Historical and Future Changes of Tropical Rain Belts: Cloud and Aerosol Processes

Hui Su

Chengxing Zhai¹, Jonathan H. Jiang¹, Longtao Wu¹, J. David Neelin², Yuk L. Yung³

¹Jet Propulsion Laboratory, California Institute of Technology ²University of California, Los Angeles ³California Institute of Technology

WCRP Grand Challenge 2nd Meeting on Monsoons and Tropical Rain Belts July 2-5, Trieste, Italy

Outline

- Atmospheric energy constraint on global-mean precipitation
- Moist static energy (MSE) framework for tropical circulation
- Observations of tropical rain belt change

Atmospheric Energy Constraint on Global-mean Precipitation

$$L_{v}P = LWC - SWA - SH.$$

Allen and Ingram (2002, Nature)

Clear-sky Longwave Radiation

Allan (2009, J. Clim)

LWc here is clear-sky longwave radiative cooling

Inter-model Spread in Clear-sky Shortwave Absorption

DeAngelis et al. (2015, Nature)

Changes of Hadley Circulation, Cloud Radiative Effects and Precipitation

Tightening of Tropical Ascent and High Clouds Key to Precipitation Change in a Warmer Climate

ITCZ Narrowing Linked to High Cloud Reduction

Su et al. (2017, Nature Comm.)

Longwave Effect of High Cloud Reduction

Su et al. (2017, Nature Comm.)

Observational Constraint on Hydrological Sensitivity

- Observation-based Interannual dP/dTs : 2.1%/K to 3.0%/K
- Observation-constrained hydrological sensitivity: 2.6%/K to 2.9%/K
- The multi-model-mean of the 21 models is 2.6%/K

Su et al. (2017, Nature Comm.)

Moisture Static Energy Budget

$$\partial_t \langle T \rangle + \langle \mathbf{v} \cdot \nabla T \rangle + \langle \omega \partial_p s \rangle = \frac{g}{p_T} (P + R + H)$$
$$\partial_t \langle q \rangle + \langle \mathbf{v} \cdot \nabla q \rangle + \langle \omega \partial_p q \rangle = -\frac{g}{p_T} (P - E)$$

$$P = E - \frac{p_T}{g} \langle \mathbf{v} \cdot \nabla q \rangle - \frac{p_T}{g} \langle \boldsymbol{\omega} \partial_p q \rangle$$

$$\Delta P_{dyn} \approx -\frac{p_T}{g} \langle \Delta \omega \partial_p q \rangle \qquad \Delta P_{therm} \approx -\frac{p_T}{g} \langle \omega \partial_p \Delta q \rangle$$

Xie et al. (2015, Nature. Clim. Change)

$$\Delta P_{dyn} \propto \Delta \omega$$

Moisture Static Energy Budget

$$\partial_t \langle q + T \rangle + \langle \mathbf{v} \cdot \nabla (q + T) \rangle + \langle \omega \partial_p h \rangle = \frac{g}{p_T} F_{net} \qquad \mathbf{h} = \mathbf{T} + \mathbf{\phi} + \mathbf{q} = \mathbf{s} + \mathbf{q}$$
$$F_{net} = R + E + H = (S_t^{\downarrow} - S_t^{\uparrow} - L_t^{\uparrow}) + (S_s^{\uparrow} - S_s^{\downarrow} + L_s^{\uparrow} - L_s^{\downarrow}) + E + H$$

 $\omega(x, y, p, t) = -\Omega_1(p) \omega_1 \qquad GMS = \langle \Omega_1(-\partial_p h) \rangle$

$$\omega_1 \approx \frac{g}{p_T} F_{net} / GMS$$

 $\Delta \omega_1 \propto \Delta F_{net}$

Radiative Changes of Clouds and Water Vapor

Inter-model Spread of Circulation and Precipitation Changes

 $\Delta P \propto \Delta \omega_1$

Longwave Cloud Radiative Effect

• Less longwave loss at TOA leads to a stronger ascent

Clear-sky Shortwave Absorption

• Greater clear-sky shortwave absorption leads to a stronger ascent

The Role of Absorbing Aerosols

Observed Narrowing of the ITCZ

Observed Narrowing of the ITCZ

Su et al. (2018, in prep)

CMIP5 Simulations of the Narrowing

Summary

- The changes of the ITCZ intensity and area are strongly constrained by atmospheric energy budget.
- Model diversity in the radiative effects of tropical high clouds and absorbing aerosols contributes significantly to the inter-model spread in the ITCZ intensity and area changes in the past decades.
- Observational evidence of the narrowing of ITCZ is robust.