Floating Point Arithmetic

Alessandro Corbetta

Errors in Scientific Computing

* Before computations:
* Modeling -- Neglecting certain properties
* Empirical data -- Not every input is known perfectly

* Previous computations -- Data may be taken from other (error-prone)
numerical methods

* Sloppy programming -- E.g. inconsistent conversions

* During computations
* Truncation -- Approximations from numerical method

* Rounding -> computers offer only finite precision in representing real
numbers (THIS LECTURE)

Example 1: earth surface calculation

A = 4 r-

* Modeling -- Earth is NOT a perfect sphere

* Empirical data -- rr contains measurement errors
* Truncation -- our calculation employs a finite amount of digits for it
* Rounding -> the multiplications are rounded

Table of contents

Intro: Errors in scientific computing
* Simple example: “walking forward”

Floating point number representation in scientific computing
 Numbers representation (IEEE 754)
* Ranges and Density
* Rounding & Machine epsilon

* FP Arithmetics and pitfals
* FP arithmetics |= exact arithmetics
 Numerical cancellation
* Equality checks

 Building robust tests w/ FP arithmetics
* Exercises

Rounding

* Efficiency/Memory reasons =>

* amount of information numeric variables carry:
LIMITED to N bits (usually 8/16/32/64/80/128)

* trade-off between speed and accuracy

e A variable of N bits can represent exactly 2N states.
e E.g. int ->32bit numbers between -2.147.483.648 and +2.147.483.647
* 2732 ~ 4B states
e 1is the smallest non-zero number representable
* Integer: OK with “digital thinking”
* ISSUE: we often need to deal with real numbers:

* 0.03, 445.67, e, Gas constant R in Sl units, pi, Universal gravitational constant in Sl units
* Our height compared to the earth radius...

Rounding

* We can fabricate many encodings carrying real numbers in 32bit

 Key observation:

regardless the encoding
we cannot bypass the limit of 32bit worth of information!

e Simple example - Fixed point arithmetic:
we scale the integers by a given factor
e.g. Scale: 1/10.000, 32bit
-214.748,3648 and +214.748,3647

e Still inconvenient: need to agree on the scale
cannot represent numbers smaller than 1/10.000 or too large.

32 bit of information

IEEE 754 Floating-point number representation
(single precision case)

» Standard representation since the 90’s. Now at 2008 revision

* |dea:
‘X = 22.841796875) = \+0. 22841796875 - 10)_2
Y Y
Usual decimal notation Normalized scientific notation
(0.<non_zero>....)

I We conveniently use base 2
- x =+0.1011011010111100000000 - 200000101

- Sign: 1bit Mantissa: 23bit exponent: 8bit

(with bias)

IEEE 754 Floating-point number representation
(single precision case)

sign exponent{8-bit) fraction (23-bit)
L I I

00111110001000000000000000000000 =0.15625

31 23 0

x = +0.101101 ... 201111-buas

 Different chunks of the 32bits serve different purposes
* Sign -> 1bit
e Scale (exponent) -> 8bit
* Fraction/Significand/Mantissa -> 23bit
* We use normalized representation: the first “fractional” digit is always 1!
(one bit gain!)
* The exponent is stored normalized: real exp = storedexp — bias(127)

* The exponent “storedexp = 0” is kept for special cases

IEEE 754 Floating-point number representation
(single precision case)

sign exponent{8-bit) fraction (23-bit)
L I I

00111110001000000000000000000000 =0.15625

31 23 0

x = +0.101101 ... 201111+bas

 Different chunks of the 32bits serve different purposes
* Sign -> 1bit
e Scale (exponent) -> 8bit
* Fraction/Significand/Mantissa -> 23bit
* Heads up: Floating-point arithmetic comes with different rules!

e UNDERSTANDING THE RULES: ESSENTIAL!
* Past: several devastating accidents (related to guidance problem)

Example 2: Constant speed walking: how far do | get?
(A journey with rounding errors)

* Walking forward with constant velocity
X=v
e This can be discretized as

Xpn+l = X + AtV

* For simplicity let the displacement be Arv = 1.

e |ISSUE: naive implementations rapidly yield wrong results due to rounding errors

Example 2: Constant speed walking: how far do | get?
(A journey with rounding errors)

import numpy as np
$pylab inline

exponent fraction
[l l
X = np.floatl6(0.) ## initial position at 0. using half-precision to cut it short
u = np.floatlé6(l.) ## displacement at every time step 1) 0 0
15 10 0

time = range(int(5e3))
saving step = 100
for t in time:

X += u

if t % saving step == 0:

history.append(x)

plt.figure(figsize = (8,6))
plt.plot(np.array(time[::saving step]), label = 'Exact solution')
plt.plot(history,label="Numeric integration')
plt.xlabel('time')
plt.ylabel('position')

plt.legend()

5000 1 — Exact solution

Example 2
(A journey with rounding errors) **

3000 -

position

2000 -

1000 A

"Walking" with 3 significant digits (as in base for simplicity 10)

« initial position: 0.000 - 10°
next step: 0.100 - 10!

*me

position: 999 = 0.999 - 10°
next step: 999 + 1 = 0.100 - 10°
next step:

(1000 + 1) = 0.100 - 10° + 0.1 - 10* = 0.1001 - 10° - 0.100 - 10°

where the last arrow performed the truncation operation as we retain 3 digits only.

Digging in the [EEE 754 standard

Single precision: 32 bit

sign exponent{8-bit)

fraction (23-bit)

Largest possible number is = 3.4* 1038 (decimal repr.)

Iy If

' Smallest positive number is ~1.8* 10-38

00111110001 0000000000000000000O00O

31 23 0
Double precision: 64 bit Largest possible number is = 1.798- 103%¢ (decimal repr
exponent fraction
sign (11 bit) (52 bit) Smallest positive number is = 2.22 -107398
[I | (we can go subnormal -> a little lower)
o) o) o)
03 52 0

More recently: quad precision 128 bit, half-precision 16 bit (deep learning)

What the |[EEE 754 Standard defines

* Arithmetic operations
* (add, subtract, multiply, divide, square root, fused multiply-add, remainder)

* Conversions between formats
* Encodings of special values

* This ensures portability of compute kernels

IEEE 754 implications: number density

* number of significant digits FIXED =>number density decreases
* the exponent determines the number density

 Example: 32 bit float

8 bits exponents

O is represented with exponent -127

126 negative exponents, each has 2*23 unigue numbers
e Totalin (0,1) =1,056,964,608

Boundaries: {0}, {1} (2 contributions)
* Total in [0,1] = 1,056,964,610

REM: Total available numbers in 32bit: 2232 = 4,294,967,296

IEEE 754 number density — numbers in [O,1]

About 25% of all numbers
available in FP are between
0.0and 1.0

IEEE 754 number density - numbers in [-1,1]

Hence about 50% of all
numbers available in FP are
between -1.0 and 1.0

IEEE 754 number density

A

HHM*WIHHHHHI ——— | | |

* the same number of bits is used for the significand =>
exponent determines representable number density

e e.g. in a single-precision floating-point number there are 8,388,606 numbers
* between 1.0 and 2.0, but only 16,382 between 1023.0 and 1024.0

* Accuracy depends on the magnitude

* For instance: all numbers beyond a threshold are even
-> We lose the “unit bit” O(1)
* single-precision: all numbers beyond 224 are even
* double-precision: all numbers beyond 253 are even

Y

IEEE 754 — Unit of Last Position (ULP) &
rounding error

* ULP: spacing between two neighboring floating-point numbers.
e x = 0.11010100 - 2¢*P
—

How large is the increment if the last zero is shifted to one?

*IULP ~ 2 x relative error that we make as we truncate

e Machinee: ULPforx =1

Example:
el00 ~ 2.6881171418161356 10%3

* If we take the approximation literarily:
 26,881,171,418,161,356,000,000,000,000,000,000,000,000,000

 actual value stored (after float64 binary representation)
* 26,881,171,418,161,356,094,253,400,435,962,903,554,686,976

e correct value
- 26,881,171,418,161,354,484,126,255,515,800,135,873,611,118

* ISSUE: the correct value is NOT a float64 number and needs to be approximated
by rounded

a=26,881,171,418,161,351,142,493,243,294,441,803,958,190,080
b=26,881,171,418,161 ,|356,094,253,400,435,962,903,554,686,976

° W ®

a b Closest FP number:
distance < 0.5ULP => relative error

ulp

[EEE /54 Operations: sum

Sum a b:
Algorithm:

1. determine operand with smaller exponent (e.g. a)
2. transform the representation of a to have the same exponent of b
i.e. shift the mantissa

3. sum the mantissa (integer operation, temporarily on more bits)
4. normalize

5. round

6. truncate

ISSUE: the sum @ has different rules than on (usual “infinite precision”)
real numbers

[EEE 754 Operations: sum properties & issues

Real-numbers op

Floating-point op

ISSUE 1: Floating point sum is not associative!

a@®b=bPa

Commutative property Associative property

a+b=b+a (a+b)+c=a+(b+0)

(a@®b)DBc+ad (bDc)

Example

d = 1.0 + (1.5e38 + (-1.5e38));
printf ("%f", d); // prints 1.0

d = (1.0 + 1.5e38) + (-1.5e38);
printf ("%f", d); // prints 0.0

[EEE 754 Operations: sum properties & issues

ISSUE 2: subtractions of similar numbers (after rounding)
yields loss of precision

* After rounding, represented numbers come with error |e|<0.5ULP
» Catastrophic cancellation happens when similar operands subjected to rounding errors are subtracted.

EXAMPLE
a=0.123456789 — a, = 0.1234568
b =0.123455555 - b, = 0.1234556
a—b=0.000001234 = 0.123400000 - 10~7 = (a — b),

a, ® —b, = 0.1200000 - 10’

We lost precision with no possibility of gaining it back.
 REM: Extra care when dealing with subtractions of similar numbers
 REM: Extra-extra-extra care when using result in multiplication, since result is tainted by low accuracy

|[EEE 754 Operations: multiplication

multiplication a & b:
Algorithm:

1 multiply mantissa (yields a valid mantissa by construction)
2 sum exponents

3. normalize

4 round

5 truncate

Again the FP multiplication & is commutative but not associative
although “not plagued by cancellation”

ISSUE: we can overflow underflow exponents

|[EEE 754 Operations: order relations and
comparison

As numbers are known with accuracy 0.5ULP (or lower):

. equality is not well defined
. two numbers are “equal” (considering rounding)

if their relative difference is within few machine epsilon
. unsafe to use FP numbers e.g. as loop indices

. Rem when testing

|[EEE 754 standard — special numbers

The standard prescribes a special set of values to treat exceptions

Type Exp Fraction Sign
Positive Zero 0 0 0
Negative Zero 0 0 1
Denormalised numbers | O non zero | any
Normalised numbers | 1..2° — 2 | any any
Infinities 2¢ — 1 0 any

NaN 2¢ — 1 non zero ' any

IEEE 754 Operations: best practices

e Avoid summation of numbers with different order of magnitude as “small”
terms are discarded

* We can play smart algorithmic tricks:
e sum after sort to allow gradual growth of order of magnitude
* sum in blocks keeping order of magnitude commensurable
* use Kahan summation
* use higher precision variables

* Algorithmic tricks cannot help cancellation.
e Use your math
* Check for suitable library help (exp(x) -1, for x ~ 0)

Exercises

* Go online https://gitlab.com/acorbe/SMR3199 FP ex

* git clone git@gitlab.com:acorbe/SMR3199 FP ex.git

https://gitlab.com/acorbe/SMR3199_FP_ex

