
Collaborative coding:
conversational development
and Continuous Integration

Alessandro Corbetta

My Lectures

Testing intro
(now)

Git and version control
(Saturday)

Testing suites/CI
/conversational development

(Monday)

Software testing, versioning, quality control

The conversational development pipeline
Conversational development:

Development model => content & conversations between developers
Fosters collaborations w/o centralized entities

1. IDEA
2. ISSUE

3. PLANNING
4. CODING

5. COMMITTING

6. TESTING
7. REVIEWING

8. STAGING

9. PRODUCTION

10. FEEDBACK

Gitlab (and github) are meant to support
this development pipeline

Super-structure to a Git repository

What others developer did?

Content/commits
Issues

Merging your contribution

Testing

Issue at first
• I have an idea
• There is a bug
• I want to propose a new feature

Issue at first
• Case of a bug --> the issue got ticket number #113

From issue to code

• If Ivan is in charge of fixing #113:
• [Clones the code – if he does not have already]
• Branches master -> e.g. into branch ISSUE113 (for trackability)
• git checkout –b ISSUE113 master

ISSUE113

From issue to code

• If Ivan is in charge of fixing #113:
• [Clones the code – if he does not have already]
• Branches master -> e.g. into branch ISSUE113 (for trackability)
• git checkout –b ISSUE113

• Corrects bugs & make regression tests
• git add code tests
• git commit –m ‘[ISSUE #113] – how code and tests
have been changed’
• git push origin ISSUE113

master

ISSUE113

From issue to code
• If Ivan is in charge of fixing #113:
• git commit –m ‘[ISSUE #113] – how code and tests
have been changed’
• git push origin ISSUE113

master

ISSUE113

Ivan

origin/ISSUE113

master

ISSUE113

Origin

From issue to code
• If Ivan is in charge of fixing #113:
• git commit –m ‘[ISSUE #113] – how code and tests
have been changed’
• git push origin ISSUE113

ALWAYS DO specify the issue number in the
commit message. This will link
each contribution to the related motivation

Code review
git push origin ISSUE113

master is a privileged branch. Developers must not push directly! (generally is
also prohibited)

• Code review from authoritative parties is required

• Ask the authoritative part to merge your contribution through a merge request

master

ISSUE113

Origin

Code review
merge request
git push origin ISSUE113

master is a privileged branch. Developers must not push directly! (generally is
also prohibited)

• Code review from authoritative parties is required

• Ask the authoritative part to merge your contribution through a merge request

master

ISSUE113

Origin

Code review
merge request
git push origin ISSUE113

master is a privileged branch. Developers must not push directly! (generally is
also prohibited)

master

ISSUE113

Origin

Code review
merge request

master
ISSUE113

Origin

Code review
merge request

Code can (should) be reviewed
before merging by an authority

Automated testing

• We want to merge codes only if they pass tests!

• Continuous integration
each commit that we push to the origin is tested

I can merge safely: tests are passed

Continuous integration

• Each push undergoes automated remote testing
• All the users know in which state the committed code is

• If testing is quick, the development cycle until the merge to master
can be done very frequently
• Many github repos: hundreds merge per day after remote testing

• Continuous integration --> continuous deployment
• clients receive frequently the updated code as soon as it is merged

Continuous integration in gitlab/python

• a file in the repo root
.gitlab-ci.yml

tells the server how to run tests and in which environment
• Can be one single test case or a very complicated testing pipeline

with cross-test dependence.

Building continuous integration pipelines
Case of our python exercise
image: python:latest

variables:

PIP_CACHE_DIR: "$CI_PROJECT_DIR/.cache"

cache:

paths:

- .cache/pip

- venv/

before_script:

- python -V # Print out python version for debugging

- pip install virtualenv

- virtualenv venv

- source venv/bin/activate

- pip install numpy nose

test:

script:

- cd binary_str_2_float

- nosetests -v

.gitlab-ci.yml

Building continuous integration pipelines
Case of our python exercise
image: python:latest

variables:

PIP_CACHE_DIR: "$CI_PROJECT_DIR/.cache"

cache:

paths:

- .cache/pip

- venv/

before_script:

- python -V # Print out python version for debugging

- pip install virtualenv

- virtualenv venv

- source venv/bin/activate

- pip install numpy nose

test:

script:

- cd binary_str_2_float

- nosetests -v

We will run the tests in a “virtual linux machine” which runs
the latest python version. (Docker container)

.gitlab-ci.yml

Building continuous integration pipelines
Case of our python exercise
image: python:latest

variables:

PIP_CACHE_DIR: "$CI_PROJECT_DIR/.cache"

cache:

paths:

- .cache/pip

- venv/

before_script:

- python -V # Print out python version for debugging

- pip install virtualenv

- virtualenv venv

- source venv/bin/activate

- pip install numpy nose

test:

script:

- cd binary_str_2_float

- nosetests -v

The machine is empty. We need to configure it from scratch
every time. (good for reproducibility)/

.gitlab-ci.yml

Building continuous integration pipelines
Case of our python exercise
image: python:latest

variables:

PIP_CACHE_DIR: "$CI_PROJECT_DIR/.cache"

cache:

paths:

- .cache/pip

- venv/

before_script:

- python -V # Print out python version for debugging

- pip install virtualenv

- virtualenv venv

- source venv/bin/activate

- pip install numpy nose

test:

script:

- cd binary_str_2_float

- nosetests -v

Calls the tests and captures the value fail/pass return value

Result is sent back to the server.

.gitlab-ci.yml

Best practices
• Edits always follow issues
• Pull/commit/push/merge request often.
• You don’t want your version to diverge

• Make meaningful commit message
• Commit message should include ticket number
• NEVER commit products, just source.
• (products can be made in cloud by continuous integration)
• E.g. documentation can be generated by CI

• Never commit large binary files. Git does not properly understand
those

