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Cohomological theory: the case of Anosov diffeomorphism

Let f : M → M be an Anosov diffeomorphism. By Lefchetz fixed point formula,
we can count its periodic orbits:

(−1)dimEu ·#Fix(fn) =

dimM∑
j=0

(−1)jTr((fn)∗ : Hj(M) → Hj(M))

=

I∑
i=1

±ρni

Hence the Artin-Mazur zeta function is written

ζ(z) : = exp

(
−

∞∑
n=1

zn#Fix(fn)

n

)

=
∏
i

exp

(
∓

∞∑
n=1

znρni
n

)
=
∏
i

exp (± log(1− ρiz))

=
∏
i

(1− ρiz)
±1
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Cohomological theory: the case of Anosov diffeomorphism

Theorem (Smale,1967)

For Anosov diffeomorphism f : M → M , the Artin-Mazur zeta function

ζ(z) = exp

(
−

∞∑
n=1

zn#Fix(fn)

n

)

is a rational function and its zeros and poles {1/ρi} come from the action of f on
the cohomology space (and satisfies the symmetry as a consequence from
Poincare duality).

Question
Can we extend this to the case of Anosov flows?

Is this a good question?

The action of the flow on cohomology space is trivial.

How we count the periodic orbits? (Periods are not topological.)
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Anosov flow

Definition (Anosov flow)

A flow f t : M → M is an Anosov flow if ∃ Df t-invariant C0-splitting

TM = E0 ⊕ Es ⊕ Eu

such that E0 = ⟨V := ∂tf
t⟩ and Df t|Eu

(resp. Df t|Es
) is exponentially

expanding (resp. contracting).

Eu ⊕ E0

Es ⊕ E0

Flow f t



Geodesic flows on negatively curved manifolds

The geodesic flow on a closed Riemann manifold N is a flow

f t : M → M, M := T1N : unit tangent bundle of N

which describes the motion of free particle (of unit speed) on N .

Fact

If the sectional curvature of N is negative everywhere, its geodesic flow f t is a
(contact) Anosov flow and exhibit strongly chaotic behavior of trajectories.

Remark. We will mainly consider this kind of flow.
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Transfer operators

Studying chaotic dynamical systems, it is useful to consider a “cloud” of initial
conditions and observe its evolution by the flow.

Definition (Ruelle transfer operator)

Let f t : M → M be a flow on a closed manifold M . The Ruelle transfer operator
is a one-parameter group of operators of the form

Lt : C∞(M) → C∞(M), Ltu = (gt · u) ◦ f−t

where gt is a C∞ function on M . Its generator is X = −V + ∂tg
t|t=0.

Flow f t

Lt



Ruelle-Pollicott resonances

A recent discovery in ergodic theory of smooth dynamical systems is that the
transfer operators associated to hyperbolic dynamical systems exhibit “discrete
spectrum”.

Theorem (Butterley-Liverani, Faure-Sjostrand)

For an Anosov flow (or more general uniformly hyperbolic flows), the generator X
of Ruelle transfer operators Lt have “discrete spectrum” {ρi}, called
Ruelle-Pollicott resonances.

Remark

To observe the discrete spectrum in ℜ(s) > −C,
we need to consider “anisotropic Sobolev spaces”

C∞ ⊂ Cr ⊂ Hr ⊂ (Cr)′ ⊂ D′

with some r = r(C) adapted to hyperbolic
structure of flow. The space Hr necessarily
consists of “distributions.”
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Chaotic dynamics vs. Diffusion process (on a cpt mfd)

Hyperbolic flow Brownian Motion
System Deterministic Probabilistic

ODE Brownian motion
Mechanism Expansion by flow Random external force
Action on density Transfer operator Lt Heat semi-group Ht = e∆t

Generator X = V + ∂tg
t|t=0 Laplacian ∆

Spectrum R-P resonance Discrete Eigenvalues of ∆



Atiyah-Bott trace of Lt

The transfer operator

Ltu(y) = gt(f−t(y)) · u(f−t(y)) =

∫
gt(x)δ(x− f−t(y))u(x)dx

is expressed as an integral operator

Ltu(y) =

∫
K(y, x)u(x)dx with Kt(y, x) = gt(x)δ(x− f−t(y)).

The Atiyah-Bott trace (or flat trace) of Lt is defined as

Tr♭Lt =

∫
Kt(x, x)dx =

∫
gt(x) · δ(Id− f−t(x))dx

=
∑

γ∈PO

∞∑
n=1

|γ| · gnγ · δ(t− n|γ|)
|det(Id−D−n

γ )|

where PO be the set of (prime) periodic orbits, |γ| is the prime period of γ,
gγ := g|γ|(x) for a point x on γ, Dγ is the differential of the Poincare map.
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Dynamical trace formula

If we confuse the Atiyah-Bott trace with the usual one, we expect that the
distribution of periods of periodic orbits (counted with some weight) is given by
the spectrum of the generator of Lt:

Tr♭Lt =
∑

γ∈PO

∞∑
n=1

|γ| · gnγ · δ(t− n|γ|)
|det(Id−D−n

γ )|
∼

∑
i

eρit

This is indeed true if we interpret the right-hand side appropriately. (cf. the recent
work of Dyatlov-Zworski). The formula is a bit magical!
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Dynamical Fredholm determinant

The dynamical Fredholm determinant of Lt is defined

d(s) := exp

−
∑

γ∈PO

∞∑
n=1

1

n

gnγ · e−sn|γ|

|det(Id−D−n
γ )|


= exp

(
−
∫ ∞

0+

e−st

t
Tr♭Ltdt

)
= exp

(
−Tr♭

∫ ∞

0+

e−(s−X)t

t
dt

)
∼ exp(Tr log(s−X)) ∼ det(s−X) ∼

∏
i

(s− ρi)

Excersise: Try to justify the last line (not too seriously).

Theorem

The dynamical Fredholm determinant d(s) extends to an entire function and its
zero coincides with the R-P eigenvalues {ρi}.
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Smale’s Dynamical Zeta function

Theorem (Smale’s conjecture, Giuletti-Liverani-Pollicott 2013)

The dynamical zeta function extends to a meromorphic function on C.

ζ(s) =
∏

γ∈PO

(1− e−s|γ|) = exp

−
∑

γ∈PO

∞∑
n=1

esn|γ|

n


Up to technical argument, the point is that ζ(s) is expressed as

ζ(s) =

dimM−1∏
j=0

dj(s)
(−1)j

where dj(s) is the dyn. Fred. det. of the (vector-valued) transfer operator

Lt
j : Γ

∞((T ∗M⊥)∧j) → Γ∞((T ∗M⊥)∧j)

given as the natural action of F t where T ∗M⊥ = {(x, ξ) | ξ(V ) = 0}.

Tr♭Lt
j =

∑
γ∈PO

∞∑
n=1

|γ| · Tr(D−n
γ )∧j · δ(t− n|γ|)

|det(Id−D−n
γ )|



Smale’s Dynamical Zeta function

Theorem (Smale’s conjecture, Giuletti-Liverani-Pollicott 2013)

The dynamical zeta function extends to a meromorphic function on C.

ζ(s) =
∏

γ∈PO

(1− e−s|γ|) = exp

−
∑

γ∈PO

∞∑
n=1

esn|γ|

n


Up to technical argument, the point is that ζ(s) is expressed as

ζ(s) =

dimM−1∏
j=0

dj(s)
(−1)j

where dj(s) is the dyn. Fred. det. of the (vector-valued) transfer operator

Lt
j : Γ

∞((T ∗M⊥)∧j) → Γ∞((T ∗M⊥)∧j)

given as the natural action of F t where T ∗M⊥ = {(x, ξ) | ξ(V ) = 0}.

Tr♭Lt
j =

∑
γ∈PO

∞∑
n=1

|γ| · Tr(D−n
γ )∧j · δ(t− n|γ|)

|det(Id−D−n
γ )|



Smale’s Dynamical Zeta function

Theorem (Smale’s conjecture, Giuletti-Liverani-Pollicott 2013)

The dynamical zeta function extends to a meromorphic function on C.

ζ(s) =
∏

γ∈PO

(1− e−s|γ|) = exp

−
∑

γ∈PO

∞∑
n=1

esn|γ|

n


Up to technical argument, the point is that ζ(s) is expressed as

ζ(s) =

dimM−1∏
j=0

dj(s)
(−1)j

where dj(s) is the dyn. Fred. det. of the (vector-valued) transfer operator

Lt
j : Γ

∞((T ∗M⊥)∧j) → Γ∞((T ∗M⊥)∧j)

given as the natural action of F t where T ∗M⊥ = {(x, ξ) | ξ(V ) = 0}.

Tr♭Lt
j =

∑
γ∈PO

∞∑
n=1

|γ| · Tr(D−n
γ )∧j · δ(t− n|γ|)

|det(Id−D−n
γ )|



Gutzwiller-Voros zeta function

From now on, we consider geodesic flow f t on negatively curved manifold.

The Gutzwiller-Voros zeta function

ζsc(s) = exp

−
∑

γ∈PO

∞∑
n=1

1

n

e−sn|γ|√
|det(Id−D−n

γ )|


introduced by physicists in “semi-classical theory of quantum chaos”.
It is expressed as an alternating product

ζ(s) =

dimEu∏
j=0

duj (s;Lt
j)

(−1)j

of the dyn. Fred. det. duj (s;Lt
j) of the (vector-valued) transfer operators

Lt
j : Γ

∞(|Detu|1/2 ⊗ (E∗
u)

∧j) → Γ∞(|Detu|1/2 ⊗ (E∗
u)

∧j)

given as the natural action of f t. (Detu = (Eu)
∧d)
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Analytic properties of Gutzwiller-Voros zeta function

Theorem (Faure-T, 2017)

The Gutzwiller-Voros zeta function ζsc(s) extends to a meromorphic function on
C. For any ε > 0, the zeros are contained in the union of

R0 = {|ℜ(s)| < ε}, R1 = {ℜ(s) < −χ+ ε}

and the poles are contained in R1, but for finitely many exceptions. The zeros in
R0 satisfies an analogue of Weyl law: Density ∼ |Ims|dimN−1

R0R1



Cohomological theory

Idea by V. Guillemin (1977)

The zeros and poles of ζsc(s) will come from the action of the flow on “leafwise
cohomology space”.

Recall that we have ζsc(s) =
∏dimEu

j=0 d(s;Lt
j)

(−1)j with

Lt
j : Γ

∞(Vj) → Γ∞(Vj) where Vj := |Detu|1/2 ⊗ (E∗
u)

∧j

We have the following commutative diagram:

(⋆)

Γ∞(V0)
δu0−−−−→ Γ∞(V1)

δu1−−−−→ · · ·
δud−1−−−−→ Γ∞(Vd)

Lt
0

y Lt
1

y Lt
d

y
Γ∞(V0)

δu0−−−−→ Γ∞(V1)
δu1−−−−→ · · ·

δud−1−−−−→ Γ∞(Vd)

where δuk denotes exterior derivative along unstable leafs.
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Rigorous justification of cohomological theory

Theorem (T, 2018)

There are (scales of) Hilbert spaces Λj ⊃ Γ∞(Vj), obtained as the completion of
Γ∞(Vj) w.r.t. some norm, such that the last diagram (⋆) extends to

Λ0
δu0−−−−→ Λ1

δu1−−−−→ · · ·
δud−1−−−−→ ΛD

Lt
0

y Lt
1

y Lt
d

y
Λ0

δu0−−−−→ Λ1
δu1−−−−→ · · ·

δud−1−−−−→ ΛD

and the generator of Lt
j : Λj → Λj exhibits discrete spectrum. In particular,

Divζsc =

D∑
j=0

(−1)j · Spec(Aj)

where Aj is the generator of the action on the leaf-wise cohomology space

Lt
j = Lt

j : Hj → Hj , Hj := ker(δuj )/Im(δuj−1)



Rigorous justification of cohomological theory

Theorem (T, 2018)

There are (scales of) Hilbert spaces Λj ⊃ Γ∞(Vj), obtained as the completion of
Γ∞(Vj) w.r.t. some norm, such that the last diagram (⋆) extends to

Λ0
δu0−−−−→ Λ1

δu1−−−−→ · · ·
δud−1−−−−→ ΛD

Lt
0

y Lt
1

y Lt
d

y
Λ0

δu0−−−−→ Λ1
δu1−−−−→ · · ·

δud−1−−−−→ ΛD

and the generator of Lt
j : Λj → Λj exhibits discrete spectrum. In particular,

Divζsc =

D∑
j=0

(−1)j · Spec(Aj)

where Aj is the generator of the action on the leaf-wise cohomology space

Lt
j = Lt

j : Hj → Hj , Hj := ker(δuj )/Im(δuj−1)



Final remarks

Remark

The zeros of ζsc(s) in the neighborhood R0 of the imaginary axis comes from the
discrete spectrum of the action on the bottom cohomology class:
Lt
0 : H0 = ker(δu0 ) → H0. This is the “geometric quantization” of f t, taking the

unstable foliation as “polarization”.

Remark
For the moment, we have no result about the spectrum of the generator of
Lt
j : Hj → Hj for 0 < j ≤ d. We expect that they gives only small number of

zeros and poles.

Now how about the case of Smale’s dynamical zeta function?


