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The “tropics” are close to Radiative Convective
Equilibrium (RCE) pretty much every day, but the
ITCZ is not (not even on average)! How does this
work, and what does it mean?
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We define a “distance from RCE” as the difference between
radiative cooling, sensible heat flux, and precipitation and ask
what fractions of days are in RCE (-50 to + 50 W/m2 difference)
as a function of spatial and temporal averaging scale.
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average amount of regimes in 10x10 box (%)

In relating RCE to cloud states, we find that
achieving RCE requires the “right” mix of deep and
organised convection and suppressed conditions.
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he ratio of active to suppressed

conditions appears to be quite scale-

Invariant.

fraction of regime points of points in RCE (%)
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Implications for modelling
and climate change

More rainfall implies a need for more radiative cooling or an increase of the
energy transport out of the tropics.

Hence, rainfall errors in models must be accompanied with errors in their
radiative cooling elsewhere. Most models overestimate rainfall in the tropics, so
they also must overestimate radiative cooling or lateral energy export.

High cloud errors will induce radiative cooling errors, which in turn must relate to
precipitation errors!

Analysing climate model rainfall to cooling relationship should be very revealing.
(I am looking for a student to do this!)

Rainfall increases under climate change will imply changes to the radiative
cooling. This is most likely achieved through area changes (shrink the ITCZ or

widen the sub-tropics).



The ITCZ is not a steady line of convergence. Instead it is
the average of many short-lived convergence features that
locally are relatively rare and strongly vary on synoptic
time-scales.
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While convergence lines are relatively infrequent, most of
the rainfall in the ITCZ is associated with them. The amount
of rain is well correlated with the strength of the line, which
In turn is related to its length
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Much of what has become known as the “dynamical’
component of precipitation climate change is a change in
frequency and strength of the short-lived convergence
lines that dominate ITCZ rainfall.
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As much of the rainfall in the ITCZ is associated with
synoptically varying convergence lines, models must
simulate these features as well as their association with
rainfall well.
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Despite the significant variability in convection on
many scales, snapshots of ISCCP-based convective

regimes show coherent features at large scales

0°  60°E  120°E  180°  120°W 60°W  0°
PR T 35N

1200 UTC 0900 UTC 0600 UTC 0300 UTC

CD CC IM ST SS
Tan et al., JGR, 2015



1200 UTC 0900 UTC 0600 UTC 0300 UTC

Diagnostic models - even when they are "machine-
learned” - will not capture this coherence as the
stochasticity in the relationship to the larger scales will

destroy any structure.

0° 60°E 120°E 180°

350N 120°W 60°W 0035°N
"y - g ) §' : 0.35 AC BACRR AR AN T T
10N s I v ey | e pe ey S ° ; (a): A = GI
0° B ! ' 0.30 | -X -7t
150 [ERE SR Sl SR A
a5es i 025 bbb e s b
L N
35°N = N S T T T
T z : g 020 mroerpere i gt
LR - N N e 2 A VIR T T A
0 B e : '~ T 015 mi i it
150S = *; -8 0.10 . E E E E E E
35°8 ’ e D G S i SR
35°N “Slr ' 0.05 |- X5~ i gt B - oo poo -
15°N BTk SR v o ' i S i e ey
00 W S e 0.00 b—l L=
1505 el LR 5 10 15 20 25 30 35 40
3508 ] lifetime (hr)
35°N —— ; .
(5N ¢, <2 e Observed (dashed) and modelled
0o [T = ) i (solid) lifetime of convective
150 [ERESal I

35°S

G1 G2 G3

regimes using a stochastic
diagnostic model.

Tan et al., JGR, 2015



Making the models prognostic makes a huge difference as
It provides a smooth time evolution that is much more
congruent with the synoptic time scales of the larger scale
motions.
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There are many issues on modelling convection
in GCMs, both at the overall results level and
the internal working of the schemes

e No co-existence of different types of convection

e NO convective organisation

e Relationships to large-scale are assumed to be deterministic
e | ocal in space and time (N0 memory, No propagation)

e Poor microphysics

e No physically justifiable way to deal with variable resolution of the host
model

e | ots of idiosyncrasies that now determine the results more than the
actual physics.

We require an entirely new paradigm on how we develop physics - and not just
convection!



Convective rainfall in an area of the size of
a GCM grid box is strongly related to the

size of the area that is convecting!
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This opens opportunities for new approaches to
convection parametrisation that focus on predicting the
convective area and velocity instead of just mass flux.
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Summary

* Many scales matter in setting the ITCZ properties.

* For its mean properties, the precipitation-cloud-radiation coupling
IS something we may want to pay more attention to.

* Convergence lines are involved in much of the shorter time-scale
dynamics.

e Diagnostic convection models do not work - New approaches are
required and they need to be prognostic and have stochastic
elements.

e This opens up new opportunities for the representation of
convection specifically and atmospheric physics in general.



