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Given a smooth map f of a manifold M, we would like to describe the
long term behavior of its orbits (f n(x))n for most of its points x ∈ M.

The simplest way would be to approximate the behavior of most of the
points thanks to a finite number of points xi for which we can compute
the orbit (f n(xi ))n≥0.
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This ways has been efficient to understand many systems, such as:
• the flow given by the gradient of a Morse functions, or more
generally the Morse-Smale dynamics.

• The flow given by an integrable systems such as the pendulum.
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Unfortunately this does not work every times for two reasons:

First, Poincaré discovered that systems can be sensitive to the initial
condition at infinitely many points x . This means that for x ′ close to x ,
after a sufficiently large time n, the distance between f n(x) and f n(x ′) is
large. The time n can be a logarithmic function of x and x ′. As we never
know with full precision the position of a point, we cannot predict its
orbit.
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Secondly, a system can need a large number H(n) of points xj so that for
every x ∈ M, there exists i ≤ H(n) so that f m(x) and f m(xi ) are ε-close
for every m ≤ n. The number H(n) can be exponential in n:

h = lim
n→∞

1
n
logH(n) > 0 .

The number h is the topological entropy of the system. It does not
depend on ε-small.

Figure: The Smale horshoe is the source of positive topological entropy by a
theorem of Katok.
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However, we are allowed to discard the study of a number of points of
Lebesgue measures less than ε. Then we consider the number HLeb (n) of
points xj so that for 1− ε-all the points x ∈ M, there exists i ≤ HLeb (n)
so that f m(x) and f m(xi ) are ε-close for every m ≤ n. It can happen:

hLeb = lim sup
n→∞

1
n
logHLeb (n) > 0 .

The number hLeb is the (Kolmogorov-Sinai) metric entropy of the
system. It does not depend of ε-small.

Figure: Chaotic Island obtained by surgery from an Anosov map
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The systems of positive entropy are called chaotic. It is not possible to
understand most of the orbits of such systems. However, one can try to
understand the statistical behavior of most of the orbits.
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The statistical behavior of the orbit of x for a dynamics f is given by the
sequence of nth-Birkhoff average:

Sn
f (x) :=

1
n

n−1∑
i=0

δf i (x) .

We denote by Sf (x) the set of cluster values of this sequence.

When the system is conservative (it leaves invariant the Lebesgue
measure Leb ), then for Leb a.e. point x , the sequence (Sn

f (x))n
converges.
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A conservative system is called ergodic if lim Sn
f (x) is equal to a same

measure for Leb -a.e. x ∈ M. Then this measure is Leb (M) · Leb .

Bolzman ergodic hypothesis stated that a typical Hamiltonian dynamics,
the system is ergodic: statistical behaviour of almost all the orbits is
Leb (M) · Leb .

This conjecture turned out to be wrong with the KAM theory. Nearby
some integrable systems, there are (at least) infinitely many disjoint,
invariant torii whose union forms a subset of positive measure.
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Standard map (phase space)
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Detail
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Detail
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Still there are systems which are conservative and robustly ergodic. For
instance the uniformly hyperbolic systems. More generally the partially
hyperbolic, conservative systems are conjectured to be robustly ergodic
by Pugh & Shub.

Also, the ergodic component which persists by KAM theorem nearby
integrable systems are very well approximated by finitely many statistics.
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In the 90’s several conjectures (Tedeschini-Lalli & York, Pugh & Shub,
Palis & Takens, Palis, Viana) suggested that for many kinds of
(non-conservative) dynamical systems, there exists finitely many
measures which approximate well the behavior of nearby all the points.

Those conjectures have been verified in many cases thanks to the works
of Anosov, Sinai, Simányi, Shub, Pugh, Mañé, Marteens-Nikonov,
Lyubich, Wilkinson, Alvez, Bonatti, Viana, Benedicks, Tsujii, Crovisier,
Pujals, Obata ...
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On the other hand, recently it has been shown that wild dynamics are
typical in the sense of Kolmogorov in some cathegries of dynamical
systems:

Theorem (Berger 1 2 )
For every 1 ≤ r <∞, there exists an open set of C r -families U of
C r -self-mappings of Mn, so that a generic (fa)a ∈ U satisfies that for
every a, the dynamics fa displays infinitely many attracting cycles.

They display the Newhouse phenomenon: The sinks accumulate on the
space of ergodic measures of a uniformly hyperbolic horseshoe.

The families (fa) can be formed by diffeo if n ≥ 3.

1Pierre Berger, Inventiones Mathematicae 2016
2Pierre Berger, Proceeding of the Steklov institute 2017
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Wild dynamics are not negligible.

How to describe them?
How to describe their complexity?
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Let M be a compact manifold. Let W be the 1-Wasserstein metric on
the space of probability measuresM(M) of M:

W (µ, ν) = sup
φ 1−Lip

∫
φd(µ− ν) .

Definition (B. 3)
The metric emergence ELeb (f ) of f ∈ C 0(M,M) is the function which at
ε > 0 gives the minimal number N of probability measures (µi )1≤i≤N so
that ∫

M

W (Sf (x), {µi : 1 ≤ i ≤ N})dLeb < ε .

Conjecture (B. 3)
In many categories of differentiable mappings, a “typical map" f satisfies:

lim sup
ε→0

log ELeb (f )

− log ε
=∞ . (Super P)

3Pierre Berger, Proceeding of the Steklov institute 2017
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Definition (B. 4)
The metric emergence ELeb (f ) of f is the function which at ε > 0 gives
the minimal number N of probability measures (µi )1≤i≤N so that∫

M

W (Sf (x), {µi : 1 ≤ i ≤ N})dLeb < ε .

Conjecture (B. 4)
In many categories of differentiable mappings, a “typical map" f satisfies:

lim sup
ε→0

log ELeb (f )

− log ε
=∞ . (Super P)

• An ergodic map (such as a uniformly hyperbolic set, irrational
rotation) has emergence 1 (and not super P)

• Newhouse phenomena has not finite emergence. Is it typically Super
Pol?

• the identity of a d-manifold satisfies limε→0
log ELeb (f )
− log ε = d

• KAM implies that typical Hamiltonian system which displays a
totally elliptic point is at least polynomial. How about (Super P)?

4Pierre Berger, Proceeding of the Steklov institute 2017
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Theorem (Berger-Bochi)
For every r ∈ [5,∞], a generic map, surface, conservative mapping f is
either weakly stable (none of its perturbations display an elliptic point) or
its emergence is stretched exponential with exponent d = 2:

lim sup
ε→0

εd log ELeb(f )(ε) ∈ (0,∞) (exp ·d)

Remark
In particular, a generic mapping which displays an elliptic point has super
polynomial emergence.

Remark
We will see that the emergence of a mapping of a d-dimensional space
cannot be more than exp ·d .

Remark
Weakly stable mappings are conjecturally uniformly hyperbolic (Mañé
Like conjecture) and structurally stable (Lambda Lemma like conjecture).
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A rational function R of the Riemannian sphere is in the bifurcation locus
if it can be perturbed to displays d = deg R-different elliptic points.
When d ≥ 2, the bifurcation locus Biff ⊂ Rat(§) is a closed set of
positive Lebesgue measure: Leb (Biff ) > 0 by a Theorem of Rees and
Astorg - Gauthier - Mihalache - Vigny.

Theorem (Talebi, in progress)
For R ∈ Biff generic, for Lebesgue a.e. z in the sphere, the covering
number of SR(z) is super exponential. In particular, the metric
Emergence of R is super exponential.
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Comparing Emergence and Entropy.
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If (X , d) is a totally bounded metric space, the covering number Hd(ε) is
the minimal number of ε-balls necessary to cover X .

If µ is a probability measure on X , the quantization number Hd µ(ε) is
the minimal number N of points (xi )1≤i≤N such that:∫

X

d(x , {xi : i})dµ(x) < ε .

Proposition
The quantization number Hd µ(ε) is equal to the minimal cardinality of
the support of an atomic measure which is ε-close to µ for the
Wassertstein metric W .

It holds Hd µ ≤ Hd
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LetMf (X ) be the subset of f -invariant, probability measures, let
Me(X ) be the subset of ergodic ones.

Let µ ∈Mf (X ). Then the Birkhoff average S takes it value inMe(X )
for µ-a.e. x . The ergodic decomposion of µ is the pull back S∗µ of µ. It
is a probability measure onMe(X ).

The topological emergence Etop(f ) is the covering number ofMe(X ).

The metric emergence Eµ(f ) is the quantization number of S∗µ.

Theorem (Variational Principle, Berger-Bochi)
If X has box dimension d , then

sup
µ∈Mf (X )

lim sup
ε→0

log log Eµ(f )(ε)
− log ε

= lim sup
ε→0

log log Etop(f )(ε)
− log ε
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For every n, let dn(x , y) := sup0≤k≤n d(f k(x), f k(y)) .

Let Hn(ε) be the covering number of (X , dn). Let Hn µ(ε) be the
quantization number of (X , dn) for an (ergodic) measure µ.

The topological entropy is htop(f ) := lim supε→0 limn→∞
1
n logHn(ε).

The metric entropy is hµ(f ) := lim supε→0 limn→∞
1
n logHn µ(ε).

Theorem (Variational Principle)
If X has box dimension d , then

sup
µ∈Mf (X )

hµ(f ) = htop(f ) .
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Theorem (Kloeckner, Bolley-Guillin-Villani)
If X is a compact space with box dimension d , then the covering number
Hd(ε) ofM(X ) satisfies:

lim
ε→0

log logHd(ε)

− log ε
= d .

Corollary
The emergence of a map f of a manifold M satisfies:

lim sup
ε→0

log log Eµ(ε)
− log ε

≤ lim sup
ε→0

log log Etop(ε)
− log ε

≤ dimM .

Theorem (Margulis-Ruelle inequality)
If f is of class C 1+α, then hµ ≤

∫
log ‖Df ‖dµ ≤ log ‖Df ‖∞.
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Conjecture (Entropy)
Positive metric entropy is typical.

Theorem (Herman-Berger-Turaev)
Every C∞-surface, conservatif diffeo which displays an elliptic periodic
point can be approximated to a surface, conservatif diffeomorphism with
positive metric entropy.

Conjecture (Emergence)
Super polynomial emergence is typical.

Theorem (Berger-Bochi)
For every ∞ ≥ r ≥ 5, a generic C r -surface, conservative diffeomorphism
which displays an elliptic point has metric Emergence super polynomial.

There are C∞-conservative mappings with maximal emergence and
entropy zero. There are C∞-conservative mappings with positive entropy
and which are ergodic (and so trivial emergence).
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Theorem (Berger–Turaev, in progress)
Let U be the open set of C∞-sympletic mappings of a manifold M2n

which displays a totally elliptic periodic point. Then a generic family
(fa)a ∈ C∞(Rk ,U) satisfies that for every a ∈ Rk :

lim sup
ε→0

log log ELeb (fa)(ε)

− log ε
= 2n

In particular, super-polynomial emergence is Kolmogorov-typical in U .
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