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Errors in Scientific Computing

• Before computations:
• Modeling -- Neglecting certain properties
• Empirical data -- Not every input is known perfectly
• Previous computations -- Data may be taken from other (error-prone) 

numerical methods
• Sloppy programming -- E.g. inconsistent conversions

• During computations
• Truncation -- Approximations from numerical method
• Rounding -> computers offer only finite precision in representing real 

numbers (THIS LECTURE)



Example 1: earth surface calculation

• Modeling -- Earth is NOT a perfect sphere
• Empirical data -- rr contains measurement errors
• Truncation -- our calculation employs a finite amount of digits for ππ
• Rounding -> the multiplications are rounded

! = 4 $%&



Table of contents

• Intro: Errors in scientific computing
• Simple example: “walking forward”

• Floating point number representation in scientific computing
• Numbers representation (IEEE 754)
• Ranges and Density
• Rounding & Machine epsilon

• FP Arithmetics and pitfals
• FP arithmetics != exact arithmetics
• Numerical cancellation
• Equality checks

• Building robust tests w/ FP arithmetics
• Exercises



Rounding

• Efficiency/Memory reasons => 

• amount of information numeric variables carry: 
LIMITED to N bits (usually 8/16/32/64/80/128)

• trade-off between speed and accuracy

• A variable of N bits can represent exactly 2^N states.

• E.g. int -> 32bit   numbers between  −2.147.483.648 and +2.147.483.647

• 2^32 ~ 4B states

• 1 is the smallest non-zero number representable

• Integer: OK with “digital thinking”

• ISSUE: we often need to deal with real numbers:
• 0.03, 445.67, e, Gas constant R in SI units, pi, Universal gravitational constant in SI units

• Our height compared to the earth radius…



Rounding

• We can fabricate many encodings carrying real numbers in 32bit

• Key observation: 
regardless the encoding 

we cannot bypass the limit of 32bit worth of information!

• Simple example - Fixed point arithmetic: 
we scale the integers by a given factor

e.g. Scale: 1/10.000, 32bit
−214.748,3648 and +214.748,3647

• Still inconvenient: need to agree on the scale
cannot represent numbers smaller than 1/10.000 or too large.



IEEE 754 Floating-point number representation
(single precision case) 

• Standard representation since the 90’s. Now at 2008 revision
• Idea:
• ! = 22.841796875 = +0. .2841796875 ⋅ 1001

__

! = +0.1011011010111100000000 ⋅ 222222323

Normalized scientific notation
(0.<non_zero>….)

Usual decimal notation

We conveniently use base 2

Sign: 1bit Mantissa: 23bit exponent: 8bit
(with bias)
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IEEE 754 Floating-point number representation
(single precision case) 

• Different chunks of the 32bits serve different purposes
• Sign -> 1bit
• Scale (exponent) -> 8bit  
• Fraction/Significand/Mantissa -> 23bit 

• We use normalized representation: the first “fractional” digit is always 1! 
(one bit gain!)
• The exponent is stored normalized: !"#$ exp = )*+!","-. − 01#)(127)
• The exponent “)*+!","-. = 0” is kept for special cases

- = ±0.101101… ⋅ 2<====>?@AB



IEEE 754 Floating-point number representation
(single precision case) 

• Different chunks of the 32bits serve different purposes
• Sign -> 1bit
• Scale (exponent) -> 8bit  
• Fraction/Significand/Mantissa -> 23bit 

• Heads up: Floating-point arithmetic comes with different rules!
• UNDERSTANDING THE RULES: ESSENTIAL!

• Past: several devastating accidents (related to guidance problem)

! = ±0.101101… ⋅ 2*++++,-./0



Example 2: Constant speed walking: how far do I get?
(A journey with rounding errors)

• Walking forward with constant velocity

• This can be discretized as

• For simplicity let the displacement be         = 1.

• ISSUE: naïve implementations rapidly yield wrong results due to rounding errors



Example 2: Constant speed walking: how far do I get?
(A journey with rounding errors)



Example 2
(A journey with rounding errors)



Digging in the IEEE 754 standard
Single precision: 32 bit

Double precision: 64 bit

More recently: quad precision 128 bit, half-precision 16 bit (deep learning)

Largest possible number is ≈ 3.4* 1038 (decimal repr.)

Smallest positive number is ≈1.8* 10−38

Largest possible number is ≈ 1.798· 10308 (decimal repr.)

Smallest positive number is ≈ 2.22 ·10−308

(we can go subnormal -> a little lower)



What the IEEE 754 Standard defines

• Arithmetic operations 
• (add, subtract, multiply, divide, square root, fused multiply-add, remainder)

• Conversions between formats
• Encodings of special values

• This ensures portability of compute kernels



IEEE 754 implications: number density

• number of significant digits FIXED =>number density decreases

• the exponent determines the number density

• Example: 32 bit float

• 8 bits exponents

• 0 is represented with exponent -127

• 126 negative exponents, each has 2^23 unique numbers

• Total in (0,1) = 1,056,964,608

• Boundaries: {0}, {1}  (2 contributions)

• Total in [0,1] = 1,056,964,610

• REM: Total available numbers in 32bit: 2^32 = 4,294,967,296



IEEE 754 number density – numbers in [0,1]

About 25% of all numbers 
available in FP are between 
0.0 and 1.0



IEEE 754 number density - numbers in [-1,1]

Hence about 50% of all 
numbers available in FP are 
between -1.0 and 1.0



IEEE 754 number density

• the same number of bits is used for the significand =>
exponent determines representable number density

• e.g. in a single-precision floating-point number there are 8,388,606 numbers
• between 1.0 and 2.0, but only 16,382 between 1023.0 and 1024.0

• Accuracy depends on the magnitude

• For instance: all numbers beyond a threshold are even 
-> We lose the “unit bit” O(1)
• single-precision: all numbers beyond 224 are even
• double-precision: all numbers beyond 253 are even



IEEE 754 – Unit of Last Position (ULP) & 
rounding error
• ULP: spacing between two neighboring floating-point numbers.
• ! = 0.1101010& ⋅ 2)*+

• ULP ~ 2 x relative error that we make as we truncate

• Machine ,: ULP for ! = 1

How large is the increment if the last zero is shifted to one?



Example:
e"## ≈ 2.6881171418161356 10/0

• If we take the approximation literarily:
• 26,881,171,418,161,356,000,000,000,000,000,000,000,000,000

• actual value stored (after float64 binary representation)
• 26,881,171,418,161,356,094,253,400,435,962,903,554,686,976

• correct value
• 26,881,171,418,161,354,484,126,255,515,800,135,873,611,118

• ISSUE: the correct value is NOT a float64 number and needs to be approximated 
by rounded

Closest FP number: 
distance < 0.5ULP => relative error



IEEE 754 Operations: sum

Sum  ! ⊕ #:
Algorithm:
1. determine operand with smaller exponent (e.g. a)
2. transform the representation of a to have the same exponent of b

i.e. shift the mantissa
3. sum the mantissa (integer operation, temporarily on more bits)
4. normalize
5. round 
6. truncate

ISSUE: the sum ⊕ has different rules than on (usual “infinite precision”) 
real numbers



IEEE 754 Operations: sum properties & issues
Commutative property Associative property

Real-numbers op ! + # = # + ! ! + # + % = a + (b + c)

Floating-point op ! ⊕ # = #⊕ ! ! ⊕ # ⊕ % ≠ a⊕ (b⊕ c)

ISSUE 1: Floating point sum is not associative!



IEEE 754 Operations: sum properties & issues
ISSUE 2: subtractions of similar numbers (after rounding) 

yields loss of precision

• After rounding, represented numbers come with error |e|<0.5ULP
• Catastrophic cancellation happens when similar operands subjected to rounding errors are subtracted.

EXAMPLE
! = #. %&'()*+89 → !/ = 0.1234567
8 = #. %&'()))55 → 8/ = 0.123455*

9 − ; = #. #####%&'( = #. %&'(##### ⋅ %#=+ = 9 − ; >

9> ⊕ −;> = #. %&##### ⋅ %#=+

We lost precision with no possibility of gaining it back.
• REM: Extra care when dealing with subtractions of similar numbers
• REM: Extra-extra-extra care when using result in multiplication, since result is tainted by low accuracy



IEEE 754 Operations: multiplication
multiplication  ! ⊗ #:
Algorithm:
1. multiply mantissa  (yields a valid mantissa by construction)
2. sum exponents
3. normalize
4. round
5. truncate

Again the FP multiplication ⊗ is commutative but not associative
although “not plagued by cancellation”

ISSUE: we can overflow underflow exponents



IEEE 754 Operations: order relations and 
comparison

As numbers are known with accuracy 0.5ULP (or lower):
• equality is not well defined
• two numbers are “equal” (considering rounding)

if their relative difference is within few machine epsilon
• unsafe to use FP numbers e.g. as loop indices

• Rem when testing



IEEE 754 standard – special numbers

The standard prescribes a special set of values to treat exceptions



IEEE 754 Operations: best practices

• Avoid summation of numbers with different order of magnitude as “small” 
terms are discarded
• We can play smart algorithmic tricks:
• sum after sort to allow gradual growth of order of magnitude
• sum in blocks keeping order of magnitude commensurable 
• use Kahan summation 
• use higher precision variables

• Algorithmic tricks cannot help cancellation. 
• Use your math 
• Check for suitable library help (exp(x) -1, for x ~ 0) 



Exercises

• Go online https://gitlab.com/acorbe/SMR3199_FP_ex

• git clone git@gitlab.com:acorbe/SMR3199_FP_ex.git

https://gitlab.com/acorbe/SMR3199_FP_ex

