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Equilibrium states
Let T : X → X be continuous and X a compact metric space. Consider

P(X ) the space of probability measures on the Borel sets of X
endowed with the weak* topology: (µn)n converges to µ if∫

φdµn −→
∫
φdµ, for all φ : X → R continuous;

PT (X ) ⊂ P(X ) the set of T -invariant probability measures;

hη(T ) the entropy of η ∈ PT (X ).

Given a continuous potential φ : X → R, we say that µ ∈ PT (X )
is an equilibrium state for (T , φ) if

hµ(T ) +

∫
φ dµ = sup

η∈PT (X )

{
hη(T ) +

∫
φ dη

}
.

Remark

Measures of maximal entropy are equilibrium states for φ ≡ 0.

SRB measures are equilibrium states for φ = log | detDT |.
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The classical theory of equilibrium states for discrete-time dynamical
systems goes back to the 1970’s, with many contributions on their
existence and uniqueness/finiteness:

Shifts with finitely many symbols / uniformly hyperbolic systems:
I Bowen, Ruelle, Sinai, Walters

And not so classical...

Shifts with infinitely many symbols:
I Buzzi, Ledrappier, Lima, Sarig...

One-dimensional systems:
I Bruin, Demers, Hofbauer, Iommi, Keller, Pesin, Senti, Todd...

Non-uniformly hyperbolic systems:
I Arbieto, Climenhaga, Fisher, Leplaideur, Matheus, Oliveira,

Ramos, Rios, Siqueira, Thompson, Varandas, Viana,...

Once the existence is established, a natural question arises:

Under which conditions do these equilibrium states depend
continuously on the dynamics/potential?
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Equilibrium stability

Let M be a compact Riemannian manifold. Consider

F a set of C 1 local diffeomorphisms f : M → M endowed
with the C 1 topology;

Cα(M) the space of Hölder continuous potentials φ : M → R
endowed with the Cα norm;

F × Cα(M) endowed with the product topology;

H ⊂ F × Cα(M) such that each (f , φ) ∈ H has a unique
equilibrium state µf ,φ.

We say that H is equilibrium stable if the function

H 3 (f , φ) 7−→ µf ,φ ∈ Pf (M)

is continuous.
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Uniformly expanding maps

A C 1 local diffeomorphism f : M → M is uniformly expanding if for some
choice of a Riemannian metric in M there is σ < 1 such that for all x ∈ M

‖Df (x)−1‖ ≤ σ.

Example

Consider T d = Rd/Zd and f : T d → T d given by the quotient of a linear
map having a diagonal matrix with integer eigenvalues λ1, . . . , λd ≥ 2.

Let E be the set of C 1 uniformly expanding maps.

Theorem (Bowen)

Each (f , φ) ∈ E × Cα(M) has a unique equilibrium state µf ,φ.

E × Cα(M) is equilibrium stable.
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Hyperbolic potentials
Given c > 0, define Σc(f ) as the set of points x ∈ M where

lim inf
n→+∞

1

n

n−1∑
i=0

log ‖Df (f j(x))−1‖ ≤ −c.

We say that a continuous φ : M → R is c-hyperbolic if the topological
pressure of φ is equal to the relative pressure of φ on the set Σc(f ). Let

Hc = {(f , φ) ∈ F × Cα(M) : φ is c-hyperbolic for f }

Theorem (Ramos-Viana)

Each (f , φ) ∈ Hc has finitely many equilibrium states. If {f −n(x)}n≥0 is
dense in M for all x ∈ M, then (f , φ) ∈ Hc has a unique equilibrium state.

H∗c =
{

(f , φ) ∈ Hc : {f −n(x)}n≥0 is dense in M for all x ∈ M
}
.

Main Theorem (A.-Ramos-Siqueira)

H∗c is equilibrium stable.
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Example: nonuniformly expanding maps

Let f : M → M be a C 1 local diffeomorphism for which there are δ > 0
small, σ < 1 and A ⊂ M a (bad) domain of injectivity of f such that:

(1) ‖Df −1(x)‖ < 1 + δ, for every x ∈ A;
(2) ‖Df −1(x)‖ < σ, for every x ∈ M \ A.

There is c > 0 such that if a Hölder continuous φ : M → R has small
variation, i.e.

supφ− inf φ < log deg(f ),

then φ is c-hyperbolic. Consider F the class of C 1 local diffeomorphisms
satisfying (1)-(2) and

H = {(f , φ) : f ∈ F and φ : M → R Hölder with small variation}.

It follows from our Main Theorem that H is equilibrium stable.
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Metric entropy
Let T : X → X be a measurable transformation preserving some
probability measure µ. We define the entropy of a partition1 P as

Hµ(P) =
∑
P∈P

µ(P) logµ(P),

(with the convention that 0 log 0 = 0). Consider for each n ≥ 0

Pn =
n∨

k=0

T−kP =
{
P0 ∩ T−1(P1) ∩ · · · ∩ T−n(Pn) : P0, . . . ,Pn ∈ P

}
,

define the entropy of (T , µ) with respect to P

hµ(T ,P) = lim
n→∞

1

n
Hµ(Pn) = inf

n

1

n
Hµ(Pn),

and the entropy of (T , µ)

hµ(T ) = sup
P

hµ(f ,P).

1A countable family of pairwise disjoint sets whose union has full µ measure.
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Topological pressure
Let X be a compact space, T : X → X and φ : X → R be continuous.
Given δ > 0, x ∈ X and n ∈ N, consider the dynamic ball

Bn(x , δ) =
{
y ∈ X : dist(T j(x),T j(y)) < δ, for 0 ≤ j ≤ n

}
.

Define
Snφ(x) = φ(x) + φ(T (x)) + · · ·+ φ(T n−1(x))

and
Sn,δφ(x) = sup

y∈Bn(x ,δ)
Snφ(y).

Consider for each N ∈ N

FN = {Bn(x , δ); x ∈ X and n ≥ N}.
Given Λ ⊂ X , let FN(Λ) be the set of at most countably many elements in
FN which cover Λ. Define for a T -invariant set Λ ⊂ X , γ > 0 and N ∈ N

mT (φ,Λ, δ, γ,N) = inf
U∈FN(Λ)

 ∑
Bn(x ,δ)∈U

e−γn+Sn,δφ(x)

 .
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Define
mT (φ,Λ, δ, γ) = lim

N→+∞
mT (φ,Λ, δ, γ,N),

and
PT (φ,Λ, δ) = inf {γ > 0 | mT (φ,Λ, δ, γ) = 0}.

The relative pressure of φ on Λ is

PT (φ,Λ) = lim
δ→0

PT (φ,Λ, δ).

We call PT (φ) := PT (φ,X ) the topological pressure of φ. It satisfies

PT (φ) = sup {PT (φ,Λ), Pf (φ,X \ Λ)} .

Theorem (Walters)

PT (φ) = sup
η∈PT (X )

{
hη(T ) +

∫
φ dη

}
.

José F. Alves (CMUP) Equilibrium stability Hyperbolic potentials 10 / 30



Cones
Let E be a Banach space over K = R or C.
A closed convex set {0} 6= C ⊂ E is called a cone if both

∀λ ≥ 0 : λC ⊂ C; and

C ∩ (−C) = {0}.
A cone C defines a partial order in E through the relation

x ≤ y ⇐⇒ y − x ∈ C.

The cone is called normal if

∃ γ ∈ R : 0 ≤ x ≤ y =⇒ ‖x‖ ≤ γ‖y‖.

Example

Consider E = C 0(M) with the usual sup norm ‖ ‖0 and

C = {ϕ ∈ C 0(M) : ϕ ≥ 0}.

C is a normal cone in E (with γ = 1).
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A bounded linear operator T : E → E is positive if

T (C) ⊂ C.

Note that if T is positive, then T (x) ≤ T (y) whenever x ≤ y .
The dual space of E is

E ∗ = {x∗ : E → K | x∗ is linear and bounded},

and the dual operator T ∗ : E ∗ → E ∗ is defined for each x∗ ∈ E ∗ by

T ∗(x∗) = x∗ ◦ T .

Lemma (Mazur)

Let E be a Banach space partially ordered by a normal cone C with
non-empty interior and T : E → E a positive bounded operator.
Then the spectral radius of T is an eigenvalue of T ∗.

The spectral radius of T is

λT = lim
n→∞

n
√
‖ T n ‖.
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Transfer operator

Define for (f , φ) ∈ Hc the transfer operator

Lf ,φ : C 0(M) −→ C 0(M)

which associates to each ϕ : M → R the continuous function

Lf ,φ(ϕ) : M −→ R

defined by

Lf ,φϕ (x) =
∑

y∈ f −1(x)

eφ(y)ϕ(y).

Considering C 0(M) ordered by the cone of non-negative functions,
we have that Lf ,φ is a positive bounded linear operator.
By Riesz-Markov Theorem, we may think of its dual operator

L∗f ,φ : P(M)→ P(M).
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For every ϕ ∈ C 0(M) and every η ∈ P(M) we have∫
ϕ dL∗f ,φη =

∫
Lf ,φ(ϕ) dη.

For each n∈N we have

Lnf ,φϕ(x) =
∑

y∈ f −n(x)

eSnφ(y)ϕ (y) .

Moreover
‖Lnf ,φ‖ = ‖Lnf ,φ1‖, ∀n ≥ 1.

Using this, we can easily see that the spectral radius λf ,φ of Lf ,φ satisfies

deg(f )e inf φ ≤ λf ,φ ≤ deg(f )esupφ.
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Reference measure

Consider C 0(M) ordered by the cone C of non-negative functions.
Consider λf ,φ the spectral radius of Lf ,φ. By Mazur Lemma we have

Lemma

There exists a probability measure νf ,φ satisfying L∗f ,φνf ,φ = λf ,φνf ,φ.

Lemma (Ramos-Viana)

If (f , φ) ∈ Hc , then λf ,φ = ePf (φ).

Next goal: λf ,φ is the only real eigenvalue of L∗f ,φ for (f , φ) ∈ H∗c .
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Hyperbolic times

We say that n is a hyperbolic time for x if

1

k

n−1∑
j=n−k

log ‖Df (f j(x))−1‖ ≤ −c

2
, for all 1 ≤ k < n.

Lemma (Pliss)

Each x ∈ Σc(f ) has infinitely many hyperbolic times.

Let Hn be the set of points for which n is a hyperbolic time.

Lemma (A.-Bonatti-Viana)

There is δ1 > 0 such that if x ∈ Hn and ε ≤ δ1, then the dynamic ball
Bn(x , ε) is mapped diffeomorphically onto B(f n(x), ε). Moreover, for all
y , z ∈ Bn(x , ε) and all 1 ≤ k ≤ n we have

d(f n−k(y), f n−k(z)) ≤ e−ck/4d(f n(y), f n(z)).
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Eigenmeasures

Assume that L∗f ,φν = λν for some λ ∈ R and ν ∈ P(M).

Lemma (Existence of Jacobian)

If f k |A is injective, then

ν(f k(A)) =

∫
A
λke−Skφdν.

Lemma (Gibbs property)

For each ε ≤ δ1 there exists C = C (ε) > 0 such that if n is a hyperbolic
time for x ∈ supp(ν), then for all y ∈ Bn(x , ε)

C−1 ≤ ν(Bn(x , ε))

exp(Snφ(y)− n log λ)
≤ C .
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Assume now that (f , φ) ∈ H∗c .

Proposition

λf ,φ = ePf (φ) is the only real eigenvalue of L∗f ,φ.

Lemma

supp(ν) = M.

Given any open set U ⊂ M, we have M ⊂
⋃

k∈N f k(U). Decompose U
into subsets Vi (k) ⊂ U such that f k |Vi (k) is injective. We have

1 = ν(M) ≤
∑
k

ν(f k(U)) ≤
∑
k

∑
i

∫
Vi (k)

λke−Skφ(x)dν

≤
∑
k

λk
∑
i

sup
x∈Vi (k)

(eSkφ(x))ν(Vi (k)).

Hence, there exists some Vi (k) ⊂ U such that ν(U) ≥ ν(Vi (k)) > 0.
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Proof of Proposition
For ε > 0 small and N ∈ N we have

Σc(f ) ⊂
⋃
n≥N

⋃
x∈Hn

Bn(x , ε).

Besicovitch Lemma gives a subcovering U with bounded overlaps.
For any γ > log λ, by Gibbs property there is C̃ = C̃ (ε) > 0 s.t.∑

Bn(x ,ε)∈U

e−γn+Sn,εφ(x) ≤ C̃
∑
n≥N

e−(γ−log λ)n ≤ C̃ e−(γ−log λ)N

Taking limit in N we obtain

mf (φ,Σc(f ), ε, γ) = lim
N→+∞

mf (φ,Σc(f ), ε,N, γ) = 0,

which then gives Pf (φ,Σc(f )) ≤ log λ. Since φ is c-hyperbolic

log λ ≤ log λf ,φ = Pf (φ) = Pf (φ,Σc(f )) ≤ log λ.

Remark

H∗c can be replaced by Hc if Σc(f ) ⊂ supp(ν) for any eigenmeasure ν.
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Continuity of transfer operators
Consider in Cα(M) the seminorm

|ϕ|α = sup
x 6=y

|ϕ(x)− ϕ(y)|
dist(x , y)α

and the norm
‖ϕ‖α = ‖ϕ‖0 + |ϕ|α.

As we are considering f and φ Hölder, we can easily see that

Lf ,φ (Cα(M)) ⊂ Cα(M).

Let B(Cα(M)) be the space of bounded linear maps from Cα(M) to
Cα(M), with ‖ ‖α in the first space and ‖ ‖0 in the second one. Define

Γ : H∗c −→ B(Cα(M))

assigning to each (f , φ) ∈ H∗c the restriction of Lf ,φ to Cα(M).

Lemma

Γ is continuous.
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Let (fn, φn)n be any sequence in H∗c converging to (f , φ) ∈ H∗c .
For each x ∈ M and i = 1, . . . , deg(f ) consider yi such f (yi ) = x .
Since deg(fn) = deg(f ) for large n, for each i = 1, . . . , deg(f ) there is a
unique yi ,n close to yi such that f (yi ,n) = x . Moreover,

yi ,n → yi , as n→∞.

We have

‖Lf ,φ − Lfn,φn‖ = sup
‖ψ‖α≤1

‖Lf ,φ(ψ)− Lfn,φn(ψ)‖0

≤ sup
‖ψ‖α≤1

sup
x∈M

deg(f )∑
i=1

|ψ(yi )||eφ(yi ) − eφn(yi,n)|

+ sup
‖ψ‖α≤1

sup
x∈M

deg(f )∑
i=1

|eφn(yi,n)||ψ(yi )− ψ(yi ,n)|.

Since (yi ,n)n converges to yi and (φn)n converges to φ, each term in the
last inequality converges to zero.
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Continuity of the pressure

Theorem

The function H∗c 3 (f , φ) 7−→ Pf (φ) ∈ R is continuous.

Given any sequence (fn, φn)n in H∗c converging to (f , φ) ∈ H∗c , let

λn = ePfn (φn) the spectral radius of Lfn,φn ,

λ = ePf (φ) be the spectral radius of Lf ,φ.

For all n we have

deg(fn)e inf φn ≤ λn ≤ deg(fn)esupφn .

The convergence of (fn, φn) to (f , φ) gives that (λn)n is bounded, thus
having some accumulation point λ̄ ∈ R. As λf ,φ = ePf (φ) is the only real
eigenvalue of L∗f ,φ, to prove the Theorem above we are left to

Next goal: λ̄ is an eigenvalue for L∗f ,φ.

José F. Alves (CMUP) Equilibrium stability Hyperbolic potentials 22 / 30



Taking subsequences, we may assume that there is ν ∈ P(M) such that

νn
w∗−→ ν and λn −→ λ̄.

We need to see that L∗f ,φ(ν) = λ̄ν. Since Cα(M) is dense in C 0(M), it is
enough to show that

L∗f ,φ(ν)(ψ) = λ̄ν(ψ), ∀ψ ∈ Cα(M).

For all ψ ∈ Cα(M) we have

L∗f ,φ(ν)(ψ) = ν (Lf ,φ(ψ)) (by definition)

= ν
(

lim
n→∞

Lfn,φn(ψ)
)

(Γ is continuous)

= lim
n→∞

ν (Lfn,φn(ψ)) (ν is continuous)

= lim
n→∞

νn (Lfn,φn(ψ)) (νn → ν)

= lim
n→∞

L∗fn,φn(νn)(ψ) (by definition)

= lim
n→+∞

λnνn(ψ) (νn eigenmeasure)

= λ̄ν(ψ).
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Convergence to equilibrium

Considering again a sequence (fn, φn)n in Hc converging to (f , φ) ∈ Hc ,
let now

µn be the equilibrium state for (fn, φn);

µ0 be a weak* accumulation point of (µn)n.

To prove our Main Theorem...

Next goal: µ0 is an equilibrium state for (f , φ).
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Lemma

µ0 is an f -invariant measure.

Since each µn is fn-invariant we have for any ϕ : M → R continuous∫
ϕ ◦ fn dµn =

∫
ϕ dµn −→

∫
ϕ dµ0, as n→ +∞.

Hence, to verify the f -invariance of µ0 it suffices to prove that∫
ϕ ◦ fn dµn −→

∫
ϕ ◦ f dµ0, as n→ +∞.

For each n ∈ N we may write∣∣∣∣∫ ϕ ◦ fn dµn −
∫
ϕ ◦ f dµ0

∣∣∣∣ ≤ ∣∣∣∣∫ ϕ ◦ fn dµn −
∫
ϕ ◦ f dµn

∣∣∣∣
+

∣∣∣∣∫ ϕ ◦ f dµn −
∫
ϕ ◦ f dµ0

∣∣∣∣ .
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Variational Principle

We have

Pf (φ) = lim
n→+∞

Pfn(φn) (previous Theorem)

= lim
n→+∞

(
hµn(fn) +

∫
φn dµn

)
(Walters Thm. + µn eq. state)

= lim
n→+∞

hµn(fn) +

∫
φ dµ0 (φn → φ and µn → µ)

Final goal: lim
n→+∞

hµn(fn) ≤ hµ0(f ).
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Generating partitions

Given a partition P and x ∈ M, consider Pn(x) the element in ∨nk=0f
−kP

containing the point x . Notice that

Pn+1(x) ⊂ Pn(x), for all n ≥ 0. (∗)
A partition P with finite entropy such that for µ almost every x ∈ M we
have diamPn(x)→ 0 is called a generating partition for (f , µ).

Lemma (Araújo)

Let µn
w∗−→ µ0 and P be a generating partition for all (fn, µn) such that

µ0(∂P) = 0. Then lim sup
n→∞

hµn(fn) ≤ hµ0(f ).

By (∗), if we find a subsequence of times (nk)k such that
diamPnk (x)→ 0 when k →∞, then P is a generating partition.
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Final step

Consider δ1 > 0 given by A.-Bonatti-Viana Lemma.

Let P be a finite partition of M with diam(∂P) < δ1 and µ0(∂P) = 0.

As each x ∈ Σc(f ) has infinitely many hyperbolic times
we have (almost) finished the proof.

Proposition (Ramos-Viana)

If µ is an equilibrium state for f ∈ Hc , then µ(Σc(f )) = 1.
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Thank you!
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