
Introduction to version
control & Git

Alessandro Corbetta

My Lectures

Testing intro
(now)

Git and version control
(Saturday)

Testing suites/CI
/conversational development

(Monday)

Software testing, versioning, quality control

Why version control is what everybody needs

• Soft start: latex alone

Why version control is what everybody needs

• Soft start: latex alone

• What changed across the versions?

• A sentence was better written in some
past version. Which one?

Why version control is what everybody needs

• Case of an “ordinary code”

THIS BUG CERTAINLY APPEARED WHEN

I DID THAT EDIT IN SOME VERSION…

• What changed across version?

• When was this bug introduced?

• What if I want to temporarily branch the

development to try an edit?

• NOTE: still the vanilla version… we have the

whole source in one file.

What if we want to keep many versions of

different files

Why version control is what everybody needs

• Case of a “collaborative code” (Ivan & myself)

• Ivan sent updates as email attachment. What did he change?

• I changed simultaneously other things in the same file

• What/how merge?

Why version control is what everybody needs

• Case of a “collaborative code” with 100/1000 developers

• 100/00 patches per day

• tons of email exchanges

• People going crazy

• Code NOT working

Why version control is what everybody needs

• Case of a “collaborative code” with 100/1000 developers

• 100/00 patches per day

• tons of email exchanges

• People going crazy

• Code ain’t working C

General solution for this general problem:

• We employ a (distributed) Version Control system

• Most internationally used: Git (by far)

• What Git helps us with:

SOLO benefits COLLABORATIVE additional benefits
Code in a “repository” Common “remote repository”
Track all past versions + rollback Merge contributions of different

developers
Compare past versions See who/when wrote any line
Branch development

Git commands for the SOLO version
git init .
• Clean start

• Git knows that the mycode folder has content to be tracked.

Git commands for the SOLO version

• Let’s use the converter.py example. After copying the basic files

Git commands for the SOLO version
git add <> / status / commit
• Let’s use the converter.py example. After copying the basic files

I want Git to start tracking these two files.

$ git add converter.py
$ git add tests/tests_unbiased.py

$ git status

$ git commit –m ‘Initial commit’
I took an initial snapshot.

Git commands for the SOLO version
git log
• git log (1 snapshot + hash -- unique)

Git commands for the SOLO version
git diff
• Starting with edits…
• git diff

shows the difference with
the last commit
• Standard patch format

• Works analogously (but
with arguments to compare
any version with any other
version)

Git commands for the SOLO version
git diff
• Starting with edits…
• After staging (git add converter.py) and committing, the log shows 2

versions

Git commands for the SOLO version

• Each commit generates a complete snapshot of the repository
git checkout <hash>
To go back to the previous version (some caveat “we are in detached head”)

Git commands for the SOLO version

• Each commit generates a complete snapshot of the repository
git checkout <hash>
To go back to the previous version (some caveat “we are in detached head”)

NOTE: need to use

git mv f1 f2
or
git rm f1

To move/remove and obtain the
expected behavior

Versions in git are a linked lists of hashes

time

Branches and branching

• By default we are in the master branch.
• Commit after commit the branch is advanced automatically

Branches and branching – git branch <>

• We create a new branch via
git branch testing

HEAD: a special branch pointing to the
current branch

git checkout testing git checkout master

Branches can advance independently!

• The wonder starts!!
• I can test new modifications (in testing) keeping the production

code (in master) always ready to operate

Branches can advance independently!

• The wonder starts!!
• I can test new modifications (in testing) keeping the production

code (in master) always ready to operate
• Master and testing can evolve separately

Merging
• git checkout master
• git merge iss53

Merging
• git checkout master
• git merge iss53

Manual merging might be needed (if merging is not obvious)

Collaborative development

origin
(remote)

git clone git@gitlab.com:acorbe/SMR3199_FP_ex.git

Alessandro

David

Ivan

git clone git@gitlab.com:acorbe/SMR3199_FP_ex.git

git clone git@gitlab.com:acorbe/SMR3199_FP_ex.git

David, Ivan and Alessandro have local repositories that mirror
the remote origin.

Collaborative development

origin
(remote)

git clone git@gitlab.com:acorbe/SMR3199_FP_ex.git

Alessandro

David

Ivan

git clone git@gitlab.com:acorbe/SMR3199_FP_ex.git

git clone git@gitlab.com:acorbe/SMR3199_FP_ex.git

David, Ivan and Alessandro have local repositories that mirror
the remote origin.

Multiple solutions to host
the server yourself

Collaborative development
What happens after clone?

Origin A0 A1 A2

master

Collaborative development
What happens after clone?

Origin A0 A1 A2

master

Alessandro & David both do git clone

Collaborative development
What happens after clone?

Origin A0 A1 A2

master

Alessandro

David

A0 A1 A2

master
origin/master

A0 A1 A2

master
origin/master

Collaborative development
What happens after clone?

Origin A0 A1 A2

master

Alessandro
(developed
feature B)

David
(developed
feature C)

A0 A1 A2

master
origin/master

A0 A1 A2

master
origin/master

B3
develop_A

C3
develop_D

Both David and Alessandro committed

Collaborative development
What happens after clone?

Origin A0 A1 A2

master

Alessandro
B ready for master

David
(developed
feature C)

A0 A1 A2

masterorigin/master

A0 A1 A2

master
origin/master

B3
develop_A

C3
develop_D

git checkout master
git pull
git merge develop_A

Collaborative development
What happens after clone?

Origin
is updated

A0 A1 A2

Alessandro
pushes B

David
(developed
feature C)

A0 A1 A2

master
origin/master

A0 A1 A2

master
origin/master

B3
develop_A

C3
develop_D

git push origin master

master
B3

Collaborative development
What happens after clone?

Origin
is updated

A0 A1 A2

Alessandro
pushed

David
Willing to push

A0 A1 A2

master
origin/master

A0 A1 A2

B3
develop_A

C3
develop_D

master
B3

git checkout master
git pull #UPDATES!!

master

B3
origin/master

HEAD

Collaborative development
What happens after clone?

Origin
idle

A0 A1 A2

Alessandro
idle

David
Wiling to push

A0 A1 A2

master
origin/master

A0 A1 A2

B3
develop_A

C3
develop_D

master
B3

git checkout develop_D

master

B3
origin/master

HEAD

Collaborative development
What happens after clone?

Origin
idle

A0 A1 A2

David
Ready to push

A0 A1 A2

master
origin/master

A0 A1 A2

B3
develop_A

C3
develop_D

master
B3

git merge master
develop now is
newer than master
by definition can
be safely merged
into master

master

B3
origin/master

HEAD

C4

Alessandro
idle

Collaborative development
What happens after clone?

Origin
idle

A0 A1 A2

David
Ready to push

A0 A1 A2

master
origin/master

A0 A1 A2

B3
develop_A

C3

develop_D

master
B3

git checkout master
git merge develop_D

masterB3
origin/master HEAD

C4

Alessandro
idle

Collaborative development
What happens after clone?

Origin
is updated

A0 A1 A2

David
pushes

A0 A1 A2

master
origin/master

A0 A1 A2

B3
develop_A

C3

develop_D

git push origin master

masterB3
origin/master

HEAD

C4

Alessandro
idle

C3

masterB3
C4

Pulling/Pushing commits to the origin

• The origin remote can change OR we want to change the origin
remote

• To update <branch> locally
• git checkout <branch>
• git pull origin <branch>

• To push the contribution back to the remote
• git checkout <branch>
• git push origin <branch>

Pulling/Pushing commits to the origin

