Floating Point Arithmetic

Alessandro Corbetta

Errors in Scientific Computing

- Before computations:
- Modeling -- Neglecting certain properties
- Empirical data -- Not every input is known perfectly
- Previous computations -- Data may be taken from other (error-prone) numerical methods
- Sloppy programming -- E.g. inconsistent conversions
- During computations
- Truncation -- Approximations from numerical method
- Rounding -> computers offer only finite precision in representing real numbers (THIS LECTURE)

Example 1: earth surface calculation

$A=4 \pi r^{2}$

- Modeling -- Earth is NOT a perfect sphere
- Empirical data -- rr contains measurement errors
- Truncation -- our calculation employs a finite amount of digits for $\pi \pi$
- Rounding -> the multiplications are rounded

Table of contents

- Intro: Errors in scientific computing
- Simple example: "walking forward"
- Floating point number representation in scientific computing
- Numbers representation (IEEE 754)
- Ranges and Density
- Rounding \& Machine epsilon
- FP Arithmetics and pitfals
- FP arithmetics != exact arithmetics
- Numerical cancellation
- Equality checks
- Building robust tests w/ FP arithmetics
- Exercises

Rounding

- Efficiency/Memory reasons =>
- amount of information numeric variables carry:

LIMITED to N bits (usually $8 / 16 / 32 / 64 / 80 / 128$)

- trade-off between speed and accuracy
- A variable of N bits can represent exactly $2^{\wedge} \mathrm{N}$ states.
- E.g. int -> 32bit numbers between -2.147.483.648 and +2.147.483.647
- 2^32 ~ 4B states
- 1 is the smallest non-zero number representable
- Integer: OK with "digital thinking"
- ISSUE: we often need to deal with real numbers:
- $\mathbf{0 . 0 3}, 445.67$, e, Gas constant R in SI units, pi, Universal gravitational constant in SI units
- Our height compared to the earth radius...

Rounding

- We can fabricate many encodings carrying real numbers in 32bit
- Key observation:
regardless the encoding we cannot bypass the limit of 32bit worth of information!
- Simple example - Fixed point arithmetic:
we scale the integers by a given factor
e.g. Scale: $1 / 10.000,32$ bit
$-214.748,3648$ and $+214.748,3647$
- Still inconvenient: need to agree on the scale
cannot represent numbers smaller than 1/10.000 or too large.

IEEE 754 Floating-point number representation

 (single precision case)- Standard representation since the 90 's. Now at 2008 revision
- Idea:

$$
\cdot x=\underbrace{22.841796875}_{\text {Usual decimal notation }}=\underbrace{+0.22841796875 \cdot 10^{-2}}_{\substack{\text { Normalized scientific notation } \\(0 .<\text { non_zero>...) }}}
$$

We conveniently use base 2
$x=+0.1011011010111100000000 \cdot 2^{00000101}$

Sign: 1bit

IEEE 754 Floating-point number representation

 (single precision case)

- Different chunks of the 32 bits serve different purposes
- Sign -> 1bit
- Scale (exponent) -> 8bit
- Fraction/Significand/Mantissa -> 23bit
- We use normalized representation: the first "fractional" digit is always 1 ! (one bit gain!)
- The exponent is stored normalized: real exp = storedexp - bias(127)
- The exponent "storedexp $=0$ " is kept for special cases

IEEE 754 Floating-point number representation

 (single precision case)

- Different chunks of the 32 bits serve different purposes
- Sign -> 1bit
- Scale (exponent) -> 8bit
- Fraction/Significand/Mantissa -> 23bit
- Heads up: Floating-point arithmetic comes with different rules!
- UNDERSTANDING THE RULES: ESSENTIAL!
- Past: several devastating accidents (related to guidance problem)

Example 2: Constant speed walking: how far do I get?

 (A journey with rounding errors)- Walking forward with constant velocity

$$
\dot{x}=v
$$

- This can be discretized as

$$
x_{n+1}=x_{n}+\Delta t v
$$

- For simplicity let the displacement be $\Delta t v=1$.
- ISSUE: naïve implementations rapidly yield wrong results due to rounding errors

Example 2: Constant speed walking: how far do I get? (A journey with rounding errors)

```
import numpy as np
%pylab inline
history = []
x = np.float16(0.) ## initial position at 0. using half-precision to cut it short
u = np.float16(1.) ## displacement at every time step
```

```
time = range(int(5e3))
```

time = range(int(5e3))
saving_step = 100
saving_step = 100
for t in time:
for t in time:
x += u
x += u
if t % saving_step == 0:
if t % saving_step == 0:
history.append(x)
history.append(x)
plt.figure(figsize = (8,6))
plt.figure(figsize = (8,6))
plt.plot(np.array(time[::saving_step]), label = 'Exact solution')
plt.plot(np.array(time[::saving_step]), label = 'Exact solution')
plt.plot(history,label='Numeric integration')
plt.plot(history,label='Numeric integration')
plt.xlabel('time')
plt.xlabel('time')
plt.ylabel('position')
plt.ylabel('position')
plt.legend()

```
plt.legend()
```


Example 2

 (A journey with rounding errors)

"Walking" with 3 significant digits (as in base for simplicity 10)

- initial position: $0.000 \cdot 10^{0}$
- next step: $0.100 \cdot 10^{1}$
-
- position: $999=0.999 \cdot 10^{3}$
- next step: $999+1=0.100 \cdot 10^{5}$
- next step:

$$
(1000+1)=0.100 \cdot 10^{5}+0.1 \cdot 10^{1}=0.1001 \cdot 10^{5} \rightarrow 0.100 \cdot 10^{5}
$$

Digging in the IEEE 754 standard

Largest possible number is $\approx 3.4^{*} 10^{38}$ (decimal repr.)
Smallest positive number is $\approx 1.8^{*} 10^{-38}$

Largest possible number is $\approx 1.798 \cdot 10^{308}$ (decimal repr
Smallest positive number is $\approx 2.22 \cdot 10^{-308}$

Double precision: 64 bit

More recently: quad precision 128 bit, half-precision 16 bit (deep learning)

What the IEEE 754 Standard defines

- Arithmetic operations
- (add, subtract, multiply, divide, square root, fused multiply-add, remainder)
- Conversions between formats
- Encodings of special values
- This ensures portability of compute kernels

IEEE 754 implications: number density

- number of significant digits FIXED =>number density decreases
- the exponent determines the number density
- Example: 32 bit float
- 8 bits exponents
- 0 is represented with exponent -127
- 126 negative exponents, each has $2^{\wedge} 23$ unique numbers
- Total in $(0,1)=1,056,964,608$
- Boundaries: $\{0\},\{1\}$ (2 contributions)
-Total in $[0,1]=1,056,964,610$
- REM: Total available numbers in 32bit: 2^32 $=\mathbf{4 , 2 9 4 , 9 6 7 , 2 9 6}$

IEEE 754 number density - numbers in [0,1]

About 25\% of all numbers available in FP are between 0.0 and 1.0

IEEE 754 number density - numbers in [-1,1]

Hence about $\mathbf{5 0 \%}$ of all numbers available in FP are between -1.0 and 1.0

IEEE 754 number density

- the same number of bits is used for the significand => exponent determines representable number density
- e.g. in a single-precision floating-point number there are 8,388,606 numbers
- between 1.0 and 2.0, but only 16,382 between 1023.0 and 1024.0
- Accuracy depends on the magnitude
- For instance: all numbers beyond a threshold are even
-> We lose the "unit bit" O(1)
- single-precision: all numbers beyond 224 are even
- double-precision: all numbers beyond 253 are even

IEEE 754 - Unit of Last Position (ULP) \& rounding error

- ULP: spacing between two neighboring floating-point numbers.
$\cdot x=0.110 \underbrace{10100} \cdot 2^{\text {exp }}$
How large is the increment if the last zero is shifted to one?
- ULP ~ 2 x relative error that we make as we truncate
- Machine ϵ : ULP for $x=1$

Example:

$\mathrm{e}^{100} \approx 2.688117141816135610^{43}$

- If we take the approximation literarily:
- 26,881,171,418,161,356,000,000,000,000,000,000,000,000,000
- actual value stored (after float64 binary representation)
- 26,881,171,418,161,356,094,253,400,435,962,903,554,686,976
- correct value
- 26,881,171,418,161,354,484,126,255,515,800,135,873,611,118
- ISSUE: the correct value is NOT a float64 number and needs to be approximated by rounded
$\mathrm{a}=26,881,171,418,161,351,142,493,243,294,441,803,958,190,080$
$\mathrm{b}=26,881,171,418,161,356,094,253,400,435,962,903,554,686,976$

IEEE 754 Operations: sum

Sum $a \oplus b$:

Algorithm:

1. determine operand with smaller exponent (e.g. a)
2. transform the representation of a to have the same exponent of b i.e. shift the mantissa
3. sum the mantissa (integer operation, temporarily on more bits)
4. normalize
5. round
6. truncate

ISSUE: the sum \bigoplus has different rules than on (usual "infinite precision") real numbers

IEEE 754 Operations: sum properties \& issues

IEEE 754 Operations: sum properties \& issues

ISSUE 2: subtractions of similar numbers (after rounding)

yields loss of precision

- After rounding, represented numbers come with error |e|<0.5ULP
- Catastrophic cancellation happens when similar operands subjected to rounding errors are subtracted.

EXAMPLE

$$
\begin{aligned}
& a=\mathbf{0 . 1 2 3 4 5 6 7 8 9} \rightarrow a_{t}=0.1234568 \\
& b=\mathbf{0 . 1 2 3 4 5 5 5 5 5} \rightarrow b_{t}=0.1234556 \\
& \boldsymbol{a}-\boldsymbol{b}=\mathbf{0 . 0 0 0 0 0 1 2 3 4}=\mathbf{0 . 1 2 3 4 0 0 0 0 0} \cdot \mathbf{1 0}^{-7}=(\boldsymbol{a}-\boldsymbol{b})_{\boldsymbol{t}}
\end{aligned}
$$

$$
a_{t} \oplus-b_{t}=0.1200000 \cdot 10^{-7}
$$

We lost precision with no possibility of gaining it back.

- REM: Extra care when dealing with subtractions of similar numbers
- REM: Extra-extra-extra care when using result in multiplication, since result is tainted by low accuracy

IEEE 754 Operations: multiplication

multiplication $a \otimes b$:

Algorithm:

1. multiply mantissa (yields a valid mantissa by construction)
2. sum exponents
3. normalize
4. round
5. truncate

Again the FP multiplication \otimes is commutative but not associative although "not plagued by cancellation"

ISSUE: we can overflow underflow exponents

IEEE 754 Operations: order relations and comparison

As numbers are known with accuracy 0.5ULP (or lower):

- equality is not well defined
- two numbers are "equal" (considering rounding)
if their relative difference is within few machine epsilon
- unsafe to use FP numbers e.g. as loop indices
- Rem when testing

IEEE 754 standard - special numbers

The standard prescribes a special set of values to treat exceptions

Type	Exp	Fraction	Sign
Positive Zero	0	0	0
Negative Zero	0	0	1
Denormalised numbers	0	non zero	any
Normalised numbers	$1 . .2^{e}-2$	any	any
Infinities	$2^{e}-1$	0	any
NaN	$2^{e}-1$	non zero	any

IEEE 754 Operations: best practices

- Avoid summation of numbers with different order of magnitude as "small" terms are discarded
- We can play smart algorithmic tricks:
- sum after sort to allow gradual growth of order of magnitude
- sum in blocks keeping order of magnitude commensurable
- use Kahan summation
- use higher precision variables
- Algorithmic tricks cannot help cancellation.
- Use your math
- Check for suitable library help $(\exp (x)-1$, for $x \sim 0)$

Exercises

- Go online https://gitlab.com/acorbe/SMR3199 FP ex
- git clone git@gitlab.com:acorbe/SMR3199_FP_ex.git

