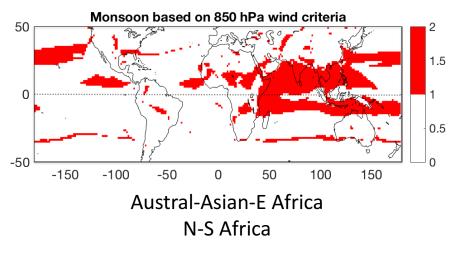
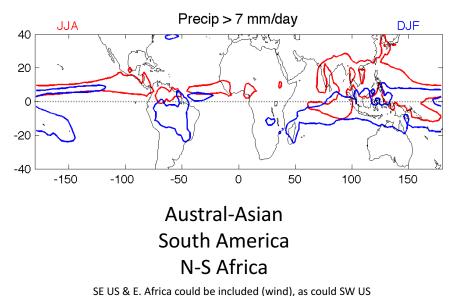
Three types of monsoons?

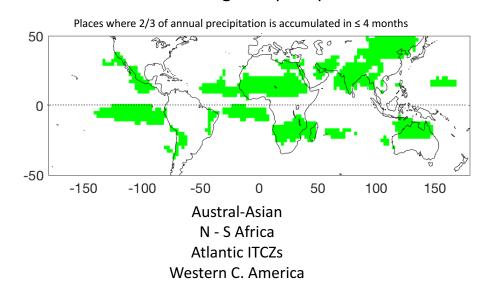
David S Battisti University of Washington


- What is a monsoon?
- Three types of monsoons
- Examples of monsoon types
- A closer look at the Indian Monsson
- Summary

Three types of monsoons?

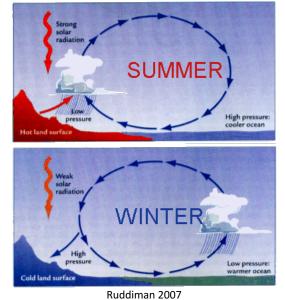

David S Battisti University of Washington

- What is a monsoon?
 - Seasonal change in winds
 - Seasonal change in precipitation


Seasonal changes in wind

Seasonal changes in precipitation

Major component of wind must reverse; annual ave wind speed must average > 4 m/s



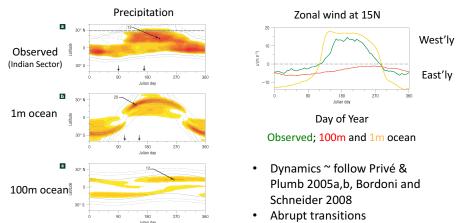
Seasonal changes in precipitation

Three types of monsoons?

- What is a monsoon?
 - Seasonal change in winds
 - Seasonal change in precipitation
- Three types of monsoons
 - Classic monsoon: land-ocean interaction
 - Marine Monsoon: atmosphere-ocean interaction
 - ITCZs

Classic monsoon: land-ocean interaction

Summer Monsoon

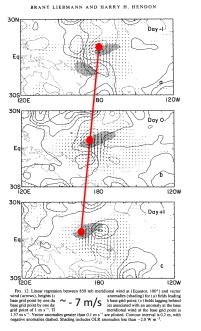

- Land heats faster than
 ocean
- Draws air with moisture from ocean to land
- Condensational heating drives circulation (positive feedback)

Winter Monsoon

Opposite happens

Monsoons as atmosphere-ocean interaction

Aquaplanet: atmosphere coupled to motionless ocean w/ no land

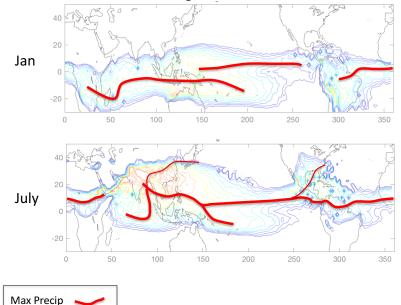


Bordoni and Schneider 2008

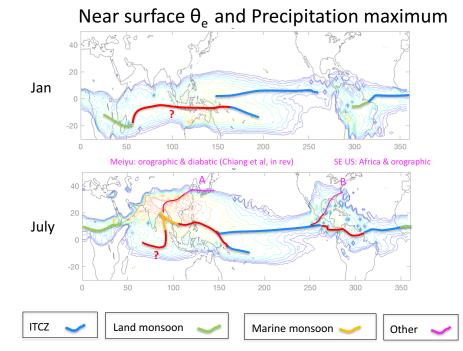
- 2D view: symmetric instability due to hemispherically asymmetric PBL pressure gradients (Stevens 1983, Emanuel 1995)
- 3D view: precipitation mainly a time average of westward propagating easterly waves (ATL) and mixed Rossbygravity waves (PAC)

(Privé and Plumb 2007; Holton et al 1971; Wallace and Hobbs 1977; Liebmann and Hendon 1990)

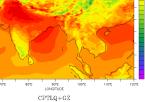
Monsoon vs. Marine ITCZ


	Monsoon	Marine ITCZ
Where found	Off-equatorial (>15° lat)	Within ~15° of equator
Position set by	Location of max PBL MSE	2D: Symmetric instability $(\nabla^2 \theta_e)$ 3D: synoptic waves
Precip intensity primarily set by	max PBL MSE	max PBL MSE & eddy momentum transports (aloft)
Strength of Hadley circulation controlled by	diabatic heating (condensation; radiative cooling equatorward of precip maximum) & by eddy momentum transports (aloft)	eddy momentum transports (aloft)
Examples:	Indian summer monsoon	Central & Eastern Pacific and Atlantic
An explanation for abrupt monsoon onsets? It takes a large off-equatorial heating to convert an ITCZ to a monsoon		

(ie, to overcome the stabilization of the (symmetric) mean state by synoptic eddies)

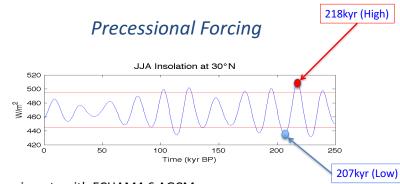

Harden types of monsoons?
What is a monsoon?
Seasonal change in winds.
Seasonal change in precipitation.
Seasonal change in precipitation.
Chassic monsoon: land-ocean interaction.
Marine Monsoon: atmosphere-ocean interaction.
Marine Monsoon types
Classic land-ocean: S. African monsoon, S. American Monsoon, Eastern North American monsoon.
Marine monsoon (with some land assist): Australian, Indian.
ITCZ: Pacific, Atlantic, Indian Ocean in NH Winter (?)

ITCZs


Near surface θ_e and Precipitation maximum

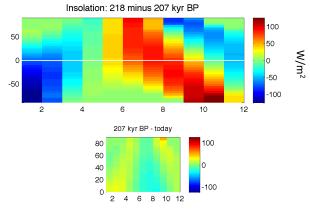
* MSE and Θ_{e} are functionally equivalent

Near surface Moist State Energy TIME : 16-MAY-2011 17:56 Mav June AN 20 101 13 14 13 1000 10 100 TIME : 16-JUL-2011 14:54 Juh 90*E LONGITUDE 60°E 70'E 80%

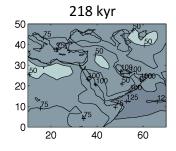

I. Fung, pers. Comm.

CPTLQ+GZ

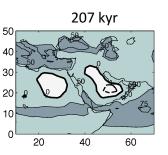
Three types of monsoons?


- A closer look at the Indian Monsoon

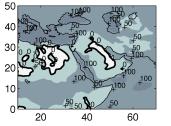
- Experiments with ECHAM4.6 AGCM
 - T42 horizontal resolution (2.8°), coupled to a slab ocean with SST adjusted to ~ modern day values when forced by modern day insolation, greenhouse gases and boundary conditions
 - Isotope module included
- Two core Experiments
 - 218K insolation (High)
 - 207K insolation (Low)
 - Modern day geometry, orography & greenhouse gas concentration


The change in forcing

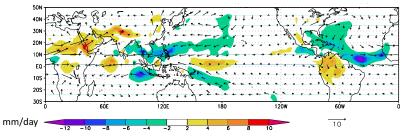
High minus Low NH summer insolation



Not surprisingly, the simulated NH climate in the "Low Forcing" at 207kyr BP is similar to the modern climate


Top of the Atmosphere Net Radiation

 With sufficiently high summer insolation, there is a fundamental transition to entirely different climate state.



Observed 2001-2012

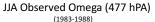
Change in Precipitation and 850 hPa Winds

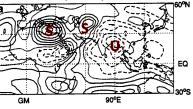
JJA (218 minus 207 kyr)

For "high" summer insolation

- Heavy rainfall from the Sahel to Arabia to Northern India
- 50% less over SE Asia
- More over China (~40%)
- Green Sahara?
- Collapse of Atlantic ITCZ/Trades

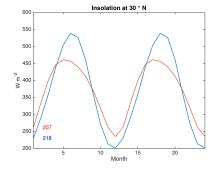
Simulated changes in $\delta^{\rm 18}O$ of precipitation show a remarkable agree with speleothem records throughout the global tropics


Battisti et al 2014


Why is the Eastern Mediterranean a desert today?

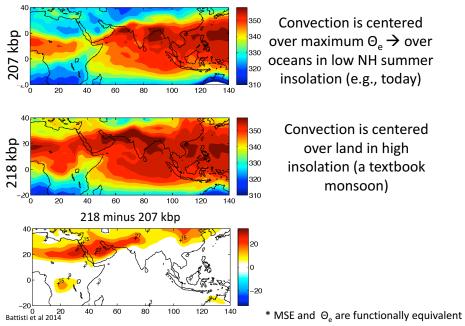
- Not due to sinking branch of the Hadley Cell (max in DJF)
- Today in low phase of precessional cycle monsoon precipitation is maximum in the northern Bay of Bengal (not over land)
- Condensational heating in the Bay of Bengal forces a westward Rossby wave and cold air advection over the eastern Med and Central Asia that is balanced by subsidence

PE Model Omega Response to Heating



Rodwell and Hoskins 1996

Regional Heating during High Precession


• How do you break the desertification mechanism?

 Hypothesis: More intense summer insolation heats land (fast) enough to create a sufficiently large land-ocean temperature contrast to shift the maximum in MSE – and hence convection – to be over land. A classic monsoon.

Battisti et al 2014

Equivalent potential temperature, Θ_{e}^{*}

Mid-Holocene (PMIP3) minus today Zonal mean or zonally asymmetric? $[\Delta p_{cent}] = +0.3^{\circ}$ dP tot Total 60°E 120°E 180° 120°W 60°W -1.0-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 (mm/day) dP (zonal asym) Zonally Asymmetric 120°E 180° 120°W 60°W 60°E -1.0-0.8 -0.6-0.4-0.2 0.0 0.2 0.4 0.6 0.8 1.0 (mm/day) Atwood et al in prep

Three types of monsoons?

- What is a monsoon?
 - Seasonal change in winds
 - Seasonal change in precipitation
- Three types of monsoons
 - Classic monsoon: land-ocean interaction
 - Atmosphere-ocean interaction
 - ITCZs
- Examples of monsoon type:
 - Classic land-ocean: S. African monsoon, S. American Monsoon, Eastern North American monsoon

A closer look at the Indian Monsoon

The east Asian (Meiyu): a faux monsoon
 See Molnar et al 2009; Chiang et al (in review)

Three types of monsoons?

- With strong enough asymmetric hemispheric heating, a monsoon
 - Due mainly to ocean-atmosphere (e.g., Indian monsoon today) or classic land-atmosphere (e.g., S. Africa, S. America) interaction
 - Thermodynamics (max MSE) important
- With modest asymmetric hemispheric heating, an ITCZ
 - Due to flow instability that sheds equatorial waves (e.g., easterly waves in Atlantic and far eastern Pacific)
 - Due to convection organized by mixed Rossby gravity waves (e.g., central Pacific); Indian Ocean in DJF (?)
 - Thermodynamics (max MSE) and dynamics (symmetric instability, PBL pressure gradients, eddy momentum fluxes aloft) important