to run

4. Develop tests using effective number of testing cases
Heads up: generally combinatorial explosion of inputs, cannot be matched

by as many ASSERT
Selecting relevant & (all) edge cases -> more practice than theory

Unit testing heuristics 2

5. If possible compare e.g. with analytic solution or even slower-but-
working versions of the same algorithms

(Model-based testing)
6. In computing: knowing about internal computing mechanisms to make

relevant tests
1. respect computer arithmetic
2. Avoid non-determinism/fix seed in testing

7. REM: a failed test means a bug is introduced, not the other way
around!

8. Best practice: Every new bug -> new test
against future regressions (e.g. from rollbacks)

Unit testing in Python: naïve way

import my_package

def test_1():
<preparation>
assert condition_f_1

def test_2():
<preparation>
assert condition_f_2

if __name__ == '__main__’:
test_1()
test_2()

$ python tests.py

Unit testing in Python: naïve way

import my_package

def test_1():
<preparation>
assert condition_f_1

def test_2():
<preparation>
assert condition_f_2

if __name__ == '__main__’:
test_1()
test_2()

Issues:
Not immediate

cannot be run without thought
Not scalable

e.g. need to add calls under the if shield
Output does not come as a simple report
Running individual tests requires work
…

Common issues!
Common solution:

using testing frameworks..

$ python tests.py

Unit testing in Python

• Python comes with packages helping unit testing
• Note: Unit testing libraries exist for any programming language.
• Same concepts as here apply (compiler might be needed)

• E.g. Nosetest, PyTest, doctest

Nosetest

• nose runs tests in files/directories under the cwd
((?:\b|_)[Tt]est)

• whose names include “test” or “Test” at a word boundary
• (like “test_this” or “functional_test” or “TestClass” but not “libtest”).

• Test output includes captured stdout output from failing tests, for easy
debugging.

• Returns a report of pass/failures with different possible levels of
verbosity
• Can return coverage report

Nosetest - installation
• via pip or easy_install

$ easy_install nose
$ pip install nose

Test successful installation:

Call nosetests in an empty folder.
The program terminates successfully with no test run.

Nosetest - examples

• Testing my_sum.py (basics)

Nosetest - examples

• Testing my_sum.py (basics)

Nosetest - examples

• Testing my_sum.py (basics) tests/test.py

Nosetest - examples

• Testing my_sum.py (basics) tests/test.py

IMPOSSIBLE TEST (just to see a failure)

Nosetest - examples

• Testing my_sum.py (basics) $ nosetests -v

Nosetest - examples

• Previous tests: unit tests
• One scale up: integration (here also system test)
• We fake command line parameters, we expect the sum
• Issue: we need to hijack sys.argv parameters
• Fixture: we temporarily change the sys.argv state.

• Fixture (in general)
• pre-test setup + post-test teardown
• Turn module, class, package to favorable fake state

Nosetest - examples

• Fixture example: naïve implementation.

def test():
setup_test()
try:

do_test()
make_test_assertions()

finally:
cleanup_after_test()

A lot of tests with similar structure

Common issue -> nose helps

Nosetest - examples

• System-level testing

Nosetest - examples

• System-level testing
$ nosetests -v

$ nosetests –v tests.tests_aggregate

Runs ALL tests

Runs easily SPECIFIC tests

NOTE: in general no strict
equality checks on float ops
• System-level testing

Topic of this afternoon lecture

Nosetest – (more) advanced usage
(selected topics)

• nose supports fixtures (setup and teardown methods) at the package,
module, class, and test level.
• Module: setup_module() and teardown_module() are called as

the package is imported
• Package: __init__.py should contain setup_package() ,
teardown_package(). After setup the test in the first module start
• test Class

• Inherits from unittest.TestCase or name matching regex
• Methods in the class that match testMatch are discovered
• a test case is constructed to run each method with a fresh instance of the test class.

https://docs.python.org/dev/library/unittest.html

Nosetest – coverage report
--with-coverage argument

Just 93%
What happened???

1 line is missing. Which one?

Nosetest – hotline coverage report
--with-coverage --cover-html

The folder “cover” with html
description is generated

Nosetest – coverage report

