Maths pitfalls

Almost all reals cannot be represented exactly

```
>>> 0.1+0.2
0.30000000000000004
>>> print '{:10.60f}'.format(0.1)
0.1000000000000000055511151231257827021
>>> print '{:10.60f}'.format(0.2)
0.200000000000000011102230246251565404236316680908203125000000
>>> print '{:10.60f}'.format(0.3)
0.299999999999999988897769753748434595763683319091796875000000
>>> print '{:10.60f}'.format(0.1+0.2)
0.300000000000000044408920985006261616945266723632812500000000
```


Maths pitfalls

FP maths is commutative, but not associative

Value1	Value2	Value3	Value4	Sum
$1.0 \mathrm{E}+30$	$-1.0 \mathrm{E}+30$	9.5	-2.3	7.2
$1.0 \mathrm{E}+30$	9.5	$-1.0 \mathrm{E}+30$	-2.3	-2.3
$1.0 \mathrm{E}+30$	9.5	-2.3	$-1.0 \mathrm{E}+30$	0

the result of a summation depends on the order of how the numbers are summed up
results may change significantly, if a compiler changes the order of operations for optimisation
prefer adding numbers of same magnitude
avoid subtracting very similar numbers

Ill-conditioned matrices

$1.0000 x+1.0000 y=2.0000$
$1.0000 x+1.0001 y=2.0000$

$1.0000 x+1.0000 y=2.0000$
$1.0000 x+1.0001 y=2.0001$

$$
\begin{array}{rlrl}
\frac{x}{1000}+y & =1 & x=\frac{1000}{999} \\
x+y & =2 & y & =\frac{998}{999}
\end{array}
$$

$\frac{x}{1000}+y=1$

$$
-999 y=-998
$$

$$
\frac{x}{1000}+y=1
$$

$$
y=1.00
$$

$$
\begin{aligned}
\frac{999}{1000} y & =\frac{998}{1000} \\
x+y & =2
\end{aligned}
$$

$$
1.00 y=1.00
$$

$$
x+y=2
$$

Inversion of Extremely Ill-Conditioned Matrices in Floating-Point

Siegfried M. Rump

$$
A_{4}=\left(\begin{array}{rrrr}
-5046135670319638 & -3871391041510136 & -5206336348183639 & -6745986988231149 \\
-640032173419322 & 8694411469684959 & -564323984386760 & -2807912511823001 \\
-16935782447203334 & -18752427538303772 & -8188807358110413 & -14820968618548534 \\
-1069537498856711 & -14079150289610606 & 7074216604373039 & 7257960283978710
\end{array}\right)
$$

$$
\begin{gathered}
\operatorname{inv}_{\mathrm{f}}\left(A_{4}\right)=\left(\begin{array}{rrrr}
-3.11 & -1.03 & 1.04 & -1.17 \\
0.88 & 0.29 & -0.29 & 0.33 \\
-2.82 & -0.94 & 0.94 & -1.06 \\
4.00 & 1.33 & -1.34 & 1.50
\end{array}\right) \\
\mathrm{f}\left(A_{4}^{-1}\right)=\left(\begin{array}{rrrr}
8.97 \cdot 10^{47} & 2.98 \cdot 10^{47} & -3.00 \cdot 10^{47} & 3.37 \cdot 10^{47} \\
-2.54 \cdot 10^{47} & -8.43 \cdot 10^{46} & 8.48 \cdot 10^{46} & -9.53 \cdot 10^{46} \\
8.14 \cdot 10^{47} & 2.71 \cdot 10^{47} & -2.72 \cdot 10^{47} & 3.06 \cdot 10^{47} \\
-1.15 \cdot 10^{48} & -3.84 \cdot 10^{47} & 3.85 \cdot 10^{47} & -4.33 \cdot 10^{47}
\end{array}\right)
\end{gathered}
$$

