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Equilibrium states

Let T : X — X be continuous and X a compact metric space. Consider
e P(X) the space of probability measures on the Borel sets of X
endowed with the weak* topology: (pin)n converges to p if

/qbd,u,, — /gf)du, for all ¢ : X — R continuous;

o P7(X) C P(X) the set of T-invariant probability measures;
e hy(T) the entropy of n € Pr(X).

Given a continuous potential ¢ : X — R, we say that pu € Pr(X)
is an equilibrium state for (T, ¢) if

hu(T)Jr/¢du=n€%tilzx){hn(T)+/¢dn}-

Remark
@ Measures of maximal entropy are equilibrium states for ¢ = 0.

@ SRB measures are equilibrium states for ¢ = log|det DT]|.
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The classical theory of equilibrium states for discrete-time dynamical
systems goes back to the 1970’s, with many contributions on their
existence and uniqueness/finiteness:

@ Shifts with finitely many symbols / uniformly hyperbolic systems:

» Bowen, Ruelle, Sinai, Walters

And not so classical...

@ Shifts with infinitely many symbols:

» Buzzi, Ledrappier, Lima, Sarig...
@ One-dimensional systems:

» Bruin, Demers, Hofbauer, lommi, Keller, Pesin, Senti, Todd...
@ Non-uniformly hyperbolic systems:

» Arbieto, Climenhaga, Fisher, Leplaideur, Matheus, Oliveira,
Ramos, Rios, Siqueira, Thompson, Varandas, Viana,...

Once the existence is established, a natural question arises:

Under which conditions do these equilibrium states depend
continuously on the dynamics/potential?
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Equilibrium stability

Let M be a compact Riemannian manifold. Consider

e F aset of C! local diffeomorphisms f : M — M endowed
with the C! topology;

@ C%(M) the space of Holder continuous potentials ¢ : M — R
endowed with the C% norm;

e F x C*(M) endowed with the product topology;

e H C F x C*(M) such that each (f,¢) € H has a unique
equilibrium state i 4.

We say that H is equilibrium stable if the function
H o (f,0) — pre € Pr(M)

is continuous.
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Uniformly expanding maps

A C! local diffeomorphism f : M — M is uniformly expanding if for some
choice of a Riemannian metric in M there is 0 < 1 such that for all x ¢ M

IDF(x) 7| < o
Example
Consider T =R9/Z9 and f : T¢ — T9 given by the quotient of a linear
map having a diagonal matrix with integer eigenvalues A1,..., Ay > 2.

Let € be the set of C! uniformly expanding maps.

Theorem (Bowen)
Each (f,¢) € £ x C*(M) has a unique equilibrium state jif 4. J

E x C*(M) is equilibrium stable.
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Hyperbolic potentials
Given ¢ > 0, define X.(f) as the set of points x € M where
n—1

lim inf 1 iZ;Iog IDF(F(x)) Y| < —c.
We say that a continuous ¢ : M — R is c-hyperbolic if the topological
pressure of ¢ is equal to the relative pressure of ¢ on the set (). Let
He =A{(f,¢) € F x C*(M) : ¢ is c-hyperbolic for f}
Theorem (Ramos-Viana)

Each (f,¢) € H. has finitely many equilibrium states. If {f~"(x)}n>0 is
dense in M for all x € M, then (f,¢) € H. has a unique equilibrium state.

Hi={(f,¢) € He : {f"(x)}n>0 is dense in M for all x € M} .

Main Theorem (A.-Ramos-Siqueira)
‘H? is equilibrium stable. J

José F. Alves (CMUP) Equilibrium stability Hyperbolic potentials 6 /30



Example: nonuniformly expanding maps

Let f : M — M be a C! local diffeomorphism for which there are § > 0
small, 0 <1 and A C M a (bad) domain of injectivity of f such that:

(1) [IDFY(x)|| < 1+, for every x € A;
(2) [IDFY(x)|| < o, for every x € M\ A.

There is ¢ > 0 such that if a Holder continuous ¢ : M — R has small
variation, i.e.

sup ¢ — inf ¢ < log deg(f),

then ¢ is c-hyperbolic. Consider F the class of C! local diffeomorphisms
satisfying (1)-(2) and

H={(f,¢): f €F and ¢ : M — R Holder with small variation}.

It follows from our Main Theorem that H is equilibrium stable.
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Metric entropy

Let T : X — X be a measurable transformation preserving some
probability measure ;.. We define the entropy of a partition® P as

Hu(P) = u(P)log u(P),
Pep

(with the convention that 0log 0 = 0). Consider for each n > 0
Pr=\/ T kP = {Po AT YP)N--- AT "(Pa): Po,....Pne 7:},
k=0
define the entropy of (T, ) with respect to P
1 1
hy(T,P)= lim —H,(P") = ir))f;HM(P"),

n—oo N

and the entropy of (T, 1)
hu.(T) = sup h,(f, P).
P

LA countable family of pairwise disjoint sets whose union hasfull y-measure.
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Topological pressure
Let X be a compact space, T : X — X and ¢ : X — R be continuous.
Given 0 > 0, x € X and n € N, consider the dynamic ball
Bn(x,0) = {y € X : dist(T/(x), T/(y)) <4, for 0<j<n}.
Define
Snd(x) = ¢(x) + &(T(x)) + -+ ¢(T"(x))
and

Spsd(x) = sup  Spo(y).

yEB,,(x,(S)
Consider for each N € N

Fn ={Bn(x,9); x € X and n > N}.

Given A C X, let Fn(A) be the set of at most countably many elements in
Fn which cover A. Define for a T-invariant set AC X, v>0and N e N

A6, 7, N) = inf e
mr(¢, N, 6,7, N) ue%v(/\) B(xza:)eue
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Define

mr (¢, 6,7) = (¢, A, 6,7, N),

Nlr—nkoo mT
and
Pr(¢. A\, 6) = inf{y > 0| mr(e,A,d,7) =0}

The relative pressure of ¢ on A is
PT(¢5A) = lim PT(¢5A56)
0—0
We call Pr(¢) := Pr(¢, X) the topological pressure of ¢. It satisfies

Pr(¢) = sup{P1(,A), Pr(¢, X\ A)}.

Theorem (Walters)
Priey= s {m(T)+ [san}.

neP7(X)
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Cones
Let E be a Banach space over K=TR or C.
A closed convex set {0} # C C E is called a cone if both

e VA>0: )X CC; and
e CN(-C)={0}.
A cone C defines a partial order in E through the relation
x<y<=y—-xecC.

The cone is called normal if
FJyeR:0<x<y = |Ix]| <Hlyll

Example

Consider E = CO(M) with the usual sup norm || ||o and
C={pecC'(M):p>0}

C is a normal cone in E (with v = 1).

v
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A bounded linear operator T : E — E is positive if
T(C)cCC.

Note that if T is positive, then T(x) < T(y) whenever x < y.
The dual space of E is

E* ={x": E — K| x" is linear and bounded},
and the dual operator T* : E* — E* is defined for each x* € E* by
T (x*)=x"oT.

Lemma (Mazur)

Let E be a Banach space partially ordered by a normal cone C with
non-empty interior and T : E — E a positive bounded operator.
Then the spectral radius of T is an eigenvalue of T*.

The spectral radius of T is
Ar = lim /777,
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Transfer operator
Define for (f, ¢) € H. the transfer operator
Ly COM) — CO(M)
which associates to each ¢ : M — R the continuous function
Lrg(p): M —R

defined by
Lego(x)= > e’ Wy(y).

yerf—1(x)

Considering C%(M) ordered by the cone of non-negative functions,
we have that Lr 4 is a positive bounded linear operator.
By Riesz-Markov Theorem, we may think of its dual operator

f.o P(M) — P(M).
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For every ¢ € CO(M) and every € P(M) we have

/ ¢ dLf 4n = / Lr o() dn.
For each neN we have

Fop()= Y eWp(y).

yef=n(x)

Moreover
||£}'¢|| = ||['?,¢1||, Yn > 1.

Using this, we can easily see that the spectral radius Ar 4 of Lf 4 satisfies

deg(f)ei”f‘ﬁ <Afp < deg(f)65“p¢.
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Reference measure

Consider C°(M) ordered by the cone C of non-negative functions.
Consider Ar 4 the spectral radius of Lf 4. By Mazur Lemma we have

Lemma

There exists a probability measure vr 4 satisfying Ly ,vf.¢ = Af gVf,0-

Lemma (Ramos-Viana)
If(f7 (Zs) S Hc, then )\f7¢ — ePf(¢)

Next goal: \f g is the only real eigenvalue of L} ; for (f,¢) € H¢.
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Hyperbolic times

We say that n is a hyperbolic time for x if

n—1
1 ,
= > log [ DF(FI(x)) 7! < —%, forall 1 < k < n.
j=n—k

Lemma (Pliss)
Each x € X (f) has infinitely many hyperbolic times. J

Let H, be the set of points for which n is a hyperbolic time.

Lemma (A.-Bonatti-Viana)

There is 61 > 0 such that if x € H, and € < 1, then the dynamic ball

Bn(x, ) is mapped diffeomorphically onto B(f"(x),e). Moreover, for all
Y,z € By(x,€) and all 1 < k < n we have

d(f" (y), " (2)) < e=*d(F"(y), "(2)).

v
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Eigenmeasures

Assume that L7 ;v = Av for some A € R and v € P(M).

Lemma (Existence of Jacobian)

If f%| A is injective, then

v(fk = ke=Skb gy,
(F<(A) /A NeeSitg

Lemma (Gibbs property)

For each € < 41 there exists C = C(g) > 0 such that if n is a hyperbolic
time for x € supp(v), then for all y € Bp(x,¢)

. V(Ba(x.2))
= P(Sndly) —nlogn) =
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Assume now that (f,¢) € HZ.
Proposition

A= ePr(9) s the only real eigenvalue of L} -

Lemma
supp(v) =

Given any open set U C M, we have M C J, oy F¥(U). Decompose U
into subsets V;(k) C U such that f¥|y,,y is injective. We have

1:V(M)§Z <ZZ/ \ee 75k¢(xd

k Vi(k)

<ZMZ sup (%0 (V;(k)).

xeV; (k)

Hence, there exists some V;(k) C U such that v(U) > v(V;(k)) > 0.
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Proof of Proposition
For € > 0 small and N € N we have

UU n(x,€).

n>N xeH,

Besicovitch Lemma gives a subcovering U with bounded overlaps.

For any v > log A, by Gibbs property there is C = C( ) >0 s.t.

Z e~V +Sned(x) < C Z e—(y—logA)n < Ce(1—log M)N
Bn(x,e)eUd n>N

Taking limit in N we obtain
me(p, Lc(F),e,7) = lim me(p,X(F),e,N,v) =0,
N——+o0
which then gives Pr(¢, X.(f)) < log A. Since ¢ is c-hyperbolic
log A < log Arg = Pr(¢) = Pr(¢, c(f)) < log A

Remark

H can be replaced by H. if £(f) C supp(v) for any eigenmeasure v.

J
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Continuity of transfer operators
Consider in C%(M) the seminorm

i () = o(y)
[Plo = ii?, dist(x, y)
and the norm
[ella = llello + @la-
As we are considering f and ¢ Holder, we can easily see that
Lfgy (C*(M)) C CHM).

Let B(C*(M)) be the space of bounded linear maps from C%(M) to
C*(M), with || || in the first space and || ||o in the second one. Define

M:H, — B(C*(M))
assigning to each (f, ¢) € HY the restriction of L¢ 4 to C*(M).

" is continuous.

Lemma J
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Let (7n, &n)n be any sequence in H converging to (f,¢) € HE.

For each x € M and i =1,...,deg(f) consider y; such f(y;) = x.
Since deg(f,) = deg(f) for large n, for each i =1,...,deg(f) there is a
unique y; , close to y; such that f(y; ,) = x. Moreover,

Yi,n — Vi, as n — oQ.
We have

1£.6 = Lrngall = sup [[Lr.s(¥) = Ls,0,(¥)llo
[lla<1

deg(f)

< sup sup Z [¥(yi He¢ i) _ e®nlyi, n)|
[¥llo <1 x€M =4

deg(f)

+ sup sup > e 0| () — (yin)l-

0], <1 xeM =

Since (yi n)n converges to y; and (¢n), converges to ¢, each term in the
last inequality converges to zero.
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Continuity of the pressure

Theorem
The function HE > (f, ) — Pr($) € R is continuous. J

Given any sequence (f,, ¢n)n in HE: converging to (f,¢) € HE, let
o )\, = ePn(®) the spectral radius of L, 4,,
o \ = e”r(®) be the spectral radius of Ly 4.

For all n we have

deg(f,,)einf% <\ < deg(fn)65”p¢".
The convergence of (f,, ¢n) to (f, $) gives that (An), is bounded, thus

having some accumulation point A € R. As \¢ 4 = e”7(?) is the only real
eigenvalue of E’;¢, to prove the Theorem above we are left to

Next goal: X is an eigenvalue for E;‘é’(ﬁ.
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Taking subsequences, we may assume that there is v € P(M) such that
vp 5 v and A\, — A
We need to see that L} ,(v) = Av. Since C%(M) is dense in CO(M), it is
enough to show that
L: o)) = M (y), Vi e CH(M).
For all ¢» € C*(M) we have

L ()W) = v (Lr ()
=v ( lim ﬁfm¢n(¢))
= lim v (Lf,4,(¢)

— 00 )
= I|m vn (Le, 0,(1))
= lim L% , (vn)(¥)

n—o00

= lim Awn(v)

n—-+00
= Av(y).
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Convergence to equilibrium

Considering again a sequence (f,, ¢n)n in H, converging to (f,¢) € He,
let now

@ /i, be the equilibrium state for (f,, ¢p);

@ 1o be a weak* accumulation point of (pn)n.

To prove our Main Theorem...

Next goal: g is an equilibrium state for (f, ).
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Lemma J

1o is an f-invariant measure.

Since each pu, is fy-invariant we have for any ¢ : M — R continuous

/(pofndun:/godun—>/godu0, as n — —+oo.

Hence, to verify the f-invariance of pyg it suffices to prove that

/goofndu,,—>/goofd,uo, as n — +o00.

< ‘/wofndun—/wofdun
+ ‘/cpofd,u,,—/gpofduo
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Variational Principle

We have
Pr(¢) = |IT Pt (¢n) (previous Theorem)
n—
= nl!rfw(h“"(f”) —|—/¢,, dun> (Walters Thm. + p, eq. state)
= Nim by, (fa) + /¢duo (¢n = ¢ and pn = p1)

. L < '
Final goal: n—h)TOO hyu,(fa) < hyo(F)

José F. Alves (CMUP) Equilibrium stability Hyperbolic potentials 26 / 30



Generating partitions

Given a partition P and x € M, consider P"(x) the element in V{_of kP
containing the point x. Notice that

P"(x) ¢ P"(x), forall n>0. (%)
A partition P with finite entropy such that for p almost every x € M we
have diam P"(x) — 0 is called a generating partition for (f, ).
Lemma (Aradjo)

Let pip R wo and P be a generating partition for all (f,, pun) such that
po(0P) = 0. Then limsup hy,, (fn) < hyo(f).
n—o0

By (), if we find a subsequence of times (nk)x such that
diam P"<(x) — 0 when k — oo, then P is a generating partition.
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Final step

o Consider §; > 0 given by A.-Bonatti-Viana Lemma.
@ Let P be a finite partition of M with diam(9dP) < d1 and 1o(9P) = 0.

@ As each x € ¥(f) has infinitely many hyperbolic times
we have (almost) finished the proof.

Proposition (Ramos-Viana)
If i is an equilibrium state for f € H., then u(xX.(f)) = 1. J
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