Non-Statistical Rational Maps

Amin Talebi

Department of Mathematics Sharif University of Technology University Paris 13

TMU-ICTP School and Conference on dynamical Systems and Ergodic Theory May 2018

 $f: M \to M$ continuous, M compact smooth manifold $\mathcal{M}_1(M)$: the space of probability measures on MLebesgue: The normalized volume of M

④ 御 ト ● 正 ト ● 正 ト

 $f: M \to M$ continuous, M compact smooth manifold $\mathcal{M}_1(M)$: the space of probability measures on MLebesgue: The normalized volume of M

$$S_f^n(x) := \frac{1}{n} \sum_{i=0}^{n-1} \delta_{f^i(x)}$$

 $acc(\{S_f^n(x)\}_{n\in\mathbb{N}})$: The set of accumulation points in $\mathcal{M}_1(M)$

④ 御 ト ● 正 ト ● 正 ト

凄.

▲口▶ ④翻▶ ▲頭▶ ▲頭▶ □

$$x = 0.\underbrace{0...0}_{n_1}\underbrace{0101...0101}_{n_2>>n_1}\underbrace{0...0}_{n_3>>n_2}...$$

凄.

▲口▶ ④翻▶ ▲頭▶ ▲頭▶ □

$$\begin{aligned} x &= 0.\underbrace{0...0}_{n_1}\underbrace{0101...0101}_{n_2 >> n_1}\underbrace{0...0}_{n_3 >> n_2} \dots \\ \{\delta_0, \frac{1}{2}\delta_{\frac{1}{3}} + \frac{1}{2}\delta_{\frac{2}{3}}\} \subset acc(\{S_f^n(x)\}_{n \in \mathbb{N}}) \end{aligned}$$

凄.

▲口▶ ④翻▶ ▲頭▶ ▲頭▶ □

$$\begin{aligned} x &= 0.\underbrace{0...0}_{n_1}\underbrace{0101...0101}_{n_2 >> n_1}\underbrace{0...0}_{n_3 >> n_2} \dots \\ \{\delta_0, \frac{1}{2}\delta_{\frac{1}{3}} + \frac{1}{2}\delta_{\frac{2}{3}}\} \subset acc(\{S_f^n(x)\}_{n \in \mathbb{N}}) \end{aligned}$$

Definition: $x \in M$ is *non-statistical* for f if its Birkhoff averages does not converge.

Definition: A map *f* is *non-statistical* if there is a Leb-positive set non-statistical points.

▲白▶ ④闘▶ ▲語▶ ▲ 悪▶

The Bowen Eye

康

▲□▶ ④翻▶ ▲頭▶ ▲腰▶

Non-Statistical Behavior Via Wandering Domain

Colli and Vargas: Example of a C^{∞} dissipative surface diffeomorphism haiving a wandering domain with non-statistical behavior (Idea: Perturbation of a dissipative map with a thick Horseshoe and homoclinic tangency)

Kiriki and Soma: C^r -density $(r \neq \infty)$ of maps with non-statistical wandering domain in Newhouse domains.

Question: What about examples in more rigid dynamics?

Amin Talebi

Non-Statistical Maps in Logistic Family

$$f_r(x) = rx(1-x), r \in [0,4]$$

Hofbauer and Keller: There exist uncountably many $r \in [0, 4]$ for which f_r is non-statistical. Indeed for these parameters

for Leb.a.e. $x \in [0,1]$, $acc(\{S_f^n(x)\}_{n \in \mathbb{N}}) = \mathcal{M}_1(f_r)$

Remark: f_r has positive entropy so $\mathcal{M}_1(f_r)$ is a big set,

Amin Talebi

 $\begin{aligned} f : \mathbb{C} \cup \infty &=: \hat{\mathbb{C}} \to \hat{\mathbb{C}}, \ f(x) = \frac{P(x)}{Q(x)}, \\ f \text{ is degree } d \text{ if the maximum of } \deg(P) \text{ and } \deg(Q) \text{ is } d \end{aligned}$

 $Rat_d := \{f | f \text{ is a degree d rational map}\}$

 $f \in Rat_d$ has 2d - 2 critical points (with multiplicity)

 $\begin{aligned} f: \mathbb{C} \cup \infty &=: \hat{\mathbb{C}} \to \hat{\mathbb{C}}, \ f(x) = \frac{P(x)}{Q(x)}, \\ f \text{ is degree } d \text{ if the maximum of } \deg(P) \text{ and } \deg(Q) \text{ is } d \end{aligned}$

 $Rat_d := \{f | f \text{ is a degree d rational map}\}$

 $f \in Rat_d$ has 2d - 2 critical points (with multiplicity) **Definition:** A rational map is called *strictly post critically finite* if all of the critical points eventually are mapped to repelling periodic points.

 $\mathcal{S}_d := \{ f \in Rat_d | f \text{ is strictly post critically finite} \}$

Theorem

A (topological) generic rational map $f \in \overline{\mathcal{S}_d}$ is non-statistical.

Remarks:

- by [Rees,Astrong-Guathier-Mihalache-Vigny] $\overline{\mathcal{S}_d}$ has positive measure in Rat_d .
- These maps have no physical measure.
- The Julia set of these maps is $\hat{\mathbb{C}}.$

Theorem

A (topological) generic rational map $f \in \overline{\mathcal{S}_d}$ is non-statistical.

Remarks:

- by [Rees,Astrong-Guathier-Mihalache-Vigny] $\overline{\mathcal{S}_d}$ has positive measure in *Rat_d*.
- These maps have no physical measure.
- The Julia set of these maps is $\hat{\mathbb{C}}$.

Main Lemma

 $f \in \overline{S_d}$ and q repelling periodic point for f. Then for any $\epsilon > 0$, there is g arbitrary close to f with the following property:

for Leb.a.e
$$x \in \hat{\mathbb{C}}$$
 $\limsup_{n \to +\infty} dist(S_g^n(x), \delta_{O(q)}) < \epsilon.$

Abstract Setting

 $\Lambda \subset C^{r}(M,M)$ closed, $\mathcal{K} \subset \mathcal{M}_{1}(M)$

Definition: The set Λ statisitically bifurcates towards \mathcal{K} if for any $f \in \Lambda$ and $\epsilon > 0$ there is $g \in \Lambda$ arbitrary close to f such that

for Leb.a.e $x \in M$ $\limsup_{n \to +\infty} dist(S_g^n(x), \mathcal{K}) < \epsilon$.

イロト (間) イヨト イヨト

Abstract Setting

 $\Lambda \subset C^r(M, M)$ closed, $\mathcal{K} \subset \mathcal{M}_1(M)$ **Definition:** The set Λ *statisitically bifurcates towards* \mathcal{K} if for any $f \in \Lambda$ and $\epsilon > 0$ there is $g \in \Lambda$ arbitrary close to f such that

for Leb.a.e
$$x \in M$$
 $\limsup_{n \to +\infty} dist(S_g^n(x), \mathcal{K}) < \epsilon$.

Proposition

If A statistically bifurcates towards \mathcal{K} then for a (topological) generic map $g \in \Lambda$ we have:

for Leb.a.e
$$x \in M$$
 $\liminf_{n \to +\infty} dist(S_g^n(x), \mathcal{K}) = 0.$

Abstract Setting

 $\Lambda \subset C^{r}(M, M)$ closed, $\mathcal{K} \subset \mathcal{M}_{1}(M)$ **Definition:** The set Λ *statisitically bifurcates towards* \mathcal{K} if for any $f \in \Lambda$ and $\epsilon > 0$ there is $g \in \Lambda$ arbitrary close to f such that

for Leb.a.e
$$x \in M$$
 $\limsup_{n \to +\infty} dist(S_g^n(x), \mathcal{K}) < \epsilon$.

Proposition

If A statistically bifurcates towards \mathcal{K} then for a (topological) generic map $g \in \Lambda$ we have:

for Leb.a.e
$$x \in M$$
 $\liminf_{n \to +\infty} dist(S_g^n(x), \mathcal{K}) = 0.$

Main Theorem

For a generic map $f \in \overline{\mathcal{S}_d}$ we have

for Leb.a.e. $x \in M$ { $\delta_{O(p)} | p \in Per(f)$ } $\subset acc(S_g^n(x))$.

- Remark: Hofbauer and Keller parameters have zero measure.
- **Question:**can this phenomenon happens with positive measure in a non trivial family of dynamics?

- Remark: Hofbauer and Keller parameters have zero measure.
- **Question:**can this phenomenon happens with positive measure in a non trivial family of dynamics?
- **Remark:** $\overline{\mathcal{S}_d} \subset Bif(Rat_d)$ is a nowhere dense set.
- **Question:** Can this phenomenon happens generically in an open set of maps? Newhouse domains?

- Remark: Hofbauer and Keller parameters have zero measure.
- **Question:**can this phenomenon happens with positive measure in a non trivial family of dynamics?
- **Remark:** $\overline{\mathcal{S}_d} \subset Bif(Rat_d)$ is a nowhere dense set.
- **Question:** Can this phenomenon happens generically in an open set of maps? Newhouse domains?
- **Question:**(Taken's Conjecture) Can this phenomenon be stable in some nontrivial family of dynamics?

Amin Talebi

▲口▶ ④醒▶ ▲理▶ ▲要▶ 「要」 釣A@