
Day 1 – Lab2:

1. Publish and Subscribe

Introduction

In this section we'll use Java and Maven to create a typical Java based producer and

consumer of Kafka messages. You have two options for running Maven and Java. Either,

you install them natively or you can run the tools through a docker container.

Native install

If you already have Java and Maven installed, make sure you have:

• Java 8 (you can get away with Java 7 until we get to streaming)

• Maven 3.X

Simple Google searches should help you install both tools.

With a successful installation, you should be able to run mvn -v from command line. E.g.,

here is what that may look like (it may look slightly different on your machine based on

the maven version and the operating system you use):

$ mvn -v
Apache Maven 3.3.9 (bb52d8502b132ec0a5a3f4c09453c07478323dc5; 2015-11-10T10:41:47-
06:00)
Maven home: /home/pgraff/.jenv/candidates/maven/current
Java version: 1.8.0_131, vendor: Oracle Corporation
Java home: /usr/lib/jvm/java-8-oracle/jre
Default locale: en_US, platform encoding: UTF-8
OS name: "linux", version: "4.4.0-78-generic", arch: "amd64", family: "unix"

Docker install of Maven and Java

If you decide to use docker, you would want to open a docker instance with all the tools

in the root of your lab and keep it open during the lab.

For OSX and Linux, you can simply run:

$ cd DIR_WHERE_MY_LAB_IS

$ docker run -it --rm --name lesson -v "$PWD":/usr/src/lesson -w /usr/src/lesson
maven:3-jdk-8 bash
root@58b8ca1d738c:/usr/src/lesson#

If you are on Windows, you may have to replace the $PWD with the full path of your lab

directory.

You are now running a bash shell inside your docker instance. Your directory is mapped

to /usr/src/lesson inside the docker instance.

You should be able to run the maven command to check that everything is working mvn

--version. The output should be:

root@58b8ca1d738c:/usr/src/lesson30# mvn --version
Apache Maven 3.5.0 (ff8f5e7444045639af65f6095c62210b5713f426; 2017-04-03T19:39:06Z)
Maven home: /usr/share/maven
Java version: 1.8.0_131, vendor: Oracle Corporation
Java home: /usr/lib/jvm/java-8-openjdk-amd64/jre
Default locale: en, platform encoding: UTF-8
OS name: "linux", version: "4.4.0-79-generic", arch: "amd64", family: "unix"
root@58b8ca1d738c:/usr/src/lesson#

For simplicity of the lab instruction, we'll simply refer to the maven builds using the

native install. However, you should be able to use the docker image above to build any

of the labs. Hence, if you select to use the docker approach, when we specify

$ mvn package

We assume that you are inside your docker container when you do.

This remainder of the lab consists of two parts. In the first part, we'll create a producer

that can create messages in Kafka. In the second part, we'll consume these messages.

Both the consumer and producer are written in Java. If you're not sure-footed in Java, you

may want to simply study the solution or if you can pair program with someone that

knows Java.

2. Developing Kafka Applications -

Producer API

In this section, you will create a Kafka Producer using the Java API. The next lab will be

the creation of the Kafka Consumer so that you can see an end to end example using

the API.

Objectives

1. Create topics on the Kafka server for the producer to send messages

2. Understand what the producer Java code is doing

3. Compile and run the example producer

Prerequisites

Like the previous lab, Docker will be used to start a Kafka and Zookeeper server. We will

also use a Maven or the Maven Docker image to compile the Java code. You should

have a text editor available with Java syntax highlighting for clarity. You will need a basic

understanding of Java programming to follow the lab although coding will not be

required. The Kafka Producer example will be explained and then you will compile and

execute it against the Kafka server.

Instructions

All the directory references in this lab is relative to where you expended the lab files

and labs/02-Publish-And-Subscribe

1. Open a terminal in this lesson's directory: docker/.

2. Open the docker-compose.yml file which contains the following:

version: '2'
services:
 zookeeper:
 image: wurstmeister/zookeeper:3.4.6
 ports:
 - 2181:2181
 kafka:
 image: wurstmeister/kafka:1.1.0

https://www.docker.com/
https://maven.apache.org/

 ports:
 - 9092:9092
 - 7203:7203
 environment:
 KAFKA_ADVERTISED_HOST_NAME: [INSERT IP ADDRESS HERE]
KAFKA_ADVERTISED_HOST_NAME: localhost
 KAFKA_ZOOKEEPER_CONNECT: zookeeper:2181
 depends_on:
 - zookeeper

To allow connectivity between the local Java application and Kafka running in Docker,

you need to insert the locally assigned IP address for your computer for the value

of KAFKA_ADVERTISED_HOST_NAME.

On OSX, you can use the following command:

$ ifconfig | grep inet
 inet 127.0.0.1 netmask 0xff000000
 inet6 ::1 prefixlen 128
 inet6 fe80::1%lo0 prefixlen 64 scopeid 0x1
 inet6 fe80::1cf1:f9f4:6104:f2a3%en0 prefixlen 64 secured scopeid 0x4
 inet 10.0.1.4 netmask 0xffffff00 broadcast 10.0.1.255
 inet6 2605:6000:1025:407f:101b:9cd8:e973:b9dd prefixlen 64 autoconf secured
 inet6 2605:6000:1025:407f:9077:8802:8c88:e63d prefixlen 64 autoconf temporary
 inet6 fe80::cc8a:c5ff:fe43:b670%awdl0 prefixlen 64 scopeid 0x8
 inet6 fe80::7df6:ec93:ffea:367a%utun0 prefixlen 64 scopeid 0xa

In this case, the IP address to use is 10.0.1.4. Make sure you do

not use 127.0.0.1 because that will not work correctly.

On Windows, you can use the following command:

$ ipconfig
Ethernet adapter Local Area Connection:
Connection-specific DNS Suffix . : hsd1.ut.comcast.net.
IP Address. : 192.168.201.245
Subnet Mask : 255.255.255.0
Default Gateway : 192.168.201.1

Here the IP address to use is 192.168.201.245.

After you replace the line in docker-compose.yml, it should look like this:

KAFKA_ADVERTISED_HOST_NAME: 192.168.201.245

Save the docker-compose.yml file after making this modification.

We have noticed on some configurations of Windows and Linux that the use

of KAFKA_ADVERTISED_HOST_NAME does not work properly (the Kafka clients can't connect).

We've not found the source of this problem, but in many of the cases we've seen, the

use of localhost instead of the host IP may work. Note though, that the use

of localhostprevents you from running multiple Kafka brokers on the same machine.

3. Start the Kafka and Zookeeper processes using Docker Compose:

$ docker-compose up

4. Open an additional terminal window in the lesson directory, docker/. We are going to

create two topics that will be used in the Producer program. Run the following

commands:

$ docker-compose exec kafka /opt/kafka/bin/kafka-topics.sh --create --zookeeper
zookeeper:2181 --replication-factor 1 --partitions 1 --topic user-events
$ docker-compose exec kafka /opt/kafka/bin/kafka-topics.sh --create --zookeeper
zookeeper:2181 --replication-factor 1 --partitions 1 --topic global-events

5. List the topics to double check they were created without any issues.

$ docker-compose exec kafka /opt/kafka/bin/kafka-topics.sh --list --zookeeper
zookeeper:2181

global-events
user-events

6. Open producer/pom.xml in your favorite text editor. At the time of this writing, the

current stable version of Kafka is 1.1.0. Maven is being used for dependency

management in this lab and includes the following in the pom.xml for Kafka:

<dependency>
 <groupId>org.apache.kafka</groupId>
 <artifactId>kafka-clients</artifactId>
 <version>1.1.0</version>
</dependency>
<dependency>
 <groupId>com.google.guava</groupId>
 <artifactId>guava</artifactId>
 <version>19.0</version>
</dependency>

The only other dependency being used is guava from Google which contains some

helpful utility classes that we are going to use to load a resource file.

7. Next open producer/src/main/java/com/example/Producer.java in your text editor. This

class is fairly simple Java application but contains all the functionality necessary to

operate as a Kafka Producer. The application has two main responsibilities:

o Initialize and configure a KafkaProducer

o Send messsages to topics with the Producer object

To create our Producer object, we must create an instance

of org.apache.kafka.clients.producer.KafkaProducer which requires a set of properties

for initialization. While it is possible to add the properties directly in Java code, a more

likely scenario is that the configuration would be externalized in a properties file. The

following code instantiates a KafkaProducer object using resources/producer.properties.

KafkaProducer<String, String> producer;
try (InputStream props = Resources.getResource("producer.properties").openStream()) {
 Properties properties = new Properties();
 properties.load(props);
 producer = new KafkaProducer<>(properties);
}

Open resources/producer.properties and you can see that the configuration is minimal:

acks=all
retries=0
bootstrap.servers=localhost:9092
key.serializer=org.apache.kafka.common.serialization.StringSerializer
value.serializer=org.apache.kafka.common.serialization.StringSerializer

o acks is the number of acknowledgments the producer requires the leader to have

received before considering a request complete. This controls the durability of

records that are sent. A setting of all is the strongest guarantee available.

o Setting retries to a value greater than 0 will cause the client to resend any record

whose send fails with a potentially transient error.

o bootstrap.servers is our required list of host/port pairs to connect to Kafka. In

this case, we only have one server. The Docker Compose file exposes the Kafka

port so that it can be accessed through localhost.

o key.serializer is the serializer class for key that implements

the Serializer interface.

http://kafka.apache.org/0100/javadoc/org/apache/kafka/clients/producer/KafkaProducer.html

o value.serializer is the serializer class for value that implements

the Serializer interface.

There are many configuration options available for Kafka producers that should be

explored for a production environment.

8. Once you have a Producer instance, you can post messages to a topic using

the ProducerRecord. A ProducerRecord is a key/value pair that consists of a topic

name to which the record is being sent, an optional partition number, an optional

key, and required value.

In our lab, we are going to send 100000 messages in a loop. Each iteration of the

loop will consist of sending a message to the user-events topic with a key/value pair.

Every 100 iterations, we also send a randomized message to the global-events topic.

The message sent to global-events does not have a key specified which normally

means that Kafka will assign a partition in a round-robin fashion but our topic only

contains 1 partition.

After the loop is complete, it is important to call producer.close() to end the

producer lifecycle. This method blocks the process until all the messages are sent to

the server. This is called in the finally block to guarantee that it is called. It is also

possible to use a Kafka producer in a try-with-resources statement.

try {
 for (int i = 0; i < 100000; i++) {
 producer.send(new ProducerRecord<String, String>(
 "user-events", // topic
 "user_id_" + i, // key
 "some_value_" + System.nanoTime())); // value

 if (i % 100 == 0) {
 String event = global_events[(int) (Math.random() *
global_events.length)] + "_" + System.nanoTime();

 producer.send(new ProducerRecord<String, String>(
 "global-events", // topic
 event)); // value

 producer.flush();
 System.out.println("Sent message number " + i);
 }
 }
} catch (Throwable throwable) {
 System.out.println(throwable.getStackTrace());
} finally {
 producer.close();

http://kafka.apache.org/documentation.html#producerconfigs
http://kafka.apache.org/0100/javadoc/org/apache/kafka/clients/producer/ProducerRecord.html
https://docs.oracle.com/javase/tutorial/essential/exceptions/tryResourceClose.html

}

9. Now we are ready to compile and run the lab. In a terminal, change to

the lab directory and run the following Maven command using a Docker image:

$ mvn clean package

10. For convenience, the project is set up so that the package target produces a single

executable: target/producer. Run the producer to send messages to our two topics -

- user-events and global-events.

$ target/producer
SLF4J: Failed to load class "org.slf4j.impl.StaticLoggerBinder".
SLF4J: Defaulting to no-operation (NOP) logger implementation
SLF4J: See http://www.slf4j.org/codes.html#StaticLoggerBinder for further
details.
Sent message number 0
Sent message number 100
...
Sent message number 99800
Sent message number 99900

11. Don't stop the Kafka and Zookeeper servers because they will be used in the next

section focusing on the Consumer API.

Conclusion

We have now successfully sent a series of messages to Kafka using the Producer API. In

the next section, we will write a consumer program to process the messages from Kafka.

https://maven.apache.org/

3. Developing Kafka Applications -

Consumer API

In this section, you will create a Kafka Consumer using the Java API. This is the

continuation of the previous lab in which a Kafka Producer was created to send

messages to two topics -- user-events and global-events.

Objectives

1. Understand what the consumer Java code is doing

2. Compile and run the consumer program

3. Observe the interaction between producer and consumer programs

Prerequisites

Like the first part of this of this lab, we will use a Maven Docker image to compile the

Kafka consumer Java application. You should have a text editor available with Java

syntax highlighting for clarity. You will need a basic understanding of Java programming

to follow the lab although coding will not be required. You should have already

completed the previous Kafka Producer lab so that there are messages ready in the

Kafka server for the Consumer to process.

Instructions

1. Open consumer/src/main/java/com/example/Consumer.java in your favorite text editor.

Like the Producer we saw in the previous lab, this is a fairly simple Java class but can

be expanded upon in a real application. For example, after processing the incoming

records from Kafka, you would probably want to do something interesting like store

them in HBase for later analysis. This application has two main responsibilities:

o Initialize and configure a KafkaConsumer

o Poll for new records in an infinite loop

The first thing to notice is that a KafkaConsumer requires a set of properties upon creation

just like a KafkaProducer. You can add these properties directly to code but a better

https://maven.apache.org/
https://hbase.apache.org/
http://kafka.apache.org/0100/javadoc/org/apache/kafka/clients/consumer/KafkaConsumer.html

solution is to externalize them in a properties file. The following code instantiates

a KafkaConsumer object using resources/consumer.properties.

KafkaConsumer<String, String> consumer;
try (InputStream props = Resources.getResource("consumer.properties").openStream()) {
 Properties properties = new Properties();
 properties.load(props);
 consumer = new KafkaConsumer<>(properties);
}

2. Open resources/consumer.properties and you see that the required configuration is

minimal like the producer.

bootstrap.servers=localhost:9092
key.deserializer=org.apache.kafka.common.serialization.StringDeserializer
value.deserializer=org.apache.kafka.common.serialization.StringDeserializer
group.id=test
auto.offset.reset=earliest

o bootstrap.servers is our required list of host/port pairs to connect to Kafka. In

this case, we only have one server.

o key.deserializer is the deserializer class for key that implements

the Deserializer interface.

o value.deserializer is the deserializer class for value that implements

the Deserializer interface.

o group.id is a string that uniquely identifies the group of consumer processes to

which this consumer belongs. In our case, we are just using the value of test for

an example.

o auto.offset.reset determines what to do when there is no initial offset in

Zookeeper or Kafka from which to read records. The first time that a consumer is

run will be the first time that the Kafka broker has seen the consumer group that

the consumer is using. The default behavior is to position newly created

consumer groups at the end of existing data which means that the producer data

that we ran previously would not be read. By setting this to earliest, we are

telling the consumer to reset the offset to the smallest offset.

Like the producer, there are many configuration options available for Kafka

consumer that should be explored for a production environment.

http://kafka.apache.org/documentation.html#consumerconfigs
http://kafka.apache.org/documentation.html#consumerconfigs

3. Open consumer/src/main/java/com/example/Consumer.java again. A consumer can

subscribe to one ore more topics. In this lab, the consumer will listen to messages

from two topics with the following code:
consumer.subscribe(Arrays.asList("user-events", "global-events"));

4. Once the consumer has subscribed to the topics, the consumer can poll for new

messages in the following loop:

while (true) {
 ConsumerRecords<String, String> records = consumer.poll(100);

 for (ConsumerRecord<String, String> record : records) {
 switch (record.topic()) {
 case "user-events":
 System.out.println("Received user-events message - key: " +
record.key() + " value: " + record.value());
 break;
 case "global-events":
 System.out.println("Received global-events message - value: " +
record.value());
 break;
 default:
 throw new IllegalStateException("Shouldn't be possible to get
message on topic " + record.topic());
 }
 }
}

For each iteration of the loop, the consumer will fetch records for the topics. On each

poll, the consumer will use the last consumed offset as the starting offset and fetch

sequentially. The poll method takes a timeout in milliseconds to spend waiting if

data is not available in the buffer.

The returned object of the poll method is an Iterable that contains all the new

records. From there our example lab just uses a switch statement to process each

type of topic. In a real application, you would do something more interesting here

than output the results to stdout.

5. Now we are ready to compile and run the lab. In a terminal, change to

the lab directory and run the following Maven targets:

$ docker run -it --rm --name lesson -v "$PWD":/usr/src/lesson -w /usr/src/lesson
maven:3-jdk-8 mvn clean package

https://maven.apache.org/

6. For convenience, the project is set up so that the package target produces a single

executable: target/consumer. Run the consumer:

$ target/consumer
SLF4J: Failed to load class "org.slf4j.impl.StaticLoggerBinder".
SLF4J: Defaulting to no-operation (NOP) logger implementation
SLF4J: See http://www.slf4j.org/codes.html#StaticLoggerBinder for further
details.
Received user-events message - key: user_id_0 value: some_value_148511272601285
Received user-events message - key: user_id_1 value: some_value_148511557371815
Received user-events message - key: user_id_2 value: some_value_148511557456741
....

After the consumer has processed all of the messages, start the producer again in

another terminal window and you will see the consumer output the messages almost

immediately. The consumer will run indefinitely until you press Ctrl-C in the terminal

window.

7. Finally, change back into the docker/ directory to shut down the Kafka and

Zookeeper servers.

$ docker-compose down

Conclusion

We have now seen in action a basic producer that sends messages to the Kafka broker

and then a consumer to process them. The examples we've shown here can be

incorporated into a larger, more sophisticated application.

Congratulations, this lab is complete!

