
Git is a distributed version control program.

Combine work of multiple collaborators
Understand changes
Support incremental development
Compare and revert to earlier versions
Backup
Parallel versions
Document development (for other developers and yourself, not for users)

→ version control is awesome. Use it all the time.

We're going to walk you through an example. The things we show you here will teach you all you need to
know to collaborate on your team project using Git.

Create a Github account and create a public repository called myrepo . Then go to a clean folder on your
computer and do:

>>> git clone https://github.com/<github_username>/myrepo.git
>>> cd myrepo

>>> scp -r user-guest@172.20.75.174:my_project/* .

At this point you could set some configurations.

Version control with Git
Stefan Richter (University College London)

Why version control?

Practical introduction by example

Setting up

>>> git config core.editor "emacs -nw" # or your favourite light-weight editor
>>> git config color.ui true

>>> git config --list # check that it worked!

To make settings for all repositories on your computer, add the flag --global after git config .

You can also set your user name and email like this:

>>> git config user.name "Stefan Richter"
>>> git config user.email "stefan.richter@foo.bar"

Your first best friend in Git is the command status :

>>> git status

It shows you the files in the repository, both tracked and untracked by Git. Use this command all the time to
know what's going on.

Your second best friend is diff . It shows you changes (differences) between versions. Without
arguments, it shows all changes made to tracked files in the repository since the last commit.

>>> git diff
>>> git diff <path/to/file>

(git diff can also be used to show differences between arbitrary revisions. You can google it.)

Use

>>> git log

to see the commit history on your current branch. I use git log -<number> a lot to only show the
<number> last commits, e.g.

>>> git log -3

Monitoring

Committing in Git works in two steps. First modified or untracked files are "registered" for the next commit
by using add . This is called staging. The staged files are then committed with commit :

Image from https://git-scm.com (license)

>>> git add <path/to/file> # file is now staged for commit

>>> git commit

Then write a commit message. We'll give you hints for what is a good message.

Good commit messages matter! Here are some good recommendations (weekend reading for you?).

To check which branch you are on:

>>> git branch # see where we are!
>>> git branch -a # what's the difference?

Committing

Branches

https://github.com/git/git-scm.com/blob/master/README.md#license
https://chris.beams.io/posts/git-commit

Create a new branch:

>>> git branch dev1 # dev1 is the name of the branch

Switch to the branch using checkout :

>>> git checkout dev1
>>> git branch # see where we are!

To merge my changes into another branch (let's say, master):

>>> git checkout master
>>> git merge dev1

See what our remote is:

>>> git remote # what's our remote
>>> git remote -v # some more info

To update the local repository (pull changes):

>>> git pull

To update the remote repository (push changes):

>>> git push origin master

A common workflow that your team could adopt:

Working with remote repositories: sharing

Image from https://git-scm.com (license).

Git is used widely and has many powerful features, but it also has terrible downsides. You might already
have noticed that it's quite difficult to use…

Here is a good post about problematic things in Git: https://stevebennett.me/2012/02/24/10-things-i-hate-
about-git

There are good alternatives to Git: Mercurial (hg), which is better, and Bazaar (bzr), which I know
nothing about.

Git's not perfect…

https://github.com/git/git-scm.com/blob/master/README.md#license
https://stevebennett.me/2012/02/24/10-things-i-hate-about-git/
https://www.mercurial-scm.org/
https://en.wikipedia.org/wiki/GNU_Bazaar

