# Anosov flows / exponential mixing / robustness

Oliver Butterley

ICTP

May 2018 Tarbiat Modares University

#### Anosov flows

 $\Phi^t: M \to M$  is Anosov if there exists a continuous invariant splitting  $T_x M = \mathbb{E}_s(x) \oplus \mathbb{E}_c(x) \oplus \mathbb{E}_u(x)$  and constants  $C, \lambda > 0$ , such that:

- $\mathbb{E}_c$  is 1D and coincides with the flow direction;
- $||D\Phi^t \nu|| \leq Ce^{-\lambda t} ||\nu||$  for each  $\nu \in \mathbb{E}_s$ ,  $t \geq 0$ ;
- $\|D\Phi^{-t}\nu\| \leq Ce^{-\lambda t} \|\nu\|$  for each  $\nu \in \mathbb{E}_u$ ,  $t \geq 0$ .

#### For example:

- Geodesic flows on surfaces of negative curvature;
- Hunt-MacKay triple linkage;
- Suspensions over Anosov maps.

Anosov flow ← vector field.

# Hunt-MacKay triple linkage

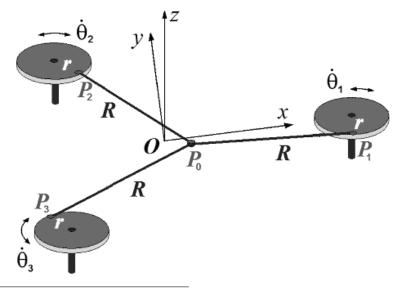


Image: http://www.sgtnd.narod.ru

#### SRB measures

Each transitive Anosov flow admits a unique SRB measure  $\mu$ .

Equivalently for Anosov flows (Sinai-Ruelle-Bowen):

- $\mu$  has absolutely continuous conditional measures on unstable manifolds.
- There is a full Lebesgue measure subset B such that, for every continuous observable  $f: M \to \mathbb{R}$ , for every  $x \in B$ ,

$$\frac{1}{t}\int_0^t f(\Phi^t x) \ dt \to \int_M f \ d\mu.$$

#### Perturbation

Two flows are  $C^r$ -close if the associated vector fields are  $C^r$  close.

Structural stability: A perturbed vector field (small perturbation) also defines an Anosov flow.

## Exponential mixing

 $\Phi^t: M \to M$  mixes exponentially if there exist  $C, \gamma > 0$  such that, for all  $C^1$  observables  $f, g: M \to \mathbb{R}$  and for all  $t \ge 0$ ,

$$\left| \int_{M} f \cdot g \circ \Phi^{t} \ d\mu - \int_{M} f \ d\mu \cdot \int_{M} g \ d\mu \right| \leq C \|f\|_{C^{1}} \|g\|_{C^{1}} e^{-\gamma t}.$$

We will always consider mixing w.r.t. the unique SRB measure.

#### Bowen-Ruelle conjecture

Every mixing Anosov flow mixes exponentially.

# (Un)stable foliations

- (Un)stable bundle is integrable;
- Leaves of the foliation are smooth (un)stable manifolds;
- (Un)stable bundle of an Anosov flow is Hölder continuous;
- Typically regularity is not better (Hasselblatt-Wilkinson).

# Theorem (Dolgopyat)

Suppose that  $\Phi^t: M \to M$  is a transitive Anosov flow and that the stable and unstable bundle of an Anosov flow are both  $C^1$ . If  $\mathbb{E}_s$  and  $\mathbb{E}_u$  are not jointly integrable then the flow mixes exponentially.

Joint non-integrability is  $C^1$ -open,  $C^r$ -dense.

Regularity of at least one bundle would be destroyed by a typical perturbation.

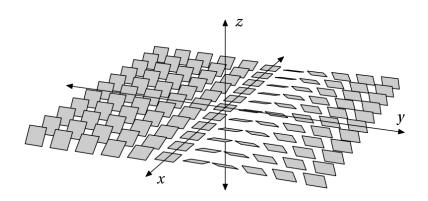
### Theorem (Liverani)

Suppose that an Anosov flow preserves a  $C^2$  contact form. Then the flow mixes exponentially.

Regularity of the contact form would be destroyed by a typical perturbation.

## Theorem (Tsujii)

There exists a  $C^3$ -open,  $C^r$ -dense subset of volume preserving 3D Anosov flows which mix exponentially.



## Theorem (B-War)

Suppose that  $\Phi^t: M \to M$  is a  $C^{1+}$  transitive Anosov flow and that the stable bundle is  $C^{1+}$ . If  $\mathbb{E}_s$  and  $\mathbb{E}_u$  are not jointly integrable then the flow mixes exponentially.

#### Theorem (B-War)

Suppose that  $\Phi^t: M \to M$  is a  $C^{2+}$  volume-preserving Anosov flow and that  $\dim \mathbb{E}_s = 1$  and  $\dim \mathbb{E}_u \geq 2$ . There exists a  $C^1$ -neighbourhood of this flow, such that, for all  $C^{2+}$  Anosov flows in the neighbourhood, if  $\mathbb{E}_s$  and  $\mathbb{E}_u$  are not jointly integrable, then the flow mixes exponentially.

4D volume-preserving case: full solution to the conjecture. (Plante: mixing implies joint non-integrability in codimension one case.)

# Bunching (Hirsch-Pugh-Shub)

Suppose that  $\Phi^t:M\to M$  is a  $C^{2+}$  Anosov flow. If there exists  $t,\alpha>0$  such that

$$\sup_{x \in M} \| D\Phi^t |_{\mathbb{E}_s}(x) \| \| D\Phi^t |_{\mathbb{E}_{cu}}^{-1}(x) \| \| D\Phi^t |_{\mathbb{E}_{cu}}(x) \|^{1+\alpha} < 1,$$

then the stable bundle is  $C^{1+\alpha}$ .

$$(\mathbb{E}_{cu} = \mathbb{E}_u \oplus \mathbb{E}_0)$$

- Volume-preserving and codimension one ⇒ good regularity.
- The bunching estimate is essentially optimal unless other structure implies better regularity (e.g., codimension one or contact structure).

### Laplace transform of $\mathcal{L}^t: B \to B$

For all  $\Re(z) > 0$  let

$$R(z) := \int_0^\infty e^{-zt} \mathcal{L}^t dt.$$

#### Generator of o.p.s.g.

For all  $\mu \in B$  where the limit is defined, let

$$Z\mu := \lim_{t \to \infty} \frac{1}{t} \left( \mathcal{L}^t \mu - \mu \right).$$

Typically  $Dom(Z) \subseteq B$ .

Meromorphic extension of R(z)... Control of the poles of R(z)...