
Ivan	Giro*o	–	igiro*o@ictp.it	
Informa(on	&		Communica(on	Technology	Sec(on	(ICTS)	

Interna(onal	Centre	for	Theore(cal	Physics	(ICTP)			

Debugging	&	Profiling	with	
Open	Source	SW	Tools	

Ivan	Giro=o			
igiro=o@ictp.it	 Debugging	&	Profiling	with	Open	Source	SW	Tools	

OUTLINE	
•  Debugging	

•  Profiling	
•  Prac(cal	examples				

2	

What	is	Debugging	?!		
•  Iden(fying	the	cause	of	an	error	and	correc(ng	it		
•  Once	you	have	iden(fied	defects,	you	need	to:		

–  find	and	understand	the	cause		
–  remove	the	defect	from	your	code	

•  In	a	large	number	of	cases	bug	fixes	are	wrong:		
–  they	remove	the	symptom,	but	not	the	cause		

•  Improve	produc(vity	by	geNng	it	right	the	first	(me		
•  A	lot	of	programmers	don't	know	how	to	debug!		

–  Doesn't	add	func(onality	&	doesn't	improve	the	science	

•  Debugging	needs	prac(ce	and	experience:	
–  understand	the	science	and	the	tools		

Ivan	Giro=o			
igiro=o@ictp.it	 Debugging	&	Profiling	with	Open	Source	SW	Tools	 3	

Lot	of	(me	debugging.	We	did	learn	also	from	it,	
but	I	have	the	feeling	we	could	have	learnt	more	
things	about	Quantum	Espresso	if	we	hadn't	had	
to	be	debugging	for	so	long	(some	of	the	bugs	
we	had	were	due	to	our	lack	of	excellence	in	
programming	skills	and	were	not	specific	to	QE	
issues)		(Cit.	feedback	from	a	ICTP	Ac(vity)	

Ivan	Giro=o			
igiro=o@ictp.it	 Debugging	&	Profiling	with	Open	Source	SW	Tools	 4	

Errors	are	Opportuni(es		
•  Learn	from	the	program	you're	working	on:		

–  Errors	mean	you	didn't	understand	the	program.	If	you	knew	it	
be=er,	it	wouldn't	have	an	error.	You	would	have	fixed	it	already		

•  Learn	about	the	kinds	of	mistakes	you	make:		
–  If	you	wrote	the	program,	you	inserted	the	error		
–  Once	you	find	a	mistake,	ask	yourself:		

•  Why	did	you	make	it?	
•  How	could	you	have	found	it	more	quickly?		
•  How	could	you	have	prevented	it?	
•  Are	there	other	similar	mistakes	in	the	code?		

Ivan	Giro=o			
igiro=o@ictp.it	 Debugging	&	Profiling	with	Open	Source	SW	Tools	 5	

The	Nature	of	Bugs	
•  Straigh]orward	bug	to	intercept	and	solve	
•  The	program	crashes	unexpectedly	

–  the	problem	can	be	easily	reproduced	(lucky)	
–  bug	whose	causes	are	too	complex	to	be	reliably	reproduced;	it	
thus	defies	repair	

–  bug	disappears	when	debugging	a	problem	(compiling	with	-g	or	
adding	prints)	

•  The	produced	numbers	differ	from	what	we	expected		
–  	bug	generated	by	an	invalid	opera(ons	
–  	bug	disappears	when	debugging	a	problem	(compiling	with	-g	
or	adding	prints)	

	
Ivan	Giro=o			
igiro=o@ictp.it	 Debugging	&	Profiling	with	Open	Source	SW	Tools	 6	

Main	Reasons	of	Debugging	
•  Floa(ng	Point	Excep(ons	(FPE)	

– Overflow		
–  Invalid	Number	
– Division	by	Zero	

•  Out	of	bound	
•  Segmenta(on	Fault	
•  Not	expected	execu(on	flow	
•  The	Program	Hangs!	

Ivan	Giro=o			
igiro=o@ictp.it	 Debugging	&	Profiling	with	Open	Source	SW	Tools	 7	

Purpose	of	a	Debugger		
•  More	informa(on	than	print	statements		
•  Allows	to	stop/start/single	step	execu(on		
•  Look	at	data	and	modify	it	
•  'Post	mortem'	analysis	from	core	dumps		
•  Prove	/	disprove	hypotheses		
•  No	subs(tute	for	good	thinking		
•  But,	some(mes	good	thinking	is	not	a	subs(tute	for	
effec(vely	using	a	debugger!		

•  Easier	to	use	with	modular	code		

Ivan	Giro=o			
igiro=o@ictp.it	 Debugging	&	Profiling	with	Open	Source	SW	Tools	 8	

Approaches	
•  Print	Messages	and	Variables	J	
•  Compiler	Debug	Op(ons	
•  Core	analysis	
•  Run	the	Program	with	a	Debugger	
•  A=ach	Debugger	to	a	running	process	
•  Ask	for	help!	

Ivan	Giro=o			
igiro=o@ictp.it	 Debugging	&	Profiling	with	Open	Source	SW	Tools	 9	

Using	a	Debugger		
•  When	compiling	use	-g	op(on	to	include	debug	info	in	

object	(.o)	and	executable		
•  1:1	mapping	of	execu(on	and	source	code	only	when	

op(miza(on	is	turned	off	
–  problem	when	op(miza(on	uncovers	bug		

•  GNU	compilers	allow	-g	with	op(miza(on		
–  not	always	correct	line	numbers	
–  variables/code	can	be	'op(mized	away’		
–  progress	confusing	with	loop	unrolling		

•  strip	command	removes	debug	info		

Ivan	Giro=o			
igiro=o@ictp.it	 Debugging	&	Profiling	with	Open	Source	SW	Tools	 10	

Using	gdb	as	a	Debugger	
•  gdb	ex01-c	launches	debugger,	loads	binary,	stops	with	

(gdb)	prompt	wai(ng	for	input:		
•  run	starts	executable,	arguments	are	passed	Running	

program	can	be	interrupted	(ctrl-c)		
•  gdb	./prog	--args	arg1	-flag	passes	all	arguments	to	the	run	

command	inside	gdb		
•  conNnue	con(nues	stopped	program	
•  finish	con(nues	un(l	the	end	of	a	subrou(ne		
•  step	single	steps	through	program	line	by	line		
•  next	single	steps	but	doesn't	step	into	subrou(nes		

Ivan	Giro=o			
igiro=o@ictp.it	 Debugging	&	Profiling	with	Open	Source	SW	Tools	 11	

More	Basic	gdb	Commands		
•  print	displays	contents	of	a	known	data	object		
•  display	is	like	print	but	shows	updates	every	step		
•  where	shows	stack	trace	(of	func(on	calls)		
•  up	down	allows	to	move	up/down	on	the	stack		
•  break	sets	break	point	(uncondi(onal	stop),	loca(on	
indicated	by	file	name+line	no.	or	func(on		

•  watch	sets	a	condi(onal	break	point	(breaks	when	an	
expression	changes,	e.g.	a	variable)		

•  delete	removes	display	or	break	points		

Ivan	Giro=o			
igiro=o@ictp.it	 Debugging	&	Profiling	with	Open	Source	SW	Tools	 12	

Post	Mortem	Analysis	
•  Enable	core	dumps:	ulimit	-c	unlimited		
•  Run	executable	un(l	it	crashes;	will	generate	a	
file	core	or	core.<pid>	with	memory	image		

•  Load	executable	and	core	dump	into	debugger	
gdb	myexe	core.<pid>		

•  Inspect	loca(on	of	crash	through	commands:	
where,	up,	down,	list	

•  Use	directory	to	point	to	loca(on	of	sources		

Ivan	Giro=o			
igiro=o@ictp.it	 Debugging	&	Profiling	with	Open	Source	SW	Tools	 13	

Using	valgrind		
•  Run	valgrind	-v	./exe	to	instrument	and	run		
•  --leak-check=full	--track-origins=yes		
•  Output	will	list	individual	errors	and	summary		
•  With	debug	info	present	can	resolve	problems	to	line	
of	code,	otherwise	to	name	of	func(on		

•  Also	monitors	memory	alloca(on	/	dealloca(on	to	flag	
memory	leaks	(“forgo=en”	alloca(ons)		

•  Instrumenta(on	slows	down	execu(on	
•  Can	produce	“false	posi(ves”	(flag	non-errors)		

Ivan	Giro=o			
igiro=o@ictp.it	 Debugging	&	Profiling	with	Open	Source	SW	Tools	 14	

How	to	NOT	do	Debugging	
•  Find	the	error	by	guessing		
•  Change	things	randomly	un(l	it	works	(again)		
•  Don't	keep	track	of	what	you	changed		
•  Don't	make	a	backup	of	the	original		
•  Fix	the	error	with	the	most	obvious	fix		
•  If	wrong	code	gives	the	correct	result,	
and	changing	it	doesn't	work,	don't	correct	it.		

•  If	the	error	is	gone,	the	problem	is	solved.	
Trying	to	understand	the	problem,	is	a	waste	of	(me		

Ivan	Giro=o			
igiro=o@ictp.it	 Debugging	&	Profiling	with	Open	Source	SW	Tools	 15	

Debugging	Tools		
•  Source	code	comparison	and	management	tools:	diff,	

vimdiff,	emacs/ediff,	cvs/svn/git		
–  Help	you	to	find	differences,	origins	of	changes		

•  Source	code	analysis	tools:	compiler	warnings,	wnchek,	lint		
–  Help	you	to	find	problema(c	code	

•  Always	enable	warnings	when	programming		
•  Always	take	warnings	seriously	(but	not	all)		
•  Always	compile/test	on	mul(ple	pla]orms		

•  Bounds	checking	allows	checking	of	(sta(c)	memory	
alloca(on	viola(ons	(no	malloc)		

Ivan	Giro=o			
igiro=o@ictp.it	 Debugging	&	Profiling	with	Open	Source	SW	Tools	 16	

More	Debugging	Tools	
•  Using different compilers (Intel, GCC, Clang, ...)
•  Debuggers	and	debugger	frontends:	
gdb	(GNU	compilers),	idb	(Intel	compilers),	ddd	(GUI),	
eclipse	(IDE),	and	many	more...		

•  gprof	(profiler)	as	it	can	generate	call	graphs		
•  valgrind,	an	instrumenta(on	framework		

– Memcheck:	detects	memory	management	problems	
–  Cachegrind:	cache	profiler,	detects	cache	misses		
–  Callgrind:	call	graph	crea(on	tool		

Ivan	Giro=o			
igiro=o@ictp.it	 Debugging	&	Profiling	with	Open	Source	SW	Tools	 17	

How	to	Report	a	Bug(?)	to	Others	
•  Research	whether	bug	is	known/fixed	

– web	search,	mailing	list	archive,	bugzilla		
•  Provide	descrip(on	on	how	to	reproduce	the	
problem.	Find	a	minimal	input	to	show	bug.		

•  Always	state	hardware/sowware	you	are	using	
(distribu(on,	compilers,	code	version)		

•  Demonstrate,	that	you	have	invested	effort		
•  Make	it	easy	for	others	to	help	you!		

Ivan	Giro=o			
igiro=o@ictp.it	 Debugging	&	Profiling	with	Open	Source	SW	Tools	 18	

Profiling		
•  Profiling	usually	means:		

–  Instrumenta(on	of	code	(e.g.	during	compila(on)	
–  Automated	collec(on	of	(ming	data	during	execu(on		
–  Analysis	of	collected	data,	breakdown	by	func(on		

•  Example:	gcc	-o	some_exe.x	-pg	some_code.c	
–  ./some_exe.x		
–  gprof	some_exe.x	gmon.out		

•  Profiling	is	owen	incompa(ble	with	code	op(miza(on	
or	can	be	misleading	(inlining)			

Ivan	Giro=o			
igiro=o@ictp.it	 Debugging	&	Profiling	with	Open	Source	SW	Tools	 19	

Ivan	Giro=o			
igiro=o@ictp.it	 Debugging	&	Profiling	with	Open	Source	SW	Tools	 20	

