6th Workshop on
Collaborative Scientific
Software Development and
Management of Open
Source Scientific Packages

Introduction to
code testing

Alessandro Corbetta

Post-doctoral researcher — Department of Applied Physics
Eindhoven University of Technology, NL

http://corbetta.phys.tue.nl

The Abdus Salam

Technische Universiteit | .
T . nternational Centre
Eindhoven < : P . .
U / e University of Technology ICT for Theoretical Physics

http://corbetta.phys.tue.nl/

Alessandro Corbetta
e Post-doc researcher in Applied Physics (TU Eindhoven)

e Study human crowds dynamics as fluid mechanics
* Deep learning for computer vision & physics
* PhD in Applied Mathematics, PhD in Structural Engineering

 Admin of a Git(Lab) server since 2014
Supported/Designed most of project testing/Cl

Projects: 529 Users: 157

My Lectures

Software testing, versioning, quality control

Testing intrG Git and version cont Testing suites/Cl
(now) (Saturday) /conversational development
(Monday)
oG o S (5
@ test @ tests-infrastru..)
@ test
@ test
@ test
This afternoon: =

Floating point arithmetic
(exercises will connect with testing)

6th Workshop on
Collaborative Scientific
Software Development and
Management of Open
Source Scientific Packages

Introduction to
code testing

Alessandro Corbetta

Post-doctoral researcher — Department of Applied Physics
Eindhoven University of Technology, NL

http://corbetta.phys.tue.nl

The Abdus Salam

Technische Universiteit | .
T . nternational Centre
Eindhoven < : P . .
U / e University of Technology ICT for Theoretical Physics

http://corbetta.phys.tue.nl/

Testing: main question

1. Does my code work?
(...broad question...)

Testing: main question

1. Does my code work?

(...broad question...)
..as in.,

2. Does my code have the expected features and functionalities?
[e.g. “client” request; in science: "do | match the analytic solution?”]

3. Does my code still work?
[e.g. after a modification of myself, collaborators,...]

This lecture

* Testing: introduction to the concept
* Contemporary testing as in the scientific method
* Scales of testing
* Contemporary vs. traditional testing
e Unit testing heuristics/best practices

* Testing in python
* Naive approach
°* nosetests
 More advanced nose (fixture options, coverage reports)

Contemporary testing anatomy: Key idea

We ASSERT that our software satisfies a given requirement
The test is passed if the assertion is satisfied; it fails otherwise

The validity of our assertions is checked through programs and scripts.

In general:
1 Test = piece of software that checks 1 ASSERT

Scientific method analogy

Scientific method:

We run experiments to invalidate
(or “prove/hinting correctness of”) an hypothesis.

A test is like an experiment

Functional testing paradigm:
Arrange —> preparation of e.g. script that checks for feature
Act =2 run the test
ASSERT -2 if fails an issue is found

Scientific method analogy

Set

Functional testing paradigm: ' | Preconditions
Arrange v

Invoke

ACt y \ ! System-under-test

v
Check

ASSERT \ € Postconditions

Success No ' Send

—

? Alert

- es ¢

Release
Resources

Scales of testing

Good modern software comes as a collection of weakly coupled
modules operated together to deliver a result.

Testing follows these scales

V4

“Microscopic” “Macragscopic

; 1

* Individual functions
* complete functionality

* Individual classes

UNIT TESTING INTEGRATION TESTING SYSTEM TESTING ACCEPTANCE TESTING \
“does this element “does this set of “does this software, as a “does the software mee
behaves as expected?” elements together whole, behaves as client’s expectations?”
behaves as expected?” expected?” |
|

Developers Client

In other words

* Unit test: if fails -> a piece of your code needs to be fixed.

* Integration test: if fails -> pieces of your application are not working
together as expected.

* System test: if fails -> it tells that the application is not working as
expected

* Acceptance test: if fails -> the application is not doing what the
customer expects it to do.

* Regression test: when it fails, it tells you that the application no
longer behaves the way it used to.

answered Oct 7 '11 at 3:44

2 | Mathias
‘ 10.3k *6 241 88

Issues emerge
with usage or

Issues emerge
In development

"Contemporary” vs. “traditiona

In production

\

\

III

testing

—* Traditional approach & pitfalls

* System tested as a whole

* High complexity (how do | build a proper test?)

* Hard to test individual components

* Hard to find sources of errors

* Testing done through print statements/debuggers/script

—

K Contemporary/Unit testing
* Lower complexity
* Compliance to past requirements easily checked by module

e To the limit: Test Driven Development (TDD — Exercise this afternoon)
* As arequirement is identified, tests are written before the implementation

Black Box vs. White box testing

Black box .

 Tests functionality without
knowledge of internal structure

* Cost effective: High -> can be
authored by non-developers (no
biases though!)

e Efficacy: low -> relies on tester’s
luck about triggering all internals

White box
* Test with knowledge of internals

* Cost effective: Low -> Must be
written by developers

e Efficacy: high -> all internals can
be triggered

White box testing “quality” metrics: coverage

* If parts of our code are not tested (i.e. not covered by a test)

bugs have higher chance to reach production
pandas: powerful Python

* LI ne Cove rage Latest Release [pypi v0.22.0)

* Percentage of lines that are covered by at least one test
(an if condition might be unsatisfied in all tests, thus the package Status
if-true branch remains always untested).

License license BSD

* Branch coverage Buid Status

* 100% line coverage might still leave many branches
(that grow combinatorically) unexplored.
Branch coverage counts how many of all branches are

“seen” by at least one test. Downloads
Gitter gitter |join chat

Unit testing heuristics 1

1. Create test when object design is complete
In TDD write test when interface is defined

2. Design components that are testable
Make life of a tester easy: e.g. allow swappable mocks

3. Testing time slows down development
make quick tests (at run time)
make tests that are no-brainer to run
4. Develop tests using effective number of testing cases
Heads up: generally combinatorial explosion of inputs, cannot be matched

by as many ASSERT
Selecting relevant & (all) edge cases -> more practice than theory

Unit testing heuristics 2

5. |If possible compare e.g. with analytic solution or even slower-but-
working versions of the same algorithms

(Model-based testing)

6. In computing: knowing about internal computing mechanisms to make
relevant tests
1. respect computer arithmetic
2. Avoid non-determinism/fix seed in testing

7. REM: a failed test means a bug is introduced, not the other way
around!

8. Best practice: Every new bug -> new test
against future regressions (e.g. from rollbacks)

Unit testing in Python: naive way

$ python tests.py
import my package

def test 1():
<preparation>
assert condition f 1

def test 2():
<preparation>

assert condition f 2

if name == ' main_ ’':

test 1()
test 2()

Unit testing in Python: naive way

$ python tests.py
Issues:
import my_package Not immediate
def test 1(): cannot be run without thought
<preparation> Not scalable
e.g. need to add calls under the if shield

assert condition f 1
Output does not come as a simple report

def test 2():
Running individual tests requires work

<preparation>
assert condition f 2

Common issues!

Common solution:
using testing frameworks..

if name == ' main_ ’':

test 1()
test 2()

Unit testing in Python

* Python comes with packages helping unit testing
* Note: Unit testing libraries exist for any programming language.
e Same concepts as here apply (compiler might be needed)

* E.g. Nosetest, PyTest, doctest

Nosetest

* nose runs tests in files/directories under the cwd
((?:\b] _)[Tt]est)
 whose names include “test” or “Test” at a word boundary
* (like “test_this” or “functional_test” or “TestClass” but not “libtest”).

* Test output includes captured stdout output from failing tests, for easy
debugging.

* Returns a report of pass/failures with different possible levels of
verbosity

* Can return coverage report

Nosetest - installation

*viaplporeasy install

$ easy install nose

S pip install nose

Test successful installation:

wWin

acorbe@Alessandros-MacBook-Pro ~ $ pwd
/Users/acorbe Call nosetests in an empty folder.

acorbe@Alessandros-MacBook-Pro ~ $ nosetests The program terminates successfully with no test run.

Ran @ tests in 0.004s

0K
acorbe@Alessandros-MacBook-Pro ~ $

Nosetest - examples

* Testingmy sum.py

from __future__ import print_function
import sys

def

def

sum_foo(a,b):
return a + b

converter(x):
return float(x)

def main():

a = converter(sys.argv([1])
b = converter(sys.argv[2])
ret = sum_foo(a,b)
print(ret)

return ret

if __name__ ==

main()

(basics)

1— acorbe-gpu@crowdflow2: ~/workspace/ML-for-turbulence/1D/goy_working/GOY-n

lacorbe@Alessandros-MacBook-Pro 1
7.0

| acorbe@Alessandros—-MacBook-Pro 1

[master] $ python my_sum.py 3 4

[master] $

Nosetest - examples

* Testingmy sum.py (basics)

from __future__ import print_function ,
import sys '® ® 11— acorbe-gpu@crowdflow2: ~/workspace/ML-for-turbulenc

lacorbe@Alessandros-MacBook-Pro 1 [master] $ tree

def sum_foo(a,b):

return a + b —— my_sum. py
— my_sum. pyc
def converter(x): — tests
return float(x) — __init__.py
— __init__.pyc
def main(): — tests.py
a = converter(sys.argv([1]) : —— tests.pyc
b = converter(sys.argv[2])
ret = sum_foo(a,b) |1 directory, 6 files
print(ret) acorbe@Alessandros-MacBook-Pro 1 [master] $ [
return ret
if __name__ ==
main()

Nosetest - examples

* Testingmy sum.py

from __future__ import print_function
import sys

def

def

def

if __name__

sum_foo(a,b):
return a + b

converter(x):
return float(x)

main():

a = converter(sys.argv([1])
b = converter(sys.argv[2])
ret = sum_foo(a,b)
print(ret)

return ret

main()

(basics)

tests/test.py

Smport my_sum

def test_sum_function():

a=2
b =3
assert my_sum.sum_foo(a,b)

def test_conversion():

a =
assert my_sum.converter(a)

def test_invalid_conversion():

a =
assert my_sum.converter(a)

Nosetest - examples

 Testingmy sum.py (basics) tests/test.py

from __future__ import print_function

import sys Smport my_sum

def sum_foo(a,b): def test_sum_function():

return a + b

def converter(x):

a 2
b=3
return float(x) a

ssert my_s

def main(): test_conversion():

a = converter(sys.argv([1])
b = converter(sys.argv[2])
ret = sum_foo(a,b)
print(ret)

return ret

assert my_sum.converter(a)

if __name__ ==
main()

Nosetest - examples

* Testingmy sum.py (basics)

“mport my_sum

S nosetests -v

® @ 1— acorbe-gpu@crowdflow2: ~/workspace/ML-for-turbulence/1D/goy_working/GOY-model/prepared_chunks_04.17 — -bash — 110x36

def test sum function(): - lacorbe@Alessandros-MacBook-Pro 1

acorbe@Alessandros-MacBook-Pro 1

[master] $ 1s
| my_sum. py my_sum. pyc tests
[master] $ nosetests -v

3 = 2 =P tests that the summation operation is performed correctly ... ok

b=3

tests that the command-line number converter performs properly ...
—————"'—J'vtests that the command-line number converter performs properly ...

assert my_sum.sum_foo(a,b)

| ERROR: tests that the command-line number converter performs properly

Traceback (most recent call last):

def test_conversion():
self.test(xself.arg)

a =
assert my_sum.converter(a)

| assert my_sum.converter(a) ==

. . . | return float(x)
def test_invalid_conversion():

File "/Users/acorbe/anaconda/lib/python2.7/site-packages/nose/case.py", line 197, in runTest

File "/Users/acorbe/workspace/2018-corbetta-collaborative—-computing-lectures/introduction_to_low_level_testi
ng/examples/1/tests/tests.py", line 17, in test_invalid_conversion

File "/Users/acorbe/workspace/2018-corbetta-collaborative—-computing-lectures/introduction_to_low_level_testi
ng/examples/1/my_sum.py", line 8, in converter

ValueError: could not convert string to float: a

a= {Ran 3 tests in 0.004s

assert my_sum.converter(a) == 6 FAILED (errors=1)

| acorbe@Alessandros—-MacBook-Pro 1

Nosetest - examples

* Previous tests: unit tests
* One scale up: integration (here also system test)

* We fake command line parameters, we expect the sum
* |ssue: we need to hijack sys.argv parameters
* Fixture: we temporarily change the sys.argv state.

* Fixture (in general)
* pre-test setup + post-test teardown
* Turn module, class, package to favorable fake state

Nosetest - examples

* Fixture example: naive implementation.

—

def test():
setup_test()
try:
do_test()
make test assertions()
finally:
cleanup_after_test()

A lot of tests with similar structure

Common issue -> nose helps

acorbeéAlessandros—MacBook—Pro 2 [master] $ tree

my_sum. py
my_sum. pyc

tests

Nosetest - examples i

 System-level testing

tests.py
tests.pyc

tests aggregate.
Te51Ss. aggregate. pyc

1 directory, 8 files

- . - - r N a |

from __future__ import print_function
import sys

def sum_foo(a,b):
return a + b

def converter(x):
return float(x)

def main():
a = converter(sys.argv([1])
b = converter(sys.argv[2])
ret = sum_foo(a,b)
print(ret)
return ret

if __name__ ==
main()

from nose.tools import with_setup
import sys
import my_sum

=[]
def setup_function():
argv_copyl[:] = [x for x in sys.argv]

def teardown_function():
sys.argv[:] = [x for x in argv_copy]

(setup_function, teardown_function)
def test_input():
sys.argv = [, ,]
assert abs(my_sum.main() - 21) < (5 % sys.float_info.epsilon)l

Nosetest - examples

S nosetests -v Runs ALL tests
. ® ® 2 — acorbe-gpu@crowdflow2: ~/workspace/ML-for-turbulence/1D/goy_working/GO'
° -
SyStem |eve| tEStIng acorbe@Alessandros-MacBook-Pro 2 [master] $ nosetests -v
: i i tests that the summation operation is performed correctly ... ok
from __future__ import print_function tests that the command-line number converter performs properly ... ok
import sys system level: hijacks argv and checks correct output ... ok

def sum_foo(a,b):

return a + b Ran 3 tests in 0.005s

OK
def converter(x): acorbe@Alessandros-MacBook-Pro 2 [master] $ [

return float(x) Runs easily SPECIFIC tests

def main(): S nosetests —v tests.tests aggregate
a = converter(sys.argv([1])

w w L T dLUIVETYPNUWLITUWUITIUWZ, M/ WUIRSPAULC/IVILTIUVIT WU DUITTILE] T/ YUY _WUIRIIIY/ OU T THHIVUEH IS
b = converter(sys.argv[Z]) acorbe@Alessandros-MacBook-Pro 2 [master] $ nosetests tests.tests_aggregate -v
ret = Sum_fOO(a, b) system level: hijacks argv and checks correct output ... ok
print(ret)
return ret Ran 1 test in 0.001s
0K
if __name__ == : acorbe@Alessandros-MacBook-Pro 2 [master] $ [
main()

NOTE: 1n general no strict
equality checks on float ops

 System-level testing
from nose.tools import with_setup

from __future__ import print_function import sys
import sys import my_sum

def sum_foo(a,b):

return a + b =[]
def setup_function():
def converter(x): argv_copyl[:] = [x for x in sys.argv]

return float(x)

— def teardown_function():

def main(): sys.argv[:] = [x for x in argv_copy]
a = converter(sys.argv([1])

b = converter(sys.argv[2])

ret = sum_foo(a,b) (setup_function, teardown_function)
print(ret) def test_input():
return ret sys.argv = [, ,]

assert abs(mz_sum.main() - 21) < (5 % szs.float_info.eesilon)l

if __name__ ==
main()

I Topic of this afternoon lecture

Nosetest — (more) advanced usage
(selected topics)

* nose supports fixtures (setup and teardown methods) at the package,
module, class, and test level.

* Module: setup module() and teardown module() are called as
the package is imported

* Package: 1init .py should contain setup package() ,
teardown package(). Aftersetup the testin the first module start

* test Class
* Inherits from unittest.TestCase or name matching regex

e Methods in the class that match testMatch are discovered
e atest case is constructed to run each method with a fresh instance of the test class.

https://docs.python.org/dev/library/unittest.html

Nosetest — coverage report
--with-coverage argument

L w Z — acorpe-gpu@crowariows: ~/Workspace/viL-Tor-turouience/ 1u/goy_working/Guy-moaei/pi

acorbe@Alessandros-MacBook-Pro 2 [master] $ nosetests -v ——with-coverage -v
nose.config: INFO: Ignoring files matching ['M\\.', '~_', '"“setup\\.py$'l]
tests that the summation operation is performed correctly ... ok

tests that the command-1line number converter performs properly ... ok

system level: hijacks argv and checks correct output ... ok

Name Stmts Miss Cover

my_sum. py 14 1 93%

Just 93%

Ran 3 tests in 0.006s
What happened???

0K
acorbe@Alessandros-MacBook-Pro 2 [master] $ l

1 line is missing. Which one?

Nosetest — hotline coverage report
--with-coverage --cover-html

. 2 — acorbe-gpu@crowdflow2: ~/workspace/ML-for-turbulence/1D/goy_working/GOY-model/prepared_chur

acorbe@Alessandros-MacBook-Pro 2 [master] $ nosetests -v ——with-coverage --cover-html
tests that the summation operation is performed correctly ... ok

tests that the command-1line number converter performs properly ... ok

system level: hijacks argv and checks correct output ... ok

Name Stmts Miss Cover

my_sum. py 14 1 93%

Ran 3 tests in 0.008s

OK
acorbe@Alessandros-MacBook-Pro 2 [master] $

The folder “cover” with html
description is generated

Nosetest — coverage report

- C (© file:///Users/acorbe/workspace/2018-corbetta-collaborative-computing-l¢

Coverage report: 93%

Module) statements missing
my_sum.py 14 1
Total 14 1

coverage.py v4.5.1, created at 2018-04-26 17:50

excluded

coverage
93%
93%

S C @ file:///Users/acorbe/workspace/2018-corbetta-collaborative-compu

Coverage for my_sum.py : 93%

14 statements 13 run| 1 missing | 0 excluded

from _ future__ import print_function
import sys

def sum_foo(a,b):
return a + b

def converter(x):
return float(x)

def main():
a = converter(sys.argv[1])
b = converter(sys.argv[2])
ret = sum_foo(a,b)
print(ret)
return ret

if _name__ == '_main__':
| main()

« index coverage.py v4.5.1, created at 2018-04-26 17:50

